
The Truth About Disc Files
Eugene Volokh

VESOFr Consultants
Los Angeles, California

110, IIO~ it's off to disc we go ...
(modem rendition of Walt Disney)

ABSTRACT
The disc fde is probably the most important part of

MPE; however, due to the large number of different
options and considerations inherent in disc ftIes, these
objects are often "under-understood" - this paper will
try to present the truth and nothing but the truth (the
whole truth will not be printed owing to lack of paper)
about disc fdes, which will hopefully remedy this situa
tion.

CHAPTER I
FILE STRUCTURE

Where It's At

Before discussing disc ftles themselves, we must take
a moment to point out some terms, probably already
known to you, regarding the physical medium on which
disc fdes reside - the disc. This disc consists of a lot of
128-word SECTORS, and is assumed to be conflgured
on the system as one logical device.

Some considerations. to be judged when referring to
these discs are: (1) space - each disc has an ever so
fmite amount of sectors on it, the number of which va
ries from disc to disc, but is, by Murphy's Law, never
enough ...:..... and (2) speed of access, which is typically on
the order of 30 disc accesses per second.

The discs typically used with the HP are' ones that
constantly rotate in order for all parts of the disc to be
accessible by the unrotating PISC HEAD. It is this ro
tation of the disc that is the culprit in the slowness of
disc accesses. Similar considerations can be applied to
the two other significant types of hardware: memory
(which is very, very fast yet lamentably liriUted - up to
4 MegaBYTES on a Series 44) and tapes (which are
virtually infmite yet quite slow).

The above hardware considerations, though elemen
tary, will be of paramount importance in further discus
sion.

The Extent Question

Let us start at the beginning - the creation of the ftIe.
We will examine what the MPE operating system has to
do to create a ftIe. For example, let us say that you ask
MPE to build you a data fde, which is to have room for

at most 100,000 records of 128 words each (note ~at 128
words is the size of a sector, and thus a good value for
simplicity). This would be done, perhaps, by an MPE
command akin to ":BUILD ING;DISC=100000" (MPE
will automatically assume 128 words as the record size).
Now, what does MPE do?

Well, of course, MPE must allocate some disc space
for that fde. In this particular case, MPE must allocate a
whopping 100,001 sectors (the 1 extra sector is for the
file label, a place where MPE holds internal fl1e informa
tion like the lockword, etc.) all at one time. But, wait a
minute! There may be 100,001 sectors out there on your
disc (or discs), but it's possible that there is no one
single gap that large out there. Moreover, maybe you
don't really need all that space. Quite probably, you'll
never use more than 10% of it! So, we are faced with a
dilemma - if MPE were to allocate the space for that
file nicely and simply, in one big chunk, it may not have
enough space on disc; or, if it does, most of that space
will probably be wasted, as (for a time, at least) you will
not use all of that space.

Let us look at the other "extreme" solution. Why
don't we, perhaps, allocate only one sector of space at a
time - one in the beginning, for the file label, and one
every time the user needs one. That way, even if the
disc is hopelessly fragmented (i.e., there are very many
I-sector pieces of free space out there, but no large
ones), we can probably fit a sector - ifwe can't, time to
buy another disc; moreover, we do not allocate any disc
space until we really need it. This was, perhaps, a de
cent solution in the "good old days" when disc space
was very expensive. But, now, the operating system
would have to maintain 100,001 pointers to enable ac
cess to that file, which makes the above method un
workable.

Enter the EXTENT! The extent is a reasonable com
promise between the two extreme methods outlined
above. A file can consist of anywhere from 1 to 32 ex
tents (the default number is 8). Now, when we build the
above fl1e (with 8 extents), we will only have to allocate
around 12,500 sectors in the beginning (a savings ofdisc
space) and allocate new extents only every 12,500 re
cords (a savings of disc accesses). We could, however,
allocate the fIle with only 1 extent, thus losing out on
disc space but gaining on disc accesses (but, of course,
the savings on disc accesses is rather small compared to
the incredible wastage ofdisc space), or with 32 extents,

11-17 -1

thus saving disc space at the expense of a few extra disc
accesses.

Two other considerations come into play, however
one is that accessing files with a lot of extents FRAG
MENTS THE DISC (i.e., increases the number of small
holes at the expense of large holes), thus making new
files harder to allocate in the future, and another is that
it is better to run out of disc space when building a disc
fde, than when allocating a new extent in the middle of
the program (precious time and internal data consis
tency may be lost this way). The former can be handled
best by decreasing the number of extents (at the ex
pense of, of course, disc space) and the latter by allocat
ing at :BUILD-time all of the specified extents (but only
if you are sure you will use all of the space). Note that
the number of extents (maximum and initially allocated
may be specified on the :BUILD command's DEV
keyword, whose format is "DEV=device[,maxexts]

-\ .[Jnitalloc]", where maxexts defaults to 8 and initalloc to
1.

For Those With Multiple Discs

If you are the proud owner of several disc drives,
another factor comes into play. For example, let us say
that you build a file with the command ":BUILD
ING;DISC= 100000" (note that the maximum number
ofextents defaults to 8, 1 initially allocated), and start to
wonder about which disc your fIle resides on. Well,
MPE, has adopted the so-called "eeny, meeny, miney,
moe" algorithm. That is, if you succeed in filling all 8
extents of your file, you may well fmd that that file does
not reside on just one disc; rather, it resides on the discs
of the DEVICE CLASS "DISC" (which are special sets
of different devices, not necessarily discs, configured at
system set-up time). Each extent, of course, resides
wholly on one disc; but, the extents may reside on dif
ferent discs - thus, a file with 8 extents may well find
itself with 4 extents on disc # 1, 2 on disc #2, 1 on disc
#3, 1 on disc #4, and 0 o~ disc #5. If you, however,
want that file to reside exclusively on disc #4, "no
sweat" (as is said in the vernacular)! Merely :BUILD
the fde with the "DEV=4" parameter. Or, if you set up
another device class called PRODDISC which will con
tain discs #3, #4, #5, building the file on DE
V=PRODDISC will ensure that all extents of that fIle
will be located on one of those devices. What, you may
ask, is the importance of this? Well, the word that has
leaked down from HP is: SPREAD OUT YOUR FILES
- for instance, if you have two heavily accessed fIles, it
might be wise to put them on two different discs.

This is done for the following reason. Let us assume
that you have two disc drives, each one able to perform
approximately 30 I/Os per second, and you spread out
your files in such a way that each disc gets about 30 I/O
requests per second. Those requests will be executed
within one second. But, if there are 20 I/O requests per
second to one disc and 40 to the second disc, the fIrst
disc will not perform up to capacity, and 10 of the re-

11-17 -2

quests to the second disc will have to wait for a second
or more, thus degrading system performance.

Another promising idea is to configure all of your
devices except the system disc as device class "DISC,"
thus keeping files off the system disc, and thus reducing
the amount of access to the system disc, which already
has the operating system and the virtual memory on it.
However, with MPE IV, in which you will be allowed to
spread virtual memory over several devices, this may
not be as important. Note that for easy [de disc location
handling, MPEX/3000's %LISTF ,4 and %ALTFILE
commands and ADAGER's DBCREATE and SET
MOVE functions should be used.

The Logical File Structure

Besides the physical fue structure described above
extents, sectors, etc. - MPE fIles also have an internal
logical structure, not enforced in most ways by the ac
tual ftle contents but rather by certain logical fIle de
scriptors like the record size, the blocking factor, the
block size, the file type, and the like. First of all, we will
discuss the simplest sort ofMPE file - the fixed-record
length fue.

The Fixed Record Length File

A file is more than just a collection of data placed out
on disc. It usually has certain logical relationships
within it. One of the most frequent and fundamental
relationships is one in which data is organized into
chunks (called RECORDS) of a fixed length; for in
stance, if you have a data file which contains, for each
customer, the customer code (6 characters), customer
name (30 characters), and the amount owed you by the
customer (8 zoned decimal characters), you have a 44
character entry for each customer. Therefore, it would
be logical, for the sake of ease of access, to build that
fIle with 44-byte (or 22-word) records, having one re
cord per customer. So, to build that file, you would
perform a BUILD c011)mand with the RE
C=-44"F,ASCII parameter (- stands for bytes and F
for ·fIXed record length).

The Block

A familiar example of fixed record length disc fIle is
your usual EDITOR /KEEP-NUMBERED file, a fIle
with a record size of 80 bytes = 40 words. However, do
you know that in your EDITOR keep files more than 6%
of all disc space they occupy is wasted? This may not
sound like much, but if you are running short on disc
space, this can be a lot. What's more, that disc space
can be saved (for large files) by merely specifying a
certain :FILE equation for the [de to be kept. What, you
may ask, is the reason for this wastage? Well, the an
swer lies in the secrets of the BLOCK.

The fundamental unit of disc I/O (as far as MPE is
concerned) is the SECTOR (128 words). Practically all
disc I/O ends up as multiples of 128 words. 40, of
course, is not a multiple of 128. So, if MPE decided to

place 40 words per sector, it would waste not 6%, but
69% of each sector! So, you ask, why not pack three
40-word records into one 128-word sector. Well, that's
exactly what MPE does; but because 128 is not a multi
ple of 40, either, it still wastes 6% of the file's disc space
(although 6% may not sound like much, for some un
lucky files which have different record lengths, it can be
worse, with up to 50% wasted space!). But, there is light
at the end of the tunnel! We can very snugly fit 16
4O-word records into 5 128-word sectors - a perfect fit.

From the above labyrinth come the notions of the
BLOCKING FACTOR and the BLOCK. The BLOCK
ING FACTOR is, very simply, the number of records
that we choose to fit into a multiple of 128 words - in
the above "snug fit" scenario, this is 16; in the 6% was
tage method that MPE uses, the blocking factor is 3 (3
records to 1 sector); in the (ugh!) 69% wastage at 1
record to 1 sector, the blocking factor is 1. The BLOCK
therefore, is BLOCKING FACTOR records - Le.,
when the blocking factor is 16, the block is 16*40 = 640
words = 5 sectors.

In general, MPE chooses the blocking factor as fol
lows. If the record size of a file is less than one sector
(128 words), the blocking factor = 128/recordsize = the
number of records that will fit into one sector; if the
record size of a file is greater than 128 words, the block
ing factor is always 1. A good example of the possible
wastage is when a record is 65 words long; then, 128/65
= blocking factor of 1, wasting 63 words for every 65
words used - a wastage of 49%! If that record was,
however,64 words long, then the blocking factor would
be 2, with NO wastage.

By the way, it happens that the blocking factor for a
new rde can be defined in a :BUILD or :FILE command
- always as the second subparameter (between the re
cord size and the F, V, or U record format) of the
REC= keyword. Thus, if you want to eliminate the 6%
waste due to the blocking factor of 3 on EDITOR keep
files, just execute an equation of the form ":FILE
filename;REC= ,16" right before keeping the fl1e as
"filename," and presto! out comes a file with a blocking
factor of 16. For already existing fl1es, some disgust
ingly complicated tricks can be used - or, if you are
blessed with a copy of MPEX/3000, just use the
BLKFACT= keyword of the %ALTFILE command.

Now, you may wonder, what leads MPE to choose a
default blocking factor calculation system that leads to
considerable wastage in perhaps one of the most com
mon forms of files? Well, for one, it would be unfair not
to remark at this point that the "NO wastage" schemes
described above really DO waste some space (although
not a lot). The reason for this is that a fl1e (in fact, each
extent of a file) must be an integral number of blocks. If
it isn't, a full block is allocated for less than "BLOCK
ING FACTOR" records. Thus, if you have a ftIe con
taining 50 80-byte records with a blocking factor of 16, it
would use up 4 blocks, the last one having only 2 actual
records - this file will thus use 21 sectors; however, if

that file is built with a blocking factor of 3, it would use
up 17 blocks (the last one also having only 2 records),
and would thus use only 18 sectors of disc space. How
ever, this consideration is less important for larger fl1es.
Another reason for MPE's default blocking factor
strategy is that the block and the blocking factor govern
more than just disc space usage - they also control
certain parameters of buffered file access (see the chap
ter on FILE ACCESS). However, for most files (espe
cially large ones!) it is beneficial to' select your own
blocking factors (with the use of the contributed
BLOCK program, for instance).

The Variable Record Length File

Let us take a hypothetical EDITOR COBOL-format
file. At the :beginning of each line there is a 6-digit line'
number; the other 74 characters contain the line,
blank-padded. Now, those trailing blanks, especially in
large source, fues, convey absolutely no information to
anybody, and (since the average length of a line could
be estimated at half of 74 characters) will cause a was
tage of APPROXIMATELY 50% OF THE DISC
SPACE USED BY THOSE FILES! But, you reply, if
EDITOR built the fue with a record length of, say, 40
characters, all of my lines that are longer than 40
characters will get truncated. Well, you're right - but
that is not what is to be done! Wouldn't it be nice if
EDITOR and/or the file system allowed, you to 'have
files not with a FIXED record length, but with a VARI
ABLE record length - i.e., lines that are 74 characters
long will use 74 characters and lines that are 10 charac
ters long will use 10 characters? Well, it does!

In fact, if you type in the little-known /SET VARI
ABLE command in EDITOR, it will'instruct EDI~OR
to keep the workfile as a variable length record fue
(WARNING: USE THIS ONLY FOR COBOL AND
DATA FILES, NEVER FOR NUMBERED FOR
TRAN OR SPL SOURCES, OR THOSE SOURCES
WON'T BE COMPILER READABLE!!!), thus letting
it ignore those trailing blanks, but still keep the file for
mat transparent to other programs that read these files
- for example, compilers. In your own programs (not
just in EDITOR), you can read variable record length
fues without changing your programs at all- COBOL's
or FORTRAN's READ command can read variable re
cord length files. You can write them without any
changes either - if you write a 10-character record to a
fIXed record length file of 80 characters, the record will
be padded with 70 blanks or nulls; if you write that
record to a variable record length file, the record will
not be padded by anything, thus saving the space re
quired for the padding. To build a variable record length
file, specify the third subparameter of the REC=
parameter of the :FILE or :BUILD command as "V"
(e.g., REC=-80"V). The record size specified is now no
longer the actual record size of each record but rather
the maximum; whether the file is ASCII or BINARY
now really does'n't matter. Also, do not call in the Na-

11-17 - 3

tional Guard (or PICS) when you see on a :LISTF that
the END OF FILE for that file is GREATER THAN
ITS FILE LIMIT - it can happen with variable record
length files.

Therefore, with COBOL source files (especially) and
unnumbered data files, variable-length records are usu
ally the way to go; again, however, we must warn you
that numbered default-format (e.g., SPL or FORTRAN
source) files SHOULD NEVER BE KEPT WITH THE
/SET VARIABLE OPTION SET or else they will not
be readable by the compiler.

However, as the old proverb says, "EVERY
SILVER LINING COMES WITH A CLOUD AT
TACHED TO IT," variable record length ftIes have
some drawbacks. For one, they can not ,be accessed
directly (for instance, with the FREADDIR,
FWRITEDIR, or FPOINT intrinsics, or FORTRAN's
READ/WRITE (fnum @ record) construct); i.e., you
can read their records sequentially, but you can not ask
to get, for instance, the 17th record of the file.
Moreover, they cannot be accessed by many ftIe copiers
using the fast MR NOBUF file access method (see
under FILE ACCESS in this paper), such as HP's own
DSCOPY, MPEX's %FCOPY "FAST/DSLINE,
MPEX's %ALTFILE, SUPRTOOLIROBELLE, etc.
Also, before MPE IV, append access to variable record
length files was not supported; it is supported starting
with MPE IV.

Another important consideration to keep in mind
when using variable record length ftIes is that when you
build a new variable record length ftIe with record size
RECSIZE and blocking factor BLKFACT, the resultant
block size of the file will be not RECSIZE*BLKFACT
(as in fixed record length files), but rather RE
CSIZE*BLKFACT + (BLKFACT+l)*(2 bytes). Thus,
ifyou build a variable record length ftle ofrecord size 80
bytes and blocking factor 3, the file will actually have a
block size of (80*3+4*2)=248 bytes. However, if the
same file is built witli a blo~king factor of 16, the block
size will end up being (80*16+17*2)=1314 bytes, not
1280 bytes! The end result is that AN OPTIMAL
BLOCKING FACTOR FOR A FIXED RECORD
LENGTH FILE MAY BE FAR FROM OPTIMAL
FOR VARIABLE RECORD LENGTH FILES!

Incidentally, MPE IV's new INTER-PROCESS
COMMUNICATION features (i.e., Message and Circu
lar files) rely EXCLUSIVELY on variable record
length fdes (q.v. COMMUNICATOR issue 26 - the C
Mm.

Undefined Record Length Files

There exists another type of disc file - the undefined
record length file. These are rather bizarre specimens
which are not intended to be and should not be used as
disc files, but are rather supposed to be utilized as tape
fdes and terminal files, which are beyond the scope of
this paper. ASCII VS. BINARY FILES When using

11-17 -4

fIXed record length files, it often happens that you may
write a 30-character record into a file with a record
length of 80. Then, what happens to the other 50 charac
ters of the record? Well, for some files (for instance
source files) that contain simple text data, you would
typically want to initialize it to spaces because of the
nature of the file. If that is what you want, you would
build that file (EDITOR will build it that way for you) as
an ASCn file. This parameter can be specified as the
fourth subparameter of the REC= parameter of the
:FILE or :BUILD command, e.g., REC=",ASCII.
However, for some data files, you may want to pad the
records with binary zeroes (nulls). Files built in such a
way are called BINARY files, and can be built by
specifying the BINARY parameter as the fourth sub
parameter of the REC= parameter of the :FILE or
:BUILD command, for example REC=,,,BINARY.
Note that this. is usually not necessary as BINARY is
the default ftIe mode. Also note that since no record
padding is done in variable record length fIles, the
ASCn vs. BINARY distinction is usually irrelevant to
them.

The File Code

If you do a :LISTF mode 1 or 2 on a group of fIles,
you may notice that some files have a [tIe code of 0
(blanks), some ofPROG, USL, EDTCT, KSA M, PRIV,
and assorted numeric codes. These filecodes, for the
most part, are merely for the sake of ftle identification
- they have no physical influence on the actual con
tents of fdes. If you change the fdecode of a ftle (for
example with MPEX/30 OO's %ALTFILE
fIlename;CODE~ command), the contents of the fIle
will not magically change. However, the filecode is use
ful for identification purposes - for instance, the MPE
loader knows that fIles offdecode PROG are :RUNable
program fdes, the EDITOR knows that files of code
EDTCT are /SET FORMAT=COBOL files, QEDIT/
ROBELLE knows that files of code 111 are its rtIes. In
fact, you can set up your own file identification system
for source or data files - you can build ftles with a
certain file code (via the CODE= parameter of a :FILE
or :BUILD command), alter the file code (with MPEX/
3000 or by copying the file), and examine the file code
(via the :LISTF command or, programmatically, with
the FGETINFO intrinsic). Certain tools like MPEX
also allow you to LISTF files by fIle code. An example
of this kind of file identification system (recently im
plemented by us) is to set the file code to be the Julian
date of the day on which it was created, or some other
important date.

Note that the fIle code of each file is in reality a
number - for example, program files (PROG) have a
rde code of 1029, but they are listed in a :LISTF output
as PROG. Also, KSAM files do not actually have a
numeric fde code that identifies them as such -- they can
in reality have any numeric rde code. However, KSAM
fIles which have a ftIe code of0 (which usually shows up

as blanks on a :LISTF listing) will be printed as having
code = KSAM. Files that are listed as having file code
= PRIV are in reality files that have NEGATIVE fue
codes (like IMAGE files). Unlike usual rues, they can
only be accessed by programs running in
PRIVILEGED MODE. This is handy, for instance, for
IMAGE fues, to ensure that an ordinary user can not
physically change an IMAGE file without going through
the existing IMAGE utilities/intrinsics.

User Labels

It is often desirable or necessary to store information
in a fde in such a way that it can later be retrieved, but is
nonetheless transparent when you read it in an ordinary
fashion. The concept of USER LABELS provides this
capability. With it, you can write special label records
(the maximum number of which is specified at open
time, defaults to 0, and can be up to 254) with the
FWRITELABEL intrinsic, read them with the
FREADLABEL intrinsic, but have them be transparent
to any user who reads or writes ordinary records to that
fde. These labels are used by IMAGE, KSAM, and the
message system file (e.g., CATALOG and CICAT).
Another advantage of user labels is that you can write
user labels when you open the file for read access, can
read user labels when you open the file for write access,
and can open the file for OUT access (see access modes
below) which will else all of the file's records but not its
user labels.

Carriage Control Files,
Relative I/O Files, Message Files,

Circular Files, KSAM Files,
IMAGE Files, and Other Monsters

That Inhabit the HP3000

This paper will not talk about the above types of fues
(for want of time, will, and disc space). However,
maybe sooner or later you will hear the truth about
them, too!

CHAPTER II
FILE ACCESS

Once a fue is built, it really isn't much good if you
can't access it - read it, write it, append to it, etc. In
this chapter we will discuss the different methods of
accessing files that MPE provides for you.

Buffered File Access

A while back we referred to the concept of the
BLOCK. Well, it turns out that the block is more than a
convenient way of storing records on disc. In fact, it

. plays a very important role in the default mode of fue
access called BUFFERED FILE ACCESS. Let us as
sume that" you are reading a 10,OOO-record disc file
which has a record size of 40 words (80 bytes), a block
ing factor of 16, and thus a block size of 640 words. Let
us assume that you had to do one disc I/O for each

record - this would come up to a total of 10,000 disc
I/O s, quite a lot!

So, MPE implemented a rather ingenious idea called
fde buffering. Each file opened as a buffered rue has
allocated for it a certain amount (default 2, changable at
open time with the FOPEN intrinsic or the BUF=
parameter of a :FILE equation) of buffers, each of
length equal to the file's block size (in this case 640
words). These buffers are placed in an Extra Data Seg
ment (because extra data segment access is faster than
disc access) and accessed there. They are read from or
written to disc only when a record that is not in the
buffer is requested. Thus, for the file described above,
only 10,000/16 disc I/O's = 625 disc I/O's is necessary
- a considerable savings! The advantage of having
more than 1 buffer is that then you can access, for in
stance, records 17-32 (in one buffer) and 49-64 (in the
other buffer) without necessitating a disc I/O each time
you switch from one record range to the other. How
ever, if you then read in record 100, the contents of
buffer 1 will be flushed out to disc and buffer 1will then
contain records 97-112. In general, with buffering, one
disc I/O is required for every (BLOCKING FACTOR)
records - in this case, one disc I/O is needed for each
16 records.

In the discussion above, we advised that you set up
blocking factors so that BLOCKING FACTOR * RE
CORD SIZE be an even multiple of lZ8; thus, for in
stance, 16 was chosen for files with records of length 40
words. But, there is more than one way to skin a block
ing factor! In fact, since 16 * 40 is a multiple of 128, 32 *
40 certainly is too! Very little disc wastage will result
from changing the blocking factor from 16 to 32, but
each buffer will now be not 640 words long, but rather
1280 words long, and now only 313 (= 10,000/32) disc
I/Os will be necessary to read the file! A blocking factor
of 64 will require less than 160 I/O's, and so on. This will
not necessarily halve the time used by the read, but it
sure will decrease it. Of course, the same thing can" be
said for writing to files. We must, however, point out
that memory space will be used much more heavily by
fdes that have large blocking factors. Also, the total size
of the buffers must be less than or equal to 8,192 words
(or 14,000 words starting with the D MIT version of
MPE). Since the default number of buffers is 2, this puts
an upper limit of 4,096 words (or 7,000 words starting
with the D MIT) on the block size of a fIle. However,
you can increase that maximum to 8,192 words (or
14,000 words starting with the D MIT) by opening the
fIle with 1 buffer (by specifying BUF= 1 on a fIle equa
tion).

Multiple Record Non-Buffered
Access (MR NOBUF)

The buffering method described above is rather good,
but is still not optimal; first of all, access to the extra
data segment in which the buffers are located is faster
than disc access, but nonetheless not as fast as access to

11-17 -S

your own stack. Moreover, as was pointed out above,
certain memory usage considerations .forbid the buffers
from being more than 5K to 10K words, which is also
not optimal. Wouldn't it be truly wondeIful if one could
read not just single records, not just blocks of 16 or so
records, but 4,000 words at one shot? Well, one can,
through the magic of MR NOBUF, probably the MOST
POWERFUL AND FASTEST FILE ACCESS
METHOD NOW AVAILABLE! MR stands for Multi
ple Record I/O (do not confuse this with the Multiple
RIN capability, also abbreviated MR), and NOBUF
stands for No Buffering (this is a bit of a misnomer - it
means that it is you, not MPE who will provide the
buffer space needed). Note that MR must be used with
NOBUF!

Certain factors to beware of when using MR NOBUF
are: for one, this method is rather hard to use with vari
able record length files. Also, the efficiency of this
method is best with a buffer size of 4,096 words.
Another factor is that when the block size (BLOCKING
FACTOR * RECORD SIZE) is not a multiple of 128
words, MR NOBUF is not that much more efficient
than ordinary ftle access, and simple NOBUF access
should be used instead.

By far, the best application of MR NOBUF is with file
copying. FCOPY, which uses ordinary buffering meth
ods, is often 10 to 20 times slower than MR NOBUF
copiers like HP's own DSCOPY, MPEX/3000s
%FCOPY "FAST/DSLINE or %ALTFILE com
mands, SUPRTOOLIROBELLE, and numerous other
programs. However, you can do MR NOBUF reading
and writing from your own programs by specifying the
MR NOBUF access options when accessing the file (or
specifying the MR or NOBUF parameters on the :FILE
equation - however, a bug present on some versions of
MPE forces you to specify MR in the FOPEN because
it ignores the MR :FILE equation parameter; see
"ANOTHER MPE FEATURE (BUG)" in SCRUGlet
ter, Jan 1981 Vol 4 #1). This will allow you to read more
than one record (always at least one block, however) at
a time, and also lets you do direct I/O (e.g., with
FREADDIR and/or FWRI TEDIR) on a block number
rather than record number basis.

However, reading files MR NOBUF in your own pro
grams is rather hard to do because of many concerns
that have to do with doing deblocking of records. Be
cause of this, it is suggested that you either do most of
your record selection outside of your program (with
SUPRTOOLIROBELLE, for instance), develop your
own MR NOBUF I/O routines that can be easily called
from your applications programs, or use David Brown's
FAST I/O procedures.

MR NOBUF I/O can therefore really cut down the
execution time and CPU time demands of your disc
I/O-heavy programs. The only problems with MR
NOBUF are that it is hard to apply it to variable record
length files and KSAM ftIes and that it may (because of

11-17 -6

the large in-stack buffers necessary) use up a lot of
stack space and much memory space.

The Access Types for Disc Files

In the access options parameter of the FOPEN intrin- .~
sic or in the ACC= parameter of the :FILE command
you can specify the so-called access type which defmes
whether a program will read the file, write to the file, do
both, or append records to the file. There are 7 legal
access types, which can be very useful if used properly.
The default access type is IN access. This is read-only
access - all attempts at writing records to fIles opened
with IN access will fail with File System Error 40
OPERATION INCONSISTENT WITH ACCESS
TYPE. If you only want to read the file, you should
open it with this access type; this will prevent your
program accidentally writing over the file; it will work
even if somebody else has the file opened in Share or
Exclusive Allo'w Read mode (see the SHARING FILES
chapter) and it will also work if the file's security pre-
vent you from doing anything but reading that file.

Another type of access is OUT access. OPENING·
OLD FILES WITH THIS ACCESS TYPE WILL
ERASE THEM! If you do not want that to happen, you
should open th e file with OUTKEEP access. However,
ifyou want to erase the file, or the file is new, or you do
not care about its old contents anyways, this is the ac
cess type that should be specified. Note that you need
WRITE access to the file to open it in this mode. OUT
KEEP access is useful for opening files to write to
them, but NOT DESTROYING THEIR OLD CON
TENTS (as OUT access would do). You need WRITE
access to the file to open it with this access type.

Often you do not need to write over the old contents
of a file - you merely need to add new records to it. In
that case, APPEND access is for you - it forces the
record pointer to be positioned at the end of the file and
only permits you to append records to the file. Another
advantage of it is that it requires that you have only
,APPEND access (not WRITE access) to the file to open
it thus. So, if you wish to permit users to only append
and not overwrite data in a given file, they should be
allowed only APPEND and not WRITE access to this
file. For instance, VESOFT's SECURITY/3000 permits
APPEND access to its security violation log file, but not
WRITE access (so user's can not obliterate the record
of their violations).

The above access types permit you either to READ
ONLY or WRITE ONLY, but never both. INOUT ac
cess lets you both READ and WRITE to the fIle. All
intrinsics (except FUPDATE) can be used against that
file in this mode. Note that you need READ and
WRITE access to open a file in this way.

There is also a special form of access called UPDATE
access that is PRECISELY the same as INOUT access
except that it permits the usage of the FUPDATE in
trinsic. Since this is apparently no less expensive than
INOUT access, and requires no extra access to the file,

CHAPTER III
SHARED FILES

CLOSE IT. This is, of course, somewhat of a problem if
that file is intended to be read and written by many
different users. There are several ways to get around
this dilemma.

Sharing Files With
Input/Output Access

Merely specifying SHR access when opening the file
will get you where you are going - it will allow you and
anybody else who opens the file with SHR access to
read and write to this file. But, let us suppose the follow
ing situation: two processes have opened one file for
IN/OUT acc.ess in SHR mode, and the following hap
pens:

Writes the record back
In the above scenario, process A reads the record

before process B reads the same record but writes it
back out after process B reads it in! That way, process
A's changes WILL NOT BE REFLECTED IN THE
FILE because of the inteIference of process B. In fact,
what is needed is a method of "LOCKING OUT" all
other writers of the file while the file is being updated!
Well, MPE's FLOCK and FUNLOCK intrinsics pro
vide this method.

Reads the same record

PROCESS B

Changes the record
Writes the record back

PROCESS A
Reads a record

Changes the record

Exclusive Allow Read Access

One of those ways is Exclusive Allow Read (EAR)
access. This permits you to forbid all other users from
writing to a file, while letting them read that file. Also,
this access (unlike EXCLUSIVE) access will be
granted to you even if the fue is already being accessed
for read access (but not for write access) by someone
else. This can be specified by setting the appropriate
bits in the access options of the FOPEN call, or issuing
a FILE equation with the EAR keyword. TRUE
SHARED ACCESS But, you sometimes want not just
to have one writer of a file, or one writer and several
readers, but MORE THAN ONE PERSON WRITING
TO A GIVEN FILE. This can be accomplished with
SHARED ACCESS (to use, specify the appropriate bits
in the FOPEN call or append the SHR keyword to the
file equation for that file), which is the default mode for
read only access, but has to be explicitly specified and
handled when writing to a file. Shared access is a very
complicated form of access, one at which we will look
closer in the next chapter.

Posting End of File to Disc

As was mentioned before, each file has a special re
cord called "the fIle label" (which contains all sorts of
information about the file, such as its type, name, and,
among other things, its end of file, which is the number
of records which the file contains). Now, if every time
that you wrote a record to the file, MPE would have
updated that file's file label, your programs would run
quite slow - after all, that would mean extra disc I/Os
to handle. For this reason, MPE does not post the end
of file to disc until a record write would cause it to
allocate a new extent (in which case it would have to
change the file label anyway), thus saving the extra
I/Os.

This is all fine and dandy, provided that MPE will
actually get a chance to post the end of file to disc
sometime. But, what if the system crashes after you
wrote the record but before MPE posted the end of file?
Then, even though the record (or records, as the case
may be), are already out on disc, MPE does not know
about it because the end of file pointer does not reflect
this. So, you've just lost all those records that were
written before the system crashed. You can, however,
minimize your losses through a little-known feature of
the file system by calling the FCONTROL intrinsic (see
System Intrinsics Manual) with a parameter 6 (WRITE
END OF FILE) which lets you post the end of file to
disc. Ifyou do this after you write each record, the most
records that you will ever lose due to a system failure is
one! Of course, this will triple" the number of disc I/Os
that you'll have to do, so this is not advised for large
batch runs; however, if you are updating a disc file in
teractively, the time it takes to input all of the data from
the screen will dwarf the time it will take to do the extra
I/O to such a degree that that the posting of the end of
fde will be virtually free in terms of time, and may save
you hours of re-entering vital data.

When You Are Not Alone

When you use any of the access types listed above
except read only (IN) access, the fIle specified will be
opened EXCLUSIVELY; that is, you can not open it if
anybody else has it opened, but, once you have it
opened, NOBODY ELSE CAN USE IT UNTIL YOU

it is suggested that this option be used instead of the
INOUT access type because it is more powerful and no
more dangerous.

Another access, permissible only to programs that
run in Privileged Mode (Ohmigod!), is EXECUTE ac
cess; its advantages are twofold. For one, it requires
only EXECUTE access to a file, not READ access;
moreover, it allows you to write to loaded program or
SL files. This is listed only for the sake of complete
ness, and all you nice non-privileged users out there
don't even need to know about it. For a discussion of
privileged mode, see PRIVILEGED MODE: USE VS.
ABUSE, SCRUGletter July 1981, Vol 4, #4.

11-17 -7

Record 3 written;
buffer flushed

Note that, by the principles of buffering, the actual
disc I/O is not done until the third record is written and
the buffer is flushed out to disc. But, because of that,
when it is flushed out to disc, the buffers from process A
and process B interfere with each other, and data can be
lost. Therefore, the rule for locking when appending (or

Sharing Files with Append Access

In some cases, however, locking does not really help.
For example, if two writers are just writing to a fde (no
reading, etc.), the "logical transactions" like the ones
described above are composed of merely one write. For
these transactions, it does no good to lock the file. One
of the most common example of this type of file access
is shared append access to a file by two or more writers.

In fact, if the file has a blocking factor of 1, there is no
need to do anything but the write. However, look at
what happens when the file has a blocking factor other
than 1, for example 3; consider process A and process
B, both writing to the same file:

Dynamic Locking and Unlocking
for Shared Files

In order to use dynamic locking, the process that
opens the file must open it with dynamic locking ena
bled (the LOCK parameter on the :FILE equation
together with the IN/OUT SHR access, the fue equation
would now look like :FILE file;LOCK;SHR;ACC=
INOUT - or the appropriate bit in the access options
of the FOPEN intrinsic call). Then, before each "logical
transaction" (a period in time in which the data in the
ftle is not consistent - in the above example, while the
record is being changed, the current state of the file'
does not reflect the true intended state; therefore, the
fue must be locked before the read and unlocked after
the write) the file must be locked and then be unlocked
after the end of the transaction (note that opening a fde
with dynamic locking enabled does not 'actually lock the
ftle). This will ensure that there will be no inconsisten
cies like the one shown above. Note that THIS WILL
WORK ONLY IF ALL WRITERS LOCK THE FILE
IN APPROPRIATE CASES - this locking arrange
ment only works for programs that honor it.

PROCESS A

Record 1 written;
kept in buffer

Record· 2 written;
kept in buffer

Record 3 written;
buffer flushed

PROCESS B

Record 1 written;
kept in buffer

Record 2 written;
kept in buffer

performing any other such operation in which each
transaction contains only one operation) is: LOCK
WHEN THE BLOCKING FACTOR IS GREATER
THAN 1; IF THE BLOCKING FACTOR IS 1, LOCK
ING I S UNNECESSARY.

MUltiple File Access

Another way to ensure that no data is lost while writ
ing to a [tie is with a useful tool (which is even more
useful under MPE IV) called MULTIPLE FILE AC
CESS. With multiple file access in shared mode, the
internal file control information and the I/O buffers are
shared, as well as the file itself, thus avoiding many
problems of ordinary shared access.

So, if process A and process B (IN THE SAME
JOB/SESSION) access a file SHARED, APPEND, and
MULTI, then their internal end of file and buffer
pointers are shared; thus, the risk of one's fIle I/O inter
fering with the other's is eliminated. To specify
MULTI-access, set the appropriate bit in the FOPEN
parameters or specify the ;MULTI keyword on a :FILE
command for the file in question.

So, very many of the problems and complicated lock
ing strategies discussed above can be avoided if
MULTI-access to that file is used. However, there are
two things that you must keep in mind when using
MULTI-access; for one, ordinary sequential reads and
writes to that fde will not behave as expected. Why?
Well, the current record pointer is among those values
that is shared with MULTI-access and thus ifprocess A
reads a record sequentially and then process B requests
to read a record sequentially, process B will get the next
record because the record pointer was already in
cremented by A's read. Thus, if the two processes read
the file sequentially with MULTI-access, each one will
read approximat~ly half the file instead of the full fde!

MPE III vs. MPE IV

Another problem for all you unlucky people who still
do not have MPE IV, MULTI-ACCESS IS PERMIS
SIBLE ONLY WITHIN ONE JOB/SESSION UNDER
MPE III! However, under MPE IV, you can use the
GMULTI (Global MULTI access), which can be
specified in the FOPEN parameters or with the
GMULTI keyword of the :FILE equation, to have
MULTI-ACCESS ACROSS JOBS/SESSIONS, with
which you can avoid most of the problems of shared fde
access very easily.

More About Locking

There are two methods of locking files: UNCONDI
TIONAL, which means "if the file is already locked by
somebody else, wait for them to unlock it, and then
establish the lock" and CONDITIONAL, which means
"if the fde is already locked by somebody else, return to
me immediately with an error condition." The UN
CONDITIONAL method is usually the most useful, al
though the CONDITIONAL option is handy when you

."-..

11-17 -8

do not want to take the risk of waiting a long time (if the
program that has it locked won't unlock it for a while).
Needless to say, the file should not be locked for a long
time, and SHOULD NEVER BE LOCKED WHILE A
TERMINAL READ IS GOING ON unless you do not
mind the fact that if the terminal operator goes to lunch,
everybody else who tries to unconditionally lock the ftIe
will hang.

Locking Multiple Files,
Or The Secrets of Multiple Rins (MR)

Let us consider another hypothetical circumstance:
Process A locks File 1; meanwhile Process B locks File
2. Then, Process A tries to unconditionally lock File 2
and is then impeded until Process B unlocks File 2.
Meanwhile, Process B tries to unconditionally lock File
1 and is then impeded until Process A unlocks File 1.
·Thus, Process A is waiting for Process B and Process B
is waiting for Process A. Result: Deadlock. Both pro
cesses are hung until the system is re-started. The sages
ofCupertino thought of that when designing the system;
in fact, their solution (which may not sound like much of
a solution, but is better than nothing) is TO FORBID
PROGRAMS TO LOCK MORE THAN ONE FILE AT
A TIME. But, one may object, what if I have to lock
more than one rue at a time? Well, the answer to that
problem is that you can get around (but at your own
risk) that restriction if the program that does the locking
has Multiple RINs (MR - not to be confused with Mul
tiple Record access) capability (i.e., was :PREpped
with it. By the way, RIN stands for Resource Identifica
tion Number. These programs can, IF THEY REALLY
HAVE TO, lock two or more files at a singl~ time.
Needless to say, this capability should not be freely
given to everybody and his brother, but only to people
who really need it, and smart enough to use it without
causing deadlocks.

That brings us to the problem of: How do you get
around the deadlock problem? Well, you may have al
ready noted that the reason why the programs got into a
deadlock was that one locked File 1 before File 2 and
the other locked File 2 before File 1. If they had only
kept a consistent locking arrangement (e.g., File 1 must
ALWAYS be locked before File 2), they would not have
had the problem - this is probably the best way to
avoid the deadlocks. Another way is to lock the ftles
CONDITIONALLY, and if the lock fails, do something
else (or even go into a loop, which can at least be broken
out of by aborting the job or doing a break/:ABORT,
rather than re-starting the system).

Summary of Locking
And Locking Strategy

The following are the 10 commandments of locking:
1. Thou shalt lock around logical transactions which

involve two or more operations. For example, that kind
of a logical transaction would be a read of a record
followed by a modification of that record followed by a

write. If you do not lock around this, you stand the risk
of losing data consistency.

2. Thou shalt also lock around all logical transactions
that involve a file which you share with somebody who
has transactions which involve two or more operations.
That means that if process A's transactions are just
single writes and process B's transactions are reads fol
lowed by writes, both process A AND process B must
lock around their transactions.

3. Thou need not lock a shared file if all its writers'
transactions involve just one operation and its blocking
factor is 1. Thus, if process A and process B are writing
to a shared file, and their transactions are merely single
writes (e.g., they are appending to a ftIe), neither one
has to lock the file.

4. Thou shalt use GMULTI access under MPE IV
when you are appending to a shared/ile. This can save
you time, worry, and your neck.

5. Honor thy locking arrangements. This means that
if it has been decided that a shared file is to be locked by
its writers, all writers must lock it. If so much as one
writer fails to lock the file, all of the locking arrange
ments will be useless.

6. Thou shalt not keep a file locked while a terminal
read is in progress. If you did, then the file will be
locked down until something is entered, which could
mean an indefinite waiting period for any othe~ program
that wants to lock the file. "

7. Thou shalt not lock more than one file at the same
time without MR Capability. The second flle lock will
fail unless your program was :PREpped with MR capa
bility.

8. Thou shalt protect thyselffrom deadlocks by estab
lishing a fixed file locking sequence if you use MR
capability. Thus, if process A locks fUe 1and then flle 2,
process B must lock in the same order, i.e., file 1 and
then fUe 2 (not fUe 2 and then me 11).

9. Thou shalt not give MR capability tojust anybody.
MR capability can cause big trouble, and thus should be
passed out sparingly.

10. Thou shalt use IMAGE/JOOO if thy file locking
arrangements get too complicated. IMAGE/3000 has
ftle locking capabilities far superior to MPE's ftle lock
ing features. If you find that your locking arrangements
are getting too complicated or programs are waiting in
ordinate amounts of time to get at a shared file, think
about converting it to an IMAGE file - it may be worth
your while.

CHAPTER IV
FILE DOMAINS AND EQUATIONS

Permanent and Temporary Files

Most of the ftles that we discussed in previous sec
tions were usual PERMANENT rues - files that, once
built, exist until they are :PURGEd or somehow de
leted. There is, however, another type of file, one that is

11-17 -9

also often quite useful. This is the JOB/SESSION
TEMPORARY FILES. These files, once built (by plac
ing the ;TEMP keyword on the :BUILD or :FILE
command), exist until they are :PURGEd (by perform
ing a ":PURGE filename,TEMP") OR UNTIL THE
JOB OR SESSION IN WHICH THEY WERE
CREATED LOGS OFF. Why are these rtIes desirable?
Imagine, for instance, that you want to create a certain
file that you want to stream. After the ftIe is streamed
(in the same job or session that it was built in), you no
longer need it. If you were to create that ftIe as a perma
nent fue and then purge it, it is quite possible that some
body else may have built a file with the same name; for
instance, if the same program is being run on another
terminal and that file is created there.

However, if you create it as a temporary fIle, you can
be certain that creating it will not interfere with any
body else; the nature of job/session temporary files is
such that two different jobs or sessions can create
within them temporary files with the same name which
do not interfere with each other.

Most MPE commands either attempt to open the file
given to them as a temporary file and then (if the tem
porary open fails) as a permanent file (e.g.,
:STREAM,:COBOL,:RUN, etc.), thus being able to ac
cept both temporary and permanent files, or have spe
cial keywords that instruct them to open the ftIe as a
temporary file (e.g., PURGE file,TEMP). Programs that
open files as permanent can be instructed to open the
file as job/session temporary by issuing a fIle equation
of the form ":FILE fil ename,OLDTEMP". Note that
some commands and subsystems (e.g., :BASICOMP,
:PREP, :SEGMENTER's -BUILDUSL command)
build files as temporary files; others can be instructed to
build files as temporary by using a file equation like
":FILE fIlename ;TEMP".

If you need to keep a temporary fIle as a permanent
file with the same name, you can do a ":SAVE fil
ename"; if you want'to keep it as one with a different
name, do a ":RENAME oldfile,newfile,TEMP" and a
":SAVE newfile". The names of your temporary files
can be listed with LISTEQ2 or (in a more complete,
:LISTF-like format, with MPEX/3000's %LISTF
ftIeset: TEMP command).

$NEWPASS and $OLDPASS

Two other useful critters are the system-defmed ftIes
called $NEWPASS and $OLDPASS. Consider, for in
stance, the :COBOL command. When the USL fIle is
omitted on this command, it is usually followed by a
:PREP command that is to prepare the resultant USL
file into a program fue. But, what intermediate USL rtIe
should be used? Well, if you use a permanent or tem
porary fIle you run the risk of having a fIle with that
name already in existence. This is where $NEWPASS
and $OLDPASS come in. $NEWPASS is apeculiarftle
that, when closed, magically turns into $OLDPASS. So,
once you open $NEW PASS, write to it, and close it,

11-17 -10

you can then open $OLDPAS~, and read it.
So, in the case of the :COBOL and :PREP, the USL

file parameter of the :COBOL command defaults to
$NEWPASS. The USL file is closed, and, presto!, it
becomes $OLDPASS. Now, you can execute a com
mand of the form ":PREP $OLDPASS,progfile", and
that USL will be :PREPed into the specified program
fIle. If you really want to be fancy and you don't need
the program file to be a temporary or permanent ftIe,
you can do a ":PREP $OLDPASS,$NEWPASS", and,
after this is done, the program file (which was specified
as $NEWPASS) becomes $OLDPASS. Now, you can
just ":RUN $OLDPASS". Note that $OLDPASS con
tains the USL file from :COBOLPREP (or
:FORTPREP, :SPLPREP , etc.) and the program fIle
from :COBOLGO (or :FORTGQ, :SPLGO, etc.).

If you decide that you want to save the contents of
$OLDPASS in a permanent file, just do a ":SAVE
$OLDPASS,fIlename". A rather bizarre undocumented
feature is that to save $OLDPASS as a TEMPORARY
file, you can do a ":RENAME $OLDPASS,fIlename"!
Of course, $OLDPASS vanishes as soon as you :BYE
off.

The Care and Feeding
of :File Equations

Perhaps one of the single most important and least
understood tools in handling files is the :FILE equation.
The fIle equation allows one to re-define certain open
parameters of old and new files. For example, let us say
that you are keeping a file with EDITOR, and you want
to keep it with blocking factor 16 and 32 extents. Then,
you would issue the file equation ":FILE filename;RE
C= ,16;DEV= ,32". Note that THIS DOES NOT
BUILD THE FILE! However, when you execute the
/KEEP command (and EDITOR therefore opens the
fIle) or when you open it from your own or any other
program as a new ftIe, it will be opened with blocking
factor 16 and 32 extents.
If, however, the specified file already exists and has a
blocking factor of 3 and 8 extents and you issue the file
equation in hopes that the equation will magically
transform it, you're in for a letdown. This is because if
that file already has a blocking factor of 3, it will always
have a blocking factor of 3 even if you say on the :FILE
equation or when opening the file that it has a blocking
factor of 16. Its blocking factor is 3 and merely opening
it with another blocking factor changes nothing. To
truly change the blocking factor, record size, number of
extents, fIle limit, or anyone of the other file paramet
ers, you need to either rebuild the file (remember, these
parameters can be redefined when you are building a
new fIle) and copy the old contents of the fIle into it, or
use utilities such as MPEX/3000.

However, some options can be redefined for OLD
fIles. These are not the file options (like CCTL or REe)
but the access options (like ACC, BUF, MR, etc.),
which are not inherent parts of the file, but rather at-

l

tributes of the access, defined when the file is opened.
These can therefore be redefined for OLD or NEW
fIles. Another class of :FILE equation parameters gov
erns actions that are to be performed not at OPEN time,
but rather at CLOSE time. The only parameters in this
class are disposition parameters. The SAVE option in
structs the program to close the file as a permanent file;
the TEMP option tells it to close the fue as ajob/session
temporary file (q.v. TEMPORARY vs. PERMANENT
FILES); and, the DEL option will delete the file refer
enced when it is closed. Note that although all :FILE

equation parameters correspond to some FOPEN or
FCLOSE parameter, not all FOPEN and FCLOSE
parameters can be redefined with a :FILE equation; for
instance, the number of user labels (on open), or the flag
that indicates whether space between end of fue and
fIle limit is to be released (on close) can not be redefmed
with :FILE equations.

If you do not want the user to be able to re-define the
open or close parameters of a file, you should open the
ftIe with the Disallow File Equations bit in the FOP
TIONS parameter of the FOPEN intrinsic set.

APPENDIX B

A Glossary of Common Disc File Handling Terms

ACCESS-MODES - The file's ACCESS MODE (one
of IN, OUT, OUTKEEP, APPEND, INOUT,
UPDATE, or execute) that is defined at file
open time and restricts the actions that can be
performed on the file. This can be redefined
with the ACC= parameter of the :FILE equa
tion. See APPEND ACCESS, IN ACCESS,
INOUT ACCESS, OUT ACCESS, OUTKEEP
ACCESS, UPDATE ACCESS.

ACCESS-OPfION - The ACCESS OPfIONS are a
parameter to the FOPEN intrinsic (q.v.) that
define the access mode, sharing status, dynamic
locking flags, etc. See FOPEN.

ASCII - ASCII files are fIXed/undefined length files
that are padded or initialized to blanks instead
of zeroes. That is, writing a record that is
shorter than the record size causes the result to
be blank-padded. To create, use ASCII as the
4th subparameter of the REC= parameter of
the :FILE/:BUILD command. See BINARY.

BINARY - BINARY fIles are fixed/undefined length
files that are padded or initialized to zeroes
(nulls). To create, use BINARY as the 4th sub
parameter of the REC = parameter of the
:FILE/:BUILD command. See ASCII.

BLOCK - A BLOCK is the unit in which data is
transferred between I/O devices and file buffers
on disk. 1 BLOCK = BLOCKIN G FACTOR
records. Each block always starts on a sector
boundary, and thus, for disc space usage effi
ciency should be equal to an integral number of
sectors whenever possible. See BLOCKING
FACTOR, BLOCK SIZE.

BLOCKING-FACT - The BLOCKING FACTOR is
the number of records per block. To optimizing
disc space usage, set the blocking factor such
that BLOCKING FACTOR * RECORD SIZE
is a multiple of 128 words. To optimize file ac
cess speed, set the blocking factor as large as
possible. To minimize memory usage, set the

h

blocking factor as small as possible. To set the
BLOCKING FACTOR for new files, specify it
as the 2nd subparameter of the REC= parame
ter of the :FILE or :BUILD command. See
BLOCK, BLOCK SIZE.

BLOCK-SIZE - For fixed record length files, BLOCK
SIZE = BLOCK FACTOR * RECORD SIZE.
For variable record length files, BLOCK SIZE
= BLOCK FACTOR * RECORD SIZE +
(BLOCK FACTOR + 1) * (2 bytes). The most
efficient disc space usage occurs when the
block size of a ftIe is equal to an integral number
of SECTORS. See BLOCK, BLOCK FAC
TOR.

BUFFERING - The default mode of fue access is
BUFFERED FILE ACCESS - in this mode
records are not immediately read from or writ
ten to disc, but rather kept in an extra data seg
ment which contains (BUFFERS) buffers of
length (BLOCK SIZE) words each. See BUF
FERS, NOBUF ACCESS.

BUFFERS - When a file is accessed in buffering
mode, a certain number of BUFFERS is allo
cated, each one of length (BLOCK SIZE)
words, in one extra data segment. The default
number of buffers is 2, and can be redefmed
with the BUF= parameter of a file equation.
See BUFFERING.

DEADLOCK - A situation in which two processes are
hung, each one waiting for the other to do some
thing. This can happen when several fues are
locked by processes with MR capability. See
LOCKING FILES, MR CAPABILITY.

DEVICE - The DEVICE on which a disc file resides
can be a single disc (specified by placing its
device number in the FOPEN call or as the 1st
subparameter of the DEV= keyword of the
:FILE equation) or a device class, a collection
of disc devices grouped under a generic name
(specified in the same place as the device

11-17 -11

number). All of the eKtents of the ftIe are placed
on this device or device class.

DOMAIN - The DOMAIN of a fue can be PERMA
NENT or TEMPORARY. This can be specified
on a :BUILD command (;TEMP indicates
TEMPORARY, omission of it means PERMA
NENT) or a :FILE command (for old files,
:FILE filename,OLD means PERMANENT
and :FILE filename,OL DTEMP means TEM
PORARY; for new files, :FILE filename;TEMP
means TEMPORARY and ;SAVE means per
manent). See PERMANENT, TEMPORARY.

EAR - EAR (short for Exclusive Allow Read) is an
access mode that permits a user to open a fue .
for write access, but still allow other users read
access to the file. See EXCLUSIVE ACCESS,
SHARED ACCESS.

END-OF-FILE - The END OF FILE is usually the
number of records that have been written to a
given file. It is usually less than the fue limit
(q.v.), which is the maximum number of re
cords in a fue, but could be greater than it in
variable record length fues (q.v.).

EXCLUSIVE - EXCLUSIVE ACCESS to a fue is an
access mode in which the accessor forbids
everybody else to access that fue while he is
accessing it. This mode is the default mode for
all non-read access. It can be specified in the
access options of an FOPEN call or in a :FILE
equation with the EXC parameter. See EAR
ACCESS, LOCKING, SHARED ACCESS.

EXTENT - An EXTENT is a collection of blocks that
occupies contiguous space on a given disk.
There can be up to 32 such extents in a file, but
the default is 8. See EXTENT SIZE,
MAXIMUM EXTENTS, NUMBER OF EX·
TENTS.

EXTENT-SIZE - The extents of any rue must all be of
equal length (in sectors), except the last one,
which may be of smaller length. For formulae
for these lengths, see APPENDIX B - DE·
TERMINING DISC SPACE USAGE. See
EXTENT.

FILE-CODE - The FILE CODE of a flle is an integer
which describes the type of this file; some of the
more common codes have special mnemonics
corresponding to them (e.g., PROG = 1029 =
file code of program files). These mnemonics
show up on :LISTFs of that rue, and can also be
specified on· a :BUILD or :FILE command.
The code, whether mnemonic or numeric, can
be placed on the CO DE = parameter of a
:BUILD or :FILE command.

FILE-EQUATION - A file equation is a useful tool
that allows a user to redefine certain open or
close parameters of the ftIe (e.g., the fue code
(CODE), the access type (ACC), the close dis-

11-17 -12

position (SAVE/TEMP), etc.). It can be
specified through the MPE :FILE command.

FILE-LABEL - The FILE LABEL of a rue contains
information about that file (e.g., file name,
creator id, ftIe code, record size, extent infor
mation, etc.) needed by MPE. Ordinary users
need not worry about this entity.

FILE-LIMIT - The maximum number of records per
mitted in a file, necessary for knowing how
much disc space to allocate, specified at ftle
creation time. Note that the END OF FILE can
actually exceed the FILE LIMIT for variable
record length files. The file limit can be
specified in a :BUILD or :FILE command as
the first subparameter of the DISC= keyword.

FIXED-LENGTH - FIXED RECORD LENGTH ftles
are files whose records have a fIXed length - if
a record of smaller length is written to the file,
the record is padded on the right with an appro
priate number of blanks (ASCII fues) or nulls
(BINARY fIles). An example of this kind offlle
is the usual EDITOR file which has a fIXed
length of 80 bytes. To build fIXed record length
flies, specify F as the third subparameter of the
REC= parameter on a :BUILD or :FILE com
mand (e.g., REC=-80"F). See VARIABLE
RECORD LENGTH, UNDEFINED RECORD
LENGTH.

FOPEN - FOPEN is a system intrinsic that permits its
caller to open a file. BASIC, COBOL, FOR
TRAN, and RPO users need not be concemed
about this intrinsic because their languages
provide file access features already (this is
therefore mostly used by SPL programmers);
however, we often allude to this intrinsic in this
paper because all rue open commands in all lan
pages eventually translate out to this intrinsic.

OMULTI-ACCESS - OMULTI access is an extended
form of MULTI access (q.v.) available only on
MPE IV. Its usage (which can be specified by
appending the OMULTI keyword to the :FILE
equation) together with SHR and ACC=AP·
PEND provides a painless way of appending to
shared fdes. See MULTI, SHARED ACCESS.

LOCKING - MPE's DYNAMIC FILE LOCKING
mechanism (available through the FLOCK and
FUNLOCK intrinsics) gives users a way to
have more than one program write to a ftIe
without jeopardizing data consistency. In order
to call FLOCK and FUNLOCK, the ftle must
have been previously opened with the dynamic
locking access option set (which can be done in
the FOPEN call or using the LOCK parameter
of the :FILE command). See DEADLOCKS,
MULTIPLE RINS, SHARED ACCESS.

MAX-EXTENTS - The MAXIMUM NUMBER OF
EXTEN TS defines into how many extents

(q.v.) a file is to be split. Note that (usually) not
all of these extents are allocated at the time a
file is built - the default is 1(although more can
be allocated initially by specifying their number
as the 3rd subparameter of the DISC= keyword
of the :FILE command). The maximum number
of extents can be specified as the 2nd sub
parameter of the DISC= keyword of the :FILE
command, and defaults to 8. See EXTENTS,
NUM EXTENTS.

MULTI-ACCESS - MULTI access is a form of access
that is very useful for sharing files. It permits
you to share not just the files but also internal
ftIe control information and file buffers. It can
be specified by placing the MULTI keyword on
a :FILE command. See GMULTI ACCESS,
SHARED ACCESS.

MULTIPLE-RINS - The MR (MULTIPLE RINS)
capability is an account, ftIe, group, and user
capability that governs a program's ability to
have more than one file locked at at a time. In
order for a program to be permitted to do this, it
must have been :PREpped with MR capability
by a user who had MR capability, and it must
reside in a group that has MR capability. See
DEADLOCKS, LOCKING.

MULTI-RECORD - MULTI-RECORD ACCESS
(abbreviated MR) is a mode in which a file ac
cessor can read more than one record at a time,
thus greatly speeding up file access. This option
must be used together with the NOBUF option
(see NOBUF ACCESS). It can be specified on
a :FILE equation as the MR parameter. See
NOBUF ACCESS.

$NEWPASS - SNEWPASS is a special system
defined temporary file that, when closed, turns
into $OLDPASS (q.v.). This fUe (and SOLD
PASS) disappear (along with all job/ session
temporary files) at logoff time. See SOLD
PASS, TEMPORARY FILES.

NUM-BUFFERS - The NUMBER OF BUFFERS is
the number of I/O buffers allocated for buffered
file access (q.v.). This number can be specified
with the BUF= parameter of a :FILE equation.
See BUFFERING.

NUM-EXTENTS - The NUMBER OF EXTENTS is
the number of extents that that are currently
allocated in the file; this starts out as the in
itially allocated number of extents (see EX
TENTS), and is increased by 1 whenever a re
cord is written to the file which will not fit into
the currently allocated number of extents. See
EXTENTS, MAXIMUM EXTENTS.

$OLDPASS - $OLDPAS.S is a special system-defined
temporary file that was the last $NEWPASS
(q.v.) file closed. This file disappears at logoff
time, but can be saved with the MPE :SAVE

command. See $NEWPASS, TEMPORARY
FILES.

PERMANENT-FILE - A permanent file is a disc fIle
that is accessible by all users in the system (that
have the proper access to it, of course) and re
mains until it is :PURGEd, as opposed to a
temporary fde (q.v.) that can be accessed only
by the session in which it was created and is
automatically deleted when that session logs
off. The fact that a file is to be accessed as an
OLD permanent ftIe can be specified by execut
ing a file equation of the form ":FILE
filename,OLD"; the fact that a file is to be
saved as a NEW permanent fde can be specified
by placing the SAVE keyword on a :FILE
equation for that file. See TEMPORARY
FILES.

RECORD-LENGTH - The RECORD LENGTH of a
fde is the length of each records in that file if it
is afIXed or undefined record length ftIe, and
the maximum length of the records in that ftIe if
it is a variable record length fIle. This parameter
can be specified as the 1 st subparameter of the
REC= parameter on a file equation. See
FIXED RECORD LENGTH, UNDEFINED
RECORD LENGTH, VARIABLE RECORD
LENGTH.

SECTOR - A SECTOR is 128 words of disc space.

SHARED-ACCESS - Files open in SHARED AC
CESS mode can be written by more than one
program at the same time. This option can be
specified in a :FILE equation with the SHR
parameter. It is imperative for data consistency
that the dynamic locking (q.v.) facility be used
by all programs that write to a file shared by
two or more writing programs. See EAR AC
CESS, EXCLUSIVE ACCESS.

TEMPORARY-FILE - A temporary rue is a disc rue
that can be accessed only by the session that
created it, and is automatically purged when
that session logs off. It can, however, be saved
as a permanent fde (q.v.) with the MPE :SAVE
command, and purged before the session logs
off with the PURGE filename ,TEMP command.
The fact that a file is an OLD temporary fl1e can
be specified by using a fIle equation like" :FILE
filename,OLDTEMP"; the fact that it is to be
saved as a NEW temporary fue can be specified
by appending the TEMP keyword to a :FILE
equation for that file. See PERMANENT
FILES.

UNDEFINED-LEN - Undefined record length rues
are not intended to be used as disc fdes. Use
instead fixed / variable 'record length files. See
FIXED RECORD LENGTH, VARIABLE
RECORD LENGTH.

USER-LABELS - User labels are records which, al-

11-17 -13

though they are parts of the file, are transparent
to the normal reader of that ftIe, and can only be
accessed via the FREADLABEL and
FWRITELABEL intrinsics.

VARIABLE-LEN - Variable record length ftIes are
ftIes in which not all records have to have the
same length. When records of length less than
the record length (which, incidentally, is the
maximum length of any record in that ftle) are
written to the file, no padding is done (which

means that the ASCII / BINARY distinction
has no meaning here), but rather the size of the
record to be written becomes the record length
of that particular record. A result of this is that
no space is wasted due to padding, which makes
these ftIes much more efficient users of disc
space than fixed record length files (q.v.). See
FIXED RECORD LENGTH, UNDEFINED
RECORD LENGTH.

APPENDIX B

Determining Disc Space Used By Files
Given File Parameters

Perhaps because there are so many different file
parameters (record size, blocking factor, end of file, fue
limit, etc.) that are involved in determined the disc
space used up by a certain file, the formula for this
calculation is hard to come by and is quite complicated.
However, we will attempt to list it together with all its
interesting ramifications below. Note that this method
will work only for FIXED RECORD LENGTH FILES
that are to be WRITTEN IN A SEQUENTIAL FASH
ION (i.e., no directed writes). The parameters needed
for this algorithm are the RECORD SIZE (in words),
BLOCKING FACTOR, END OF FILE, FILE LIMIT,
NUMBER OF USER LABELS, and MAXIMUM
NUMBER OF EXTENTS REQUESTED. This method
will yield the NUMBER OF SECTORS USED BY
THE FILE, THE EXTENT SIZE OF MOST EX
TENTS, THE EXTENT SIZE OF THE LAST EX-

TENT OF THE FILE, THE MAXIMUM NUMBER
OF EXTENTS GRANTED, THE NUMBER OF EX
TENTS ACTUALLY USED, and THE BLOCK SIZE
OF THE FILE.

Blocking Considerations

The first parameter that must be determined for this
calculation is the BLOCK SIZE, in SECTORS, which
we will denote by the "variable" name BLKSIZE.
Using standard SPL notation, the names BLKFACT =
blocking factor and RECSIZE = record size"and keep
ing in mind that ALL DIVIDES PERFORMED BY US
FROM NOW ON WILL BE "CEILING" DIVIDES,
i.e., DIVIDES IN WHICH THE RESULT IS THE
SMALLEST INTEGER THAT IS LARGER THAN
OR EQUAL TO THE FRACTIONAL DIVIDE RE
SULT (e.g., 5/2=3, 20/4=5), we get the following for
mula:

'-'

BL. KS I ZE : =):~ RE CS I ;lE~+: BLI(FAC T)/1 28 i « R~cord ~jZE IN WORDS »

of the ftIe. The formulae for this (note FLIMIT = fue
limit, ULAB = number of user labels allocated) are:

Next, we must find out the number of blocks (not
records, but blocks) that ar~ used up by the data portion
of the fue and the label (user label and file label) portion

[)fl T~iBL.KS ; ~Ft .. I ~l.l T./BLI<FAC T ;
LABBlKS:=(ULAB+1)/BLKSIZE; «the 1 is for the file label »
lOlAt.Bl..KS;~()A"~1F::i.~<SioL .. AE:Bl.I<~.j «blc.ck~ U$€d b~J bc·i.-t"c >}

Extent Considerations

At this point, we can determine the extent size (in
blocks or in sectors) of each file extent. The formula is

(given MAXEXTS is the maximum number of extents
requested by the file creator at creation time) as fol
lows:

EX rs I ZE I Bl. OCKS : =TOTAl.BLKS/MA)~EXT~ J << i,. b 1 c.ck so) >lOY'

EXTSIZE~SECTOR8:=EXT812E~BLOCKS*BLKSIZEj «in s€ctor~ »

For our purposes, we will use the
EXTSIZE'BLOCKS-in-blocks formula. Now, let us
digress for a moment. As we have said before, the
maximum number of extents of a given file can be
specified on a :BUILD or :FILE command, and de-

11-17 -14

faults to 8. But, the maximum number of extents actu
ally granted (this is NOT the number of extents actually
used!) may be smaller than the maximum number of
extents requested in this way! In order to explain the
reason for this, we must first recall a fact that will be of

paramount importance to us in this entire discussion:
ALL EXTENTS OF A FILE MUST BE OF THE
SAME LENGTH, EXCEPT THE LAST ONE,

. WHICH MAY BE OF SMALLER LENGTH. Let us
suppose that you try to :BUILD a file with 100 blocks
and 16 as the maximum number of extents (for instance,
with an MPE command like :BUILD
MYFILE;DISC= 100,16). No.w the file system must fit
an integer number of blocks into one extent. Now, how
many blocks can fit into one extent? Well, the number is

7 (the ceiling of 10 0/16). But, by the rule stated above,
all extents of a fIle except the last one must be of the
same length. Thus, each extent except the last one must
be 7 blocks long. But, only 14 such extents can fit into
100 blocks, leaving 1 2-block extent! So, the fIle system
can not possibly grant you a maximum number of ex
tents larger than 15, even though you asked for 16! n
short, the "real" number of maximum extents granted
turns out to be:

REAlMAXEXTS;=TOTALBLKS/EXTSI2E'BLOCKS;
where TOTALBLKS and EXTSIZE'BLOCKS werQ defined above.

where TOTALBLKS and EXTSIZE'BLOCKS were
defined above.

Now, the above statements have yet to use the END
OF FILE parameter. Nevertheless, this parameter is a

vital one to our calculation. It permits us to determine
another crucial factor, the number of extents currently
used (USEDEXTS), through the following formula:

is the real maximum number of extents, Le., all of the
file's extents are allocated, the number of sectors used
can be found by the following:

tJ!:;E[)E~·::TS : ~;.:. L. ABBl_t(S +EOF' /BLI(FAC. T)1 E~"; TSIZE ~ E;LOC.KS i

The above takes the number of blocks actually used
by the fIle and divides it by the number of blocks per
extent, thus getting the number of extents actually used.
Now, we have the answer: if the number of extents used

SECTOf;.:S: =T.jTFlf.. BLKS*BLKS I ZE;

If, however, some of the extents of the file remain
unallocated, we can fmd the number of sectors used

with this formula:

the following algorithm:

SEC TC'RS : :: IF tjS EDE:X:T S:::RF.Ai. J'1f.l:t{EX TS THEt~

TCtTALBLt<S*BLKS I ZE << if' all extent.s a I"" £ all ocate:d)- >
ELSE

USEDEXTS*EXTSIZE /BlOCKS*BLKSIZE;

The Facts in a Nutshell

In short, the above rantings and ravings boil down to

(\lariables:
MAXEXTS = maximum numbar of extents requested
RF-~('~SJ:ZE: - r··e~ot"'d ~'i.~:€: (in \·..ord~·) c.'f the file
BLKFACl = blocking f~ctor of th£ fil€
FLIMIT = the fil€'s filE limit
EOF = thE file~s end of fila
ULAB = the number of user labels allocat€d in that file)
BLKSIZE:=(RECSIZE*BLKFACT)/128J
DATABt.. KS : -FL.l f\1 I Tt,rBL.KF(~C T ,
l.ABBLKS : =(l.IL.(~E:+1),.JBl.. KS I ZE J
TOTAlBLKS: ~[)~~T~)BLKS+Lft8BLKS;
EXTSIZE IBl.OCKS: =TC.TALBLKS./MA>~E)<TS;
REALMAXEXTS~=TOTALBLK8/EXTSI2E'BLOCKS;

USEDE~T8:=(LABBLKS+EOF/BLKFACT)/EXTSIZE/BLOCKS;

SECTORSJ=IF USEDEXTS~REALMAXEXTS THEN
TOTAL RLKS:i<BLKS 17F

ELS~

USEDEXTS*EXTSIZE'BLOCKS*BLKSIZE;

11-17 -15

Let us analyze an example case (you can verify it yourself!):

MAXE~TS - e extEnts
RECSIZE - 40 word$
BLKFACl - 3 record~ per block
FLIMIT ~ 'il~ limit ~, 10000
EDt- _. 46 00 r· ecor' dz
lIt AS - (I user- 1at\e 1s
BlKSIZE := (40*3)/128 = 1 sectorJ
DATABlKS := 10000/3 = 3334 blocksJ
LABBLKS :~ 1/1 ~ 1 blockJ
l'(ITALBl...KS : ~ 3334+ 1 = 3335 block!"
EXTSIZE / BI..Of:K:3 ::~. 3335,'8 =~ 417 bloc.ksJ
REALMAXEXTS := 3335/417 = B QxtentsJ
USEDEX1S := (1+4600/3)/417 = 4 extents;
SECTORS := since USEDEXTS (4) <> REALMAXEXTS (8), then

4*417*1 = 1668 sector$;

APPE~DIX C

A Summary of Methods to Save Disc Sp~ce

The following is a summary of some of the possible
methods of saving disc space without deleting (des or

I~ saving~ J method

making them unreadable (methods are arranged in order
of descending average percentage savings):

'-~------~-t--~--------~-----------------~~------~----------~~---~--t
2S>~ -7 t):~ C.:.' rJ ·tI E;: ~.. t. g 0 'J r c: e: f' i 11,~~' t Q Qe~ 0 I 'T' l R0 Et E: LL. E f (.t r mtit t. J

this 'o~m&t is vary .'ficient in ~a~ms of djsc space
usagQ yet still rGadab18 bV compilars,

25~-50~ Convert dat~/CoeOL riles to varjable ~.cord length)
1 th i. scan t.e: ac~ompl i sruld with ED J 'l'OR '. ISET VAR I t:lBLE
I c:on,mand.

O~-5~~ ,Imp~ov. blocking factor of 'tl.~)

J a 'ila ' • block size should be a multipla 0' 128 wo~d~

'lor' disc sr~..t~(:Q will be. wast.ld.
O~-25~ J Set file limit or filas to end of rilaJ

I if th~ rile limit of a ril. is not its end 0' fila
J disc space is probably baing Jost, Note that for data
~ 'iles J th~ fil. limit should ba greater than end or

file to allow for expansion.
: ----------,-~--------~---_._--------~--------------------~----~-----,, .

These operations can be performed on fdes one by one, or en masse using MPEX/3009.

11"-17 -16

APPENDIX D

A Suminary of Methods to Speed Up File Access

The following is a summary of some possible methods descending average percentage savings of rue access
of speeding up disc rue access, arranged in order of time:

1----------:--- :
J 5 O>~-95~

5"-10%

Use MR NOBUF access for file readina/writinaJ
for eagy use of this acc€ss method~ ·Oavid Brown's
FAST 1/0 routines are sUQOQstad.
Increas€ the block facto;-of filQ~J
this will increase the block size J and thus the buf'~r

size or files accessed with buffering, and thus
decrease the numbEr of disc Il0s ne~ded to accass them,:
Make the block size as large as possible J but no more
than 8 J OOO. Set BUF~1 (only 1 buffer) to avoid getting:
tile systam error 57 (OUT OF VIRTUAL MEMORY).

:----------J-------~--;

APPENDIX E

Related Papers I Useful Programs

As we could not (and never intended to) say every
thing there is to say about disc files, we would like to
refer you to the following useful reference documents
and utility programs:

PAPERS
"Another MPE Feature (BUG)." A discussion of a bug

in Multi-Record file access by Vladimir Volokh,
.VESOFT Consultants. SCRVGletter, Volume 4,
Issue 1 for January 1981.

"How to Avoid Problems With MPE Carriage Control
(CCTL)." All there is to know (well, almost) about
Carriage Control. Robert M. Green, Robelle Consult
ing Ltd., 27597-32B Avenue, Aldergrove, B.C. Can
ada VOX lAO.

HP3000 Computer Systems MPE Commands Reference
Manual. Section VI - MANAGING FILES.

HP3000 Computer Systems MPE Intrinsics Reference
Manual. Section III - ACCESSING AND ALTER
ING FILES.

HP3000 Computer Systems MPE IV Intrinsics Refer
ence Manual. Section III - INTERPROCESS
COMMUNICATION AND CIRCULAR FILES.
Section X - ACCESSING AND ALTERING
FILES.

"Privileged Mode - Use and Abuse." What is
privileged mode and how to use it safely by Eugene
Volokh, VESOFT Consultants. SCRVGletter, Vol
ume 4, Issue 4 for June 1981 .

SOFTWARE
"FAST I/O (aka BLOCK·ED I/O)." A product that

permits fast, easy MR NOBUF ftIe access available
from EASY Software Co., 410 Chipeta Way, Re
search Park, Salt Lake City, UT 84108.

"MPEX/3000." Many useful extensions to MPE avail
able from VESOFT Consultants.

"QEDIT/ROBELLE." A superior editor, with disc
space-saving features available from Robelle Con
sulting Ltd., 27597-32B Avenue, Aldergrove, B.C.
Canada VOX lAO.

AP'PENDIX F

Cryptic File System Error Message De-Crypted

In addition to its other failings, the System Intrinsics
Manual does not explain the exact reason for and/or
work-around for most fde system errors. In fact, most
file system error messages are very hard to understand.
The following is an attempt at an adequate explanation
of the causes, effects, and work-arounds for different
fde system errors that pertain to disc ftIes:

o END OF FILE (FSERR 0): This error is encoun
tered when a program attempts to read beyond the
end of file or write beyond the file limit.
WORKAROUND: Change the program or the
fue.

I ILLEGAL DB REGISTER SETTING (FSERR
1): Should never occur for non-privileged mode

11 ~ 17 -17

programs. For privileged mode programs, this
means that the programmer attempted to do an
FFILEINFO, FGETINFO, FOPEN, or FRE
NAME in split-stack mode (i.e., after a call to the
EXCHANGEDB or SWITCHDB procedures).
WORKAROUND: Do not perform the function in
split-stack mode.

2 ILLEGAL CAPABILITY (FSERR 2): A function
that requires privileged mode capability (e.g.,
open fIle for NOWAIT 1/0, open fIle for EXE
CUTE access, etc.) was attempted without
privileged mode capability. WORKAROUND:
Enter privileged mode before executing the func
tion or do not attempt to execute it at all.

8 ILLEGAL PARAMETER VALUE (FSERR 8):
Parameters specified on the FOPEN call are
mutually contradictory; for instance, an attempt
to open a ftIe NOWAIT on a serial disc was de
tected, or the program tried to open a new KSAM
file without specifying the FORMALDESIG
NATOR or KSAMPARAM parameters on the
FOPEN. WORKAROuN'D: Correct the parame
ter.

9 INVALID FILE TYPE SPECIFIED IN FOP
TIONS (FSERR 9): The file type field of the
FOPEN file options is not one of 0 (STD = stan
dardftIe), 1 (KSAM ftIe) , 2 (RIO ftIe) , 4 (CIR = cir
cular file), or 6 (MSG = message file).
WORKAROUND: Correct the file type field.

10 INVALID RECORD SIZE SPECIFICATION
(FSERR 10): The record size requested was more
than 32767 bytes. WORKAROUND: Specify a
smaller record size.

11 INVALID RESULTANT BLOCK SIZE (FSERR
11): If the user request were honored, the. block
size (BLOCK FACTOR * RECORD SIZE) of the
resultant ftIe would be greater than 32767 bytes.
WORKAROUND: Specify a smaller record size
or block factor~

12 RECORD NUMBER OUT OF RANGE (FSERR
12): The user passed a negative record number to
the FPOINT, FREADDIR, or FWRITEDIR in
trinsic - this is illegal. WORKAROUND: Cor
rect your program.

22 SOFTWARE TIME-OUT (FSERR 22): The user
tried· to read an empty message fIle or write to a
full message fIle, an action which would cause the
user to be impeded until the file stopped being
empty or full, respectively (see MPE IV INTRIN
SICS MANUAL). However, a time out was set
with the FCONTROL intrinsic (mode 4) and the
request timed out before it could be honored.
WORKAROUND: Do not set the time out or en
sure that the request can be serviced before it
times out.

26 TRANSMISSION ERROR (FSERR 26):
Hardware failure. WORKAROUND: Call your
CE.

11-17 -18

30 UNIT FAILURE (FSERR 30): Hardware failure.
WORKAROUND: Call your CE.

40 OPERATION INCONSISTENT WITH ACCESS
TYPE (FSERR 40): The access type specified at
FOPEN time does not permit this operation; fori
nstance, an FWRITE is not permitted when a ftIe
is opened with ACC=IN. WORKAROUND:
Specify an access type at FOPEN time that per
mits this operation or do not perform the opera
tion at all.

41 OPERATION INCONSISTENT WITH RE
CORD TYPE (FSERR 41): It seems that this error
should never show up and is merely a left-over
from a previous version of MPE.

42 OPERATION INCONSISTENT WITH DEVICE
TYPE (FSERR 42): The program tried to execute
an operation that is incompatible with the device

. that it is' trying to perform it on; for instance, it is
trying to read the line printer or change th~ baud
rate of a disc drive. WORKAROUND: Do not
execute the operation.

43 WRITE EXCEEDS RECORD SIZE (FSERR 43):
An attempt was made to write a record that would
not fit in the destination file, e.g., to write a 100
byte record into a fIle of record length of 80 bytes.
WORKAROUND: Change the fIle's record size,
change the length of the record to be written, or
open the ftIe with the Multi-Record (MR) access
option.

44 UPDATE AT RECORD ZERO (FSERR 44): The
FUPDATE intrinsic (which is equivalent to the
COBOL REWRITE statement) was called with
the record pointer at record 0, which indicates that
no record has been read and thus no record can be
updated. WORKAROUND: Call FPOINT or
FREAD before the FUPDATE call.

45 PRIVILEGED FILE VIOLATION (FSERR 45):
A program attempted to open a privileged ftIe (one
with a negative file code; e.g., an IMAGE fIle)
while specifying a filecode not equal to the [tIe's
filecode or while not in privileged mode.
WORKAROUND: Enter privileged mode before
the call or specify the correct filecode.

46 OUT OF DISC SPACE (FSERR 46): The device
class on which this [tie resides (if this error is got
ten at extent allocation time) or is requested to
reside (if this error is gotten at file creation time)
does not have enough contiguous disc space to
accommodate this file; i.e., if NUMEXTS is the
number of extents to be allocated and EXTSIZE
is the size (in sectors) of one extent, this device
class does not have NUMEXTS contiguous
chunks of EXTSIZE sectors each. WORK
AROUND: Move the file to another, less full, de
vice class, decrease the requested rtIe size, or de
crease the extent size by increasing the number of
extents in the file.

47 1/0 ERROR ON FILE LABEL (FSER R 47): The
internal fIle label of this fIle can not be accessed.
Most likely, the file is totally cloberred and will
return INVALID FILE LABEL (FSERR 108)
when it is subsequently accessed. WORK
AROUND: None.

48 OPERATION INVALID DUE TO MULTIPLE
FILE ACCESS (FSERR 48): One of the following
conditions is true: 1) The program is trying to
purge (i.e., close with disposition DEL) a fIle that
is currently loaded or being storedlrestored, 2)
The program is trying to rename (with the FRE
NAME intrinsic) a file that it does not have exclu
sive access to, or 3) The program is trying to open
with LOCK access a fIle that someone else has
opened with NOLOCK access or vice versa.
WORKAROUND: 1) Don't purge the file or wait
for the file to become purgeable again, 2) Don't
rename the file or open the file with EXC access,
or 3) Open the fIle with LOCK or NOLOCK ac
cess (whichever is the one with which the other
program has the file open).

49 UNIMPLEMENTED FUNCTION (FSERR 49):
The program specified an invalid parameter value
in a file system intrinsic call; e.g., a disposition of
5,6, to 7 at FCLOSE time or a file type of RIO on
pre-Athena systems (ones which do not support
RIO files). WORKAROUND: Correct your pro
gram.

50 NONEXISTENT ACCOUNT (FSERR 50): An
attempt was made to open a file in an account
which was not configured in the system.
WORKAROUND: Correct the filename or build
the account.

51 NONEXISTENT· GROUP (FSERR 51): An at
tempt was made to open a file in a group which
was not configured in the system.
WORKAROUND: Correct the filename or build
the group.

52 NONEXISTENT PERMANENT FILE (FSERR
52): An attempt was made to open a fIle which
does not exist. WORKAROUND: Correct the
program or build the file.

53 NONEXISTENT TEMPORARY FILE (FSE~R

53): The program tried to open a temporary fIle
which does not exist. WORKAROUND: Correct
the program or build the file.

54 INVALID FILE REFERENCE (FSERR 54): The
program tried to open a file whos e fIlename was
invalid; for instance, the file, group, or account
name was longer than 8 characters long, an invalid
system-defined file was specified (e.g., $XYZZy),
or no fIle equation was found for a back-refenced
file (e.g., *MANSION with no file equation for fIle
MANSION). WORKAROUND: Correct the
filename specified. NEED

56 INVALID DEVICE SPECIFICAnON (FSERR

56): The device number or device class on which
the file was to be opened is not configured on the
system. WORKAROUND: Correct the program.

57 OUT OF VIRTUAL MEMORY (FSERR 57): The
buffer size (NUMBER OF BUFFERS * RE
CORD SIZE * BLOCKING FACTOR) of the fIle
to be opened exceeds 8,192 words (or 14,000
words starting with the D MIT version of MPE).
WORKAROUND: Decrease number of buffers
(by specifying BUF= 1 on a :FILE equation, for
instance), decrease the record size of the file, or
decrease the blocking factor of the fIle.

58 NO PASSED FILE (FSE RR 58): The program
attempted to open $OLDPASS, but no $OLD
PASS fde exists. WORKAROUND: Correct the
program or build a $OLDPASS file.

60 GLOBAL RIN UNAVAILABLE (FSERR 60):
The program requested dynamic locking at fIle
open time, but the RIN (Resource Identification
Number) necessary for dynamic locking could not
be gotten. WORKAROUND: Free some global
RINs (with the :FREERIN command), fIle RINs
(by closing fIles opened with LOCK access), open
the file with NOLOCK access, or enlarge the RIN
table.

61 OUT OF GROUP DISC SPACE (FSERR 61):
The program tried to allocate more disc space
than is allowed for a given group; e.g., it tried to
build a 10,OOO-sector file in a group which already
had 95,000 sectors and was limited to 100,000 sec
tors. WORKAROUND: Decrease the amount of
disc space used by fIles in that group (by purging
or squeezing files) or a ask the account manager to
increase the group disc space limit.

62 OUT OF ACCOUNT DISC SPACE (FSERR 62):
The program tried to allocate more disc space
than is permitted for the account in which it tried
to allocate it. WORKAROUND: Decrease the
amount of disc space used by fIles in that account
(by purging or squeezing files) or ask the system
manager to increase the account disc space limit.

64 USER LACKS MULTI-RIN CAPABILITY
(FSERR 64): The program was not :PREPed with
MR (Multi-Rin) capability, yet tried to lock a file
when another file (or RIN) was already locked by
that program. WORKAROUND: :PREP the pro
gram with MR capability or do not try to lock a
fIle when you have already locked another one.

71 TOO MANY FILES OPEN (FSERR 71): The
program attempted to open a fIle, but there was
not enough room in the system area (PCBX) of the
program's stack for the information for that fIle.
WORKAROUND: Clo.se some no longer neces
sary files before trying the open, or run the pro
gram with the ;NOCB keyword on the :RUN.

72 INVALID FILE NUMBER (FSERR 72): An at
tempt was made to access (e.g., read or write) a

11-17 -19

ftle that has not been opened or that is a privileged
ftle; for instance, a read was requested against file
number 10, but no fde is opened as ftIe number 10.
WORKAROUND: Correct your program or enter
privileged mode before trying to access the fde (if
the file is privileged).

73 BOUNDS VIOLATION (FSERR 73): You are at
tempting to read or write more data than could fit
into your I/O buffer (e.g., you are trying to read
100 words into an SO-word array). WORK
AROUND: Decrease the length of the data you
are trying to read or write or enlarge your prog
ram's I/O buffer.

74 NO ROOM LEFT IN STACK SEGMENT FOR
ANOTHER FILE ENTRY (FSERR 74): See fIle
system error number 71 above.
90 EXCLUSIVE VIOLATION: FILE BEING
ACCESSED
(FSERR 90): Exclusive access was requested to a
file which is already being accessed; thus, exclu
sive access cannot be granted. WORKAROUND:
Specify SHR (shared) or EAR (exclusive - allow
read) access when opening the file or wait for the
accessor to close the file.

91 EXCLUSIVE VIOLATION: FILE BEING AC
CESSED EXCLUSIVELY (FSERR 91): Access
was requested to a fde which is being accessed
exclusively by some other user. WORK
AROUND: Wait for the accessor to close the fde.

92 LOCKWORD VIOLATION (FSERR 92): An in
valid lockword was specified at fde open time or
when the ftIe system prompted the user for a
lockword. WORKAROUND: Specify a correct
lockword or remove or change the lockword on
the disc fue.

93 SECURITY VIOLATION (FSERR 93): Permit
ting the user to access this fde in the specified
access mode would be a breach of ftIe security.
WORKAROUND:Change the access mode
specified in the program to one which is permitted
or ask the file's creator to :RELEASE or
:ALTSEC the file.

94 USER IS NOT CREATOR (FSERR 94): An at
tempt was made to :RENAME or FRENAME a
file by someone other than the file's creator.
WORKAROUND: Do not perform the :RE
NAME orFRENAME, ask the creator of the file
to do the :RENAME, or (if you have read and
write access to the fde and are a user of MPEX/
3000) use MPEX's %RENAME command.

96 DISC I/O ERROR (FSERR 96): Hardware failure.
WORKAROUND: None.

100 DUPLICATE PERMANENT FILE NAME
(FSERR 100): The program tried to save (close
with SAVE disposition) a new or temporary fue
as a permanent fue, but a permanent file with that
name already exists. WORKAROUND: Purge

11-17-20

the other file with that name.
101 DUPLICATE TEMPORARY FILE NAME

(FSERR 101): The program tried to save as tem
porary file (close with TEMP disposition) a new
file, but a temporary ftle with that name already
exists. WORKAROUND: Purge the other tem
porary file with that name.

102 DIRECTORY I/O ERROR (FSERR 102): The di
rectory (or part of it is cloberred. You're in big
trouble. WORKAROUND: None.

103 PERMANENT FILE DIRECTORY OVER
FLOW (FSERR 103): There is no more room in
the system file directory for this fue (the system
fde directory typically allows approximately 1200
files per group). WORKAROUND: Purge some
of the files in the group in .which you wish to build
the file.

104 TEMPORARY FILE DIRECTORY OVER
FLOW (FSERR 104): There is no more room in
your job/session temporary fde directory for this
file. WORKAROUND: Purge some temporary
fdes or :RESET some :FILE equations or :CRE
SET some :CLINE equations.

105 BAD VARIABLE BLOCK STRUCTURE
(FSERR 105): The variable record length file
being accessed has an inconsistent structure or
would have an inconsistent structure if this access
were to go through (if you are writing NOBUF).
WORKAROUND: If you are writing NOBUF, .
correct your program; otherwise, none.

106 EXTENT SIZE EXCEEDS MAXIMUM
(FSERR 1(6): The program attempted to build a
file which would have extents larger than 65534
sectors, the maximum permitted. WORK
AROUND: Increase the number of extents in the
file or decrease the extent size by decreasing the
record size or file limit of the fIle.

107 INSUFFICIENT SPACE FOR USER LABELS
(FSERR 107): The maximum number of user
labels for a file is 254. WORKAROUND: De
crease the number of user labels requested by the
program.

108 INVALID FILE LABEL (FSERR 108): The fIle
is inaccessible because the fue is invalid (probably
irrecoverably destroyed). WORKAROUND:
None.

109 INVALID CARRIAGE CONTROL (FSERR
109): The program tried to do a write with a CCTL
code of 1 (imbedded CCTL) but with a buffer
length of 0; or, the program attempted an FCON
TROL mode 1 (transfer CCTL code) with a
parameter of 1. WORKAROUND: Correct the
program.

110 A'ITEMPT TO SAVB PERMANENT FILE AS
TEMPORARY (FSERR 110): An attempt was
made to close a permanent file with temporary

(TEMP) . disposition; this is illegal.
WORKAROUND: Correct the program.

148 INACTIVE RIO RECORD (FSERR 148): An
FPOINT, FREADDIR, or FSPACE positioned
the record pointer at an inactive record in an RIO
(Relative I/O) file. WORKAROUND: None nec
essary.

149 MISSING ITEM NlfMBER OR RETURN
VARIABLE (FSERR 148): An item number was
specified without a corresponding variable or vice
versa in an FFILEINFO intrinsic call.
WORKAROUND: Correct the program.

ISO INVALID ITEM NUMBER (FSERR IS 0): An
item number specified in an FFILEINFO intrinsic

call is invalid. WORKAROUND: Correct the
program.

lSI CURRENT RECORD WAS THE LAST RE
CORD WRITTEN BEFORE THE SYSTEM
CRASHED (FSERR lSI): The current record in
the MSG (message) file was the last one written
before the system crashed and may contain in
valid information.

ACKNOWLEDGEMENT
Praises and kudos GOTO: Robert Saunders (of the HP lab)

for much important infonnation; Vladimir Volokh (of VES·
OFf Consultants), Robert Green (of ROBELLE Consulting),
and many others for comments, questions, criticisms, sugges
tions, and overall moral support.

11-17 -21

" ,,-.

· ~

?'" I.'

t.;

.• ~. 1

	Section 11—Miscellaneous
	The Truth About Disc Files

