The Truth About Disc Files

Eugene Volokh
VESOFT Consultants
Los Angeles, California

1/0, 110, it'’s off to disc we go . . .
(modern rendition of Walt Disney)

ABSTRACT

The disc file is probably the most important part of
MPE; however, due to the large number of different
options and considerations inherent in disc files, these
objects are often “under-understood” — this paper will
try to present the truth and nothing but the truth (the
whole truth will not be printed owing to lack of paper)
about disc files, which will hopefully remedy this situa-
tion.

CHAPTER 1
FILE STRUCTURE

Where It’s At

Before discussing disc files themselves, we must take
a moment to point out some terms, probably already
known to you, regarding the physical medium on which
disc files reside — the disc. This disc consists of a lot of
128-word SECTORS, and is assumed to be configured
on the system as one logical device.

Some considerations to be judged when referring to
these discs are: (1) space — each disc has an ever so
finite amount of sectors on it, the number of which va-
ries from disc to disc, but is, by Murphy’s Law, never
enough — and (2) speed of access, which is typically on
the order of 30 disc accesses per second.

The discs typically used with the HP are ones that
constantly rotate in order for all parts of the disc to be
accessible by the unrotating DISC HEAD. 1t is this ro-
tation of the disc that is the culprit in the slowness of
disc accesses. Similar considerations can be applied to
the two other significant types of hardware: memory
(which is very, very fast yet lamentably limited — up to
4 MegaBYTES on a Series 44) and tapes (which are
virtually infinite yet quite slow).

The above hardware considerations, though elemen-
tary, will be of paramount importance in further discus-
sion.

The Extent Question

Let us start at the beginning — the creation of the file.
We will examine what the MPE operating system has to
do to create a file. For example, let us say that you ask
MPE to build you a data file, which is to have room for

at most 100,000 records of 128 words each (note that 128
words is the size of a sector, and thus a good value for
simplicity). This would be done, perhaps, by an MPE
command akin to ‘“:BUILD ING;DISC=100000" (MPE
will automatically assume 128 words as the record size).
Now, what does MPE do?

Well, of course, MPE must allocate some disc space
for that file. In this particular case, MPE must allocate a
whopping 100,001 sectors (the 1 extra sector is for the
file label, a place where MPE holds internal file informa-
tion like the lockword, etc.) all at one time. But, wait a
minute! There may be 100,001 sectors out there on your
disc (or discs), but it’s possible that there is no one
single gap that large out there. Moreover, maybe you
don’t really need all that space. Quite probably, you’ll
never use more than 10% of it! So, we are faced with a
dilemma — if MPE were to allocate the space for that
file nicely and simply, in one big chunk, it may not have
enough space on disc; or, if it does, most of that space
will probably be wasted, as (for a time, at least) you will
not use all of that space.

Let us look at the other “‘extreme” solution. Why
don’t we, perhaps, allocate only one sector of space at a
time — one in the beginning, for the file label, and one
every time the user needs one. That way, even if the
disc is hopelessly fragmented (i.e., there are very many
1-sector pieces of free space out there, but no large
ones), we can probably fit a sector — if we can’t, time to
buy another disc; moreover, we do not allocate any disc
space until we really need it. This was, perhaps, a de-
cent solution in the “good old days” when disc space
was very expensive. But, now, the operating system
would have to maintain 100,001 pointers to enable ac-
cess to that file, which makes the above method un-
workable.

Enter the EXTENT! The extent is a reasonable com-
promise between the two extreme methods outlined
above. A file can consist of anywhere from 1 to 32 ex-
tents (the default number is 8). Now, when we build the
above file (with 8 extents), we will only have to allocate
around 12,500 sectors in the beginning (a savings of disc
space) and allocate new extents only every 12,500 re-
cords (a savings of disc accesses). We could, however,
allocate the file with only 1 extent, thus losing out on
disc space but gaining on disc accesses (but, of course,
the savings on disc accesses is rather small compared to
the incredible wastage of disc space), or with 32 extents,

11 —17—1

thus saving disc space at the expense of a few extra disc
accesses.

Two other considerations come into play, however —
one is that accessing files with a lot of extents FRAG-
MENTS THE DISC (i.e., increases the number of small
holes at the expense of large holes), thus making new
files harder to allocate in the future, and another is that
it is better to run out of disc space when building a disc
file, than when allocating a new extent in the middle of
the program (precious time and internal data consis-
tency may be lost this way). The former can be handled
best by decreasing the number of extents (at the ex-
pense of, of course, disc space) and the latter by allocat-
ing at :BUILD-time all of the specified extents (but only
if you are sure you will use all of the space). Note that
the number of extents (maximum and initially allocated
may be specified on the :BUILD command’s DEV
keyword, whose format is ‘“DEV=device[,maxexts]
+ Liinitalloc]”’, where maxexts defaults to 8 and initalloc to
1.

For Those With Multiple Discs

If you are the proud owner of several disc drives,
another factor comes into play. For example, let us say
that you build a file with the command ‘“:BUILD
ING;DISC=100000" (note that the maximum number
of extents defaults to 8, 1 initially allocated), and start to
wonder about which disc your file resides on. Well,
MPE, has adopted the so-called ‘“‘eeny, meeny, miney,
moe”’ algorithm. That is, if you succeed in filling all 8
extents of your file, you may well find that that file does
not reside on just one disc; rather, it resides on the discs
of the DEVICE CLASS “DISC” (which are special sets
of different devices, not necessarily discs, configured at
system set-up time). Each extent, of course, resides
wholly on one disc; but, the extents may reside on dif-
ferent discs — thus, a file with 8 extents may well find
itself with 4 extents on disc #1, 2 on disc #2, 1 on disc
#3, 1 on disc #4, and 0 on disc #5. If you, however,
want that file to reside exclusively on disc #4, “no
sweat’’ (as is said in the vernacular)! Merely :BUILD
the file with the “DEV=4" parameter. Or, if you set up
another device class called PRODDISC which will con-
tain discs #3, #4, #5, building the file on DE-
V=PRODDISC will ensure that all extents of that file
will be located on one of those devices. What, you may
ask, is the importance of this? Well, the word that has
leaked down from HP is: SPREAD OUT YOUR FILES
— for instance, if you have two heavily accessed files, it
might be wise to put them on two different discs.

This is done for the following reason. Let us assume
that you have two disc drives, each one able to perform
approximately 30 I/Os per second, and you spread out
your files in such a way that each disc gets about 30 I/O
requests per second. Those requests will be executed
within one second. But, if there are 20 I/O requests per
second to one disc and 40 to the second disc, the first
disc will not perform up to capacity, and 10 of the re-

11 —17—2

quests to the second disc will have to wait for a second
or more, thus degrading system performance.

Another promising idea is to configure all of your
devices except the system disc as device class “DISC,”
thus keeping files off the system disc, and thus reducing
the amount of access to the system disc, which already
has the operating system and the virtual memory on it.
However, with MPE IV, in which you will be allowed to
spread virtual memory over several devices, this may
not be as important. Note that for easy file disc location
handling, MPEX/3000’s %LISTF ,4 and %ALTFILE
commands and ADAGER’s DBCREATE and SET-
MOVE functions should be used.

The Logical File Structure

Besides the physical file structure described above —
extents, sectors, etc. — MPE files also have an internal
logical structure, not enforced in most ways by the ac-
tual file contents but rather by certain logical file de-
scriptors like the record size, the blocking factor, the
block size, the file type, and the like. First of all, we will
discuss the simplest sort of MPE file — the fixed-record
length file.

The Fixed Record Length File

A file is more than just a collection of data placed out
on disc. It usually has certain logical relationships
within it. One of the most frequent and fundamental
relationships is one in which data is organized into
chunks (called RECORDS) of a fixed length; for in-
stance, if you have a data file which contains, for each
customer, the customer code (6 characters), customer
name (30 characters), and the amount owed you by the
customer (8 zoned decimal characters), you have a 44-
character entry for each customer. Therefore, it would
be logical, for the sake of ease of access, to build that
file with 44-byte (or 22-word) records, having one re-
cord per customer. So, to build that file, you would
perform a BUILD command with the RE-
C=-44,,F,ASCII parameter (— stands for bytes and F
for fixed record length).

The Block

A familiar example of fixed record length disc file is
your usual EDITOR /KEEP-NUMBERED ffile, a file
with a record size of 80 bytes = 40 words. However, do
you know that in your EDITOR keep files more than 6%
of all disc space they occupy is wasted? This may not
sound like much, but if you are running short on disc
space, this can be a lot. What’s more, that disc space
can be saved (for large files) by merely specifying a
certain :FILE equation for the file to be kept. What, you
may ask, is the reason for this wastage? Well, the an-
swer lies in the secrets of the BLOCK.

The fundamental unit of disc I/O (as far as MPE is
concerned) is the SECTOR (128 words). Practically all
disc I/0 ends up as multiples of 128 words. 40, of
course, is not a multiple of 128. So, if MPE decided to

)

place 40 words per sector, it would waste not 6%, but
69% of each sector! So, you ask, why not pack three
40-word records into one 128-word sector. Well, that’s
exactly what MPE does; but because 128 is not a multi-
ple of 40, either, it still wastes 6% of the file’s disc space
(although 6% may not sound like much, for some un-
lucky files which have different record lengths, it can be
worse, with up to 50% wasted space!). But, there is light
at the end of the tunnel! We can very snugly fit 16
40-word records into 5 128-word sectors — a perfect fit.

From the above labyrinth come the notions of the
BLOCKING FACTOR and the BLOCK. The BLOCK-
ING FACTOR is, very simply, the number of records
that we choose to fit into a multiple of 128 words — in
the above “snug fit” scenario, this is 16; in the 6% was-
tage method that MPE uses, the blocking factor is 3 (3
records to 1 sector); in the (ugh!) 69% wastage at 1
record to 1 sector, the blocking factor is 1. The BLOCK
therefore, is BLOCKING FACTOR records — i.e.,
when the blocking factor is 16, the block is 16¥40 = 640
words = 5 sectors.

In general, MPE chooses the blocking factor as fol-
lows. If the record size of a file is less than one sector
(128 words), the blocking factor = 128/recordsize = the
number of records that will fit into one sector; if the
record size of afile is greater than 128 words, the block-
ing factor is always 1. A good example of the possible
wastage is when a record is 65 words long; then, 128/65
= blocking factor of 1, wasting 63 words for every 65
words used — a wastage of 49%! If that record was,
however, 64 words long, then the blocking factor would
be 2, with NO wastage.

By the way, it happens that the blocking factor for a
new file can be defined in a :BUILD or :FILE command
— always as the second subparameter (between the re-
cord size and the F, V, or U record format) of the
REC= keyword. Thus, if you want to eliminate the 6%
waste due to the blocking factor of 3 on EDITOR keep
files, just execute an equation of the form *:FILE
filename;REC=,16"" right before keeping the file as
“filename,” and presto! out comes a file with a blocking
factor of 16. For already existing files, some disgust-
ingly complicated tricks can be used — or, if you are
blessed with a copy of MPEX/3000, just use the
BLKFACT= keyword of the %ALTFILE command.

Now, you may wonder, what leads MPE to choose a
default blocking factor calculation system that leads to
considerable wastage in perhaps one of the most com-
mon forms of files? Well, for one, it would be unfair not
to remark at this point that the “NO wastage” schemes
described above really DO waste some space (although
not a lot). The reason for this is that a file (in fact, each
extent of a file) must be an integral number of blocks. If
it isn’t, a full block is allocated for less than ‘“BLOCK-
ING FACTOR” records. Thus, if you have a file con-
taining 50 80-byte records with a blocking factor of 16, it
would use up 4 blocks, the last one having only 2 actual
records — this file will thus use 21 sectors; however, if

that file is built with a blocking factor of 3, it would use
up 17 blocks (the last one also having only 2 records),
and would thus use only 18 sectors of disc space. How-
ever, this consideration is less important for larger files.
Another reason for MPE’s default blocking factor
strategy is that the block and the blocking factor govern
more than just disc space usage — they also control
certain parameters of buffered file access (see the chap-
ter on FILE ACCESS). However, for most files (espe-
cially large ones!) it is beneficial to select your own
blocking factors (with the use of the contributed
BLOCK program, for instance).

The Variable Record Length File

Let us take a hypothetical EDITOR COBOL-format
file. At the beginning of each line there is a 6-digit line -
number; the other 74 characters contain the line,
blank-padded. Now, those trailing blanks, especially in
large source files, convey absolutely no information to
anybody, and (since the average length of a line could
be estimated at half of 74 characters) will cause a was-
tage of APPROXIMATELY 50% OF THE DISC
SPACE USED BY THOSE FILES! But, you reply, if
EDITOR built the file with a record length of, say, 40
characters, all of my lines that are longer than 40
characters will get truncated. Well, you’re right — but
that is not what is to be done! Wouldn’t it be nice if
EDITOR and/or the file system allowed you to have
files not with a FIXED record length, but with a VARI-
ABLE record length — i.e., lines that are 74 characters
long will use 74 characters and lines that are 10 charac-
ters long will use 10 characters? Well, it does!

In fact, if you type in the little-known /SET VARI-
ABLE command in EDITOR, it will instruct EDITOR
to keep the workfile as a variable length record file
(WARNING: USE THIS ONLY FOR COBOL AND
DATA FILES, NEVER FOR NUMBERED FOR-
TRAN OR SPL SOURCES, OR THOSE SOURCES
WON'T BE COMPILER READABLE!!!), thus letting
it ignore those trailing blanks, but still keep the file for-
mat transparent to other programs that read these files
— for example, compilers. In your own programs (not
just in EDITOR), you can read variable record length
files without changing your programs at all — COBOL’s
or FORTRAN’s READ command can read variable re-
cord length files. You can write them without any
changes either — if you write a 10-character record to a
fixed record length file of 80 characters, the record will
be padded with 70 blanks or nulls; if you write that
record to a variable record length file, the record will
not be padded by anything, thus saving the space re-
quired for the padding. To build a variable record length
file, specify the third subparameter of the REC=
parameter of the :FILE or :BUILD command as “V”
(e.g., REC=-80,,V). The record size specified is now no
longer the actual record size of each record but rather
the maximum; whether the file is ASCII or BINARY
now really doesn’t matter. Also, do not call in the Na-

11—17 -3

tional Guard (or PICS) when you see on a :LISTF that
the END OF FILE for that file is GREATER THAN
ITS FILE LIMIT — it can happen with variable record
length files.

Therefore, with COBOL source files (especially) and
unnumbered data files, variable-length records are usu-
ally the way to go; again, however, we must warn you
that numbered default-format (e.g., SPL or FORTRAN
source) files SHOULD NEVER BE KEPT WITH THE
/SET VARIABLE OPTION SET or else they will not
be readable by the compiler.

However, as the old proverb says, “EVERY
SILVER LINING COMES WITH A CLOUD AT-
TACHED TO IT,” variable record length files have
some drawbacks. For one, they can not be accessed
directly (for instance, with the FREADDIR,
FWRITEDIR, or FPOINT intrinsics, or FORTRAN’s
READ/WRITE (fnum @ record) construct); i.e., you
can read their records sequentially, but you can not ask
to get, for instance, the 17th record of the file.
Moreover, they cannot be accessed by many file copiers
using the fast MR NOBUF file access method (see
under FILE ACCESS in this paper), such as HP’s own
DSCOPY, MPEX’s %FCOPY ,,FAST/DSLINE,
MPEX'’s %ALTFILE, SUPRTOOL/ROBELLE, etc.
Also, before MPE IV, append access to variable record
length files was not supported; it is supported starting
with MPE IV.

Another important consideration to keep in mind
when using variable record length files is that when you
build a new variable record length file with record size
RECSIZE and blocking factor BLKFACT, the resultant
block size of the file will be not RECSIZE*BLKFACT
(as in fixed record length files), but rather RE-
CSIZE*BLKFACT + (BLKFACT+1)*(2 bytes). Thus,
if you build a variable record length file of record size 80
bytes and blocking factor 3, the file will actually have a
block size of (80*3+4%2)=248 bytes. However, if the
same file is built with a blocking factor of 16, the block
size will end up being (80*16+17*2)=1314 bytes, not
1280 bytes! The end result is that AN OPTIMAL
BLOCKING FACTOR FOR A FIXED RECORD
LENGTH FILE MAY BE FAR FROM OPTIMAL
FOR VARIABLE RECORD LENGTH FILES!

Incidentally, MPE IV’s new INTER-PROCESS
COMMUNICATION features (i.e., Message and Circu-
lar files) rely EXCLUSIVELY on variable record
length files (q.v. COMMUNICATOR issue 26 — the C
MIT).

Undefined Record Length Files

There exists another type of disc file — the undefined
record length file. These are rather bizarre specimens
which are not intended to be and should not be used as

disc files, but are rather supposed to be utilized as tape

files and terminal files, which are beyond the scope of
this paper. ASCII VS. BINARY FILES When using

11—17—4

fixed record length files, it often happens that you may
write a 30-character record into a file with a record
length of 80. Then, what happens to the other 50 charac-
ters of the record? Well, for some files (for instance
source files) that contain simple text data, you would
typically want to initialize it to spaces because of the
nature of the file. If that is what you want, you would
build that file (EDITOR will build it that way for you) as
an ASCII file. This parameter can be specified as the
fourth subparameter of the REC= parameter of the
‘FILE or :BUILD command, e.g., REC=,,,ASCII.
However, for some data files, you may want to pad the
records with binary zeroes (nulls). Files built in such a
way are called BINARY files, and can be built by
specifying the BINARY parameter as the fourth sub-
parameter of the REC= parameter of the :FILE or
:BUILD command, for example REC=,,,BINARY.
Note that this is usually not necessary as BINARY is
the default file mode. Also note that since no record
padding is done in variable record length files, the
ASCII vs. BINARY distinction is usually irrelevant to
them.

The File Code

If you do a :LISTF mode 1 or 2 on a group of files,
you may notice that some files have a file code of 0
(blanks), some of PROG, USL, EDTCT, KSA M, PRIV,
and assorted numeric codes. These filecodes, for the
most part, are merely for the sake of file identification
— they have no physical influence on the actual con-
tents of files. If you change the filecode of a file (for
example with MPEX/30 00’s %ALTFILE
filename;CODE= command), the contents of the file
will not magically change. However, the filecode is use-
ful for identification purposes — for instance, the MPE
loader knows that files of filecode PROG are :RUNable
program files, the EDITOR knows that files of code
EDTCT are /SET FORMAT=COBOL files, QEDIT/
ROBELLE knows that files of code 111 are its files. In
fact, you can set up your own file identification system
for source or data files — you can build files with a
certain file code (via the CODE= parameter of a :FILE
or :BUILD command), alter the file code (with MPEX/
3000 or by copying the file), and examine the file code
(via the :LISTF command or, programmatically, with
the FGETINFO intrinsic). Certain tools like MPEX
also allow you to LISTF files by file code. An example
of this kind of file identification system (recently im-
plemented by us) is to set the file code to be the Julian
date of the day on which it was created, or some other
important date.

Note that the file code of each file is in reality a
number — for example, program files (PROG) have a
file code of 1029, but they are listed in a :LISTF output
as PROG. Also, KSAM files do not actually have a
numeric file code that identifies them as such -- they can
in reality have any numeric file code. However, KSAM
files which have a file code of 0 (which usually shows up

as blanks on a :LISTF listing) will be printed as having
code = KSAM. Files that are listed as having file code
= PRIV are in reality files that have NEGATIVE file
codes (like IMAGE files). Unlike usual files, they can
only be accessed by programs running in
PRIVILEGED MODE. This is handy, for instance, for
IMAGE files, to ensure that an ordinary user can not
physically change an IMAGE file without going through
the existing IMAGE utilities/intrinsics.

User Labels

It is often desirable or necessary to store information
in a file in such a way that it can later be retrieved, but is
nonetheless transparent when you read it in an ordinary
fashion. The concept of USER LABELS provides this
capability. With it, you can write special label records
(the maximum number of which is specified at open
time, defaults to 0, and can be up to 254) with the
FWRITELABEL intrinsic, read them with the
FREADLABEL intrinsic, but have them be transparent
to any user who reads or writes ordinary records to that
file. These labels are used by IMAGE, KSAM, and the
message system file (e.g., CATALOG and CICAT).
Another advantage of user labels is that you can write
user labels when you open the file for read access, can
read user labels when you open the file for write access,
and can open the file for OUT access (see access modes
below) which will else all of the file’s records but not its
user labels.

Carriage Control Files,
Relative I/O Files, Message Files,
Circular Files, KSAM Files,
IMAGE Files, and Other Monsters
That Inhabit the HP3000

This paper will not talk about the above types of files
(for want of time, will, and disc space). However,
maybe sooner or later you will hear the truth about
them, too!

CHAPTER 11
FILE ACCESS

Once a file is built, it really isn’t much good if you
can’t access it — read it, write it, append to it, etc. In
this chapter we will discuss the different methods of
accessing files that MPE provides for you.

Buffered File Access

A while back we referred to the concept of the
BLOCK. Well, it turns out that the block is more than a
convenient way of storing records on disc. In fact, it
- plays a very important role in the default mode of file
access called BUFFERED FILE ACCESS. Let us as-
sume that you are reading a 10,000-record disc file
which has a record size of 40 words (80 bytes), a block-
ing factor of 16, and thus a block size of 640 words. Let
us assume that you had to do one disc I/O for each

record — this would come up to a total of 10,000 disc
I/0 s, quite a lot!

So, MPE implemented a rather ingenious idea called
file buffering. Each file opened as a buffered file has
allocated for it a certain amount (default 2, changable at
open time with the FOPEN intrinsic or the BUF=
parameter of a :FILE equation) of buffers, each of
length equal to the file’s block size (in this case 640
words). These buffers are placed in an Extra Data Seg-
ment (because extra data segment access is faster than
disc access) and accessed there. They are read from or
written to disc only when a record that is not in the
buffer is requested. Thus, for the file described above,
only 10,000/16 disc 1/0’s = 625 disc I/O’s is necessary
— a considerable savings! The advantage of having
more than 1 buffer is that then you can access, for in-
stance, records 17-32 (in one buffer) and 49-64 (in the
other buffer) without necessitating a disc I/0 each time
you switch from one record range to the other. How-
ever, if you then read in record 100, the contents of
buffer 1 will be flushed out to disc and buffer 1 will then
contain records 97-112. In general, with buffering, one
disc I/O is required for every (BLOCKING FACTOR)
records — in this case, one disc I/O is needed for each
16 records. '

In the discussion above, we advised that you set up
blocking factors so that BLOCKING FACTOR * RE-
CORD SIZE be an even multiple of 128; thus, for in-
stance, 16 was chosen for files with records of length 40
words. But, there is more than one way to skin a block-
ing factor! In fact, since 16 * 40 is a multiple of 128, 32 *
40 certainly is too! Very little disc wastage will result
from changing the blocking factor from 16 to 32, but
each buffer will now be not 640 words long, but rather
1280 words long, and now only 313 (=10,000/32) disc
I/Os will be necessary to read the file! A blocking factor
of 64 will require less than 160 I/O’s, and so on. This will
not necessarily halve the time used by the read, but it
sure will decrease it. Of course, the same thing can be
said for writing to files. We must, however, point out
that memory space will be used much more heavily by
files that have large blocking factors. Also, the total size
of the buffers must be less than or equal to 8,192 words
(or 14,000 words starting with the D MIT version of
MPE). Since the default number of buffers is 2, this puts
an upper limit of 4,096 words (or 7,000 words starting
with the D MIT) on the block size of a file. However,
you can increase that maximum to 8,192 words (or
14,000 words starting with the D MIT) by opening the
file with 1 buffer (by specifying BUF=1 on a file equa-
tion).

Multiple Record Non-Buffered
Access (MR NOBUF)

The buffering method described above is rather good,
but is still not optimal; first of all, access to the extra
data segment in which the buffers are located is faster
than disc access, but nonetheless not as fast as access to

11—17—5

your own stack. Moreover, as was pointed out above,
certain memory usage considerations forbid the buffers
from being more than SK to 10K words, which is also
not optimal. Wouldn’t it be truly wonderful if one could
read not just single records, not just blocks of 16 or so
records, but 4,000 words at one shot? Well, one can,
through the magic of MR NOBUF, probably the MOST
POWERFUL AND FASTEST FILE ACCESS
METHOD NOW AVAILABLE! MR stands for Multi-
ple Record I/O (do not confuse this with the Multiple
RIN capability, also abbreviated MR), and NOBUF
stands for No Buffering (this is a bit of a misnomer — it
means that it is you, not MPE who will provide the
buffer space needed). Note that MR must be used with
NOBUF!

Certain factors to beware of when using MR NOBUF
are: for one, this method is rather hard to use with vari-
able record length files. Also, the efficiency of this
method is best with a buffer size of 4,096 words.
Another factor is that when the block size (BLOCKING
FACTOR * RECORD SIZE) is not a multiple of 128
words, MR NOBUF is not that much more efficient
than ordinary file access, and simple NOBUF access
should be used instead.

By far, the best application of MR NOBUTF is with file
copying. FCOPY, which uses ordinary buffering meth-
ods, is often 10 to 20 times slower than MR NOBUF
copiers like HP’s own DSCOPY, MPEX/3000s
%FCOPY ,,FAST/DSLINE or %ALTFILE com-
mands, SUPRTOOL/ROBELLE, and numerous other
programs. However, you can do MR NOBUF reading
and writing from your own programs by specifying the
MR NOBUF access options when accessing the file (or
specifying the MR or NOBUF parameters on the :FILE
equation — however, a bug present on some versions of
MPE forces you to specify MR in the FOPEN because
it ignores the MR :FILE equation parameter; see
“ANOTHER MPE FEATURE (BUG)” in SCRUG]et-
ter, Jan 1981 Vol 4 #1). This will allow you to read more
than one record (always at least one block, however) at
a time, and also lets you do direct I/O (e.g., with
FREADDIR and/or FWRI TEDIR) on a block number
rather than record number basis.

However, reading files MR NOBUF in your own pro-
grams is rather hard to do because of many concerns
that have to do with doing deblocking of records. Be-
cause of this, it is suggested that you either do most of
your record selection outside of your program (with
SUPRTOOL/ROBELLE, for instance), develop your
own MR NOBUF I/O routines that can be easily called
from your applications programs, or use David Brown’s
FAST 1/0O procedures.

MR NOBUF I/O can therefore really cut down the
execution time and CPU time demands of your disc
I/0-heavy programs. The only problems with MR
NOBUF are that it is hard to apply it to variable record
length files and KSAM files and that it may (because of

11—17—6

the large in-stack buffers necessary) use up a lot of
stack space and much memory space.

The Access Types for Disc Files

In the access options parameter of the FOPEN intrin-
sic or in the ACC= parameter of the :FILE command
you can specify the so-called access type which defines
whether a program will read the file, write to the file, do
both, or append records to the file. There are 7 legal
access types, which can be very useful if used properly.
The default access type is IN access. This is read-only
access — all attempts at writing records to files opened
with IN access will fail with File System Error 40 —
OPERATION INCONSISTENT WITH ACCESS
TYPE. If you only want to read the file, you should
open it with this access type; this will prevent your
program accidentally writing over the file; it will work
even if somebody else has the file opened in Share or
Exclusive Allow Read mode (see the SHARING FILES
chapter) and it will also work if the file’s security pre-
vent you from doing anything but reading that file.

Another type of access is OUT access. OPENING
OLD FILES WITH THIS ACCESS TYPE WILL
ERASE THEM! If you do not want that to happen, you
should open th e file with OUTKEEP access. However,
if you want to erase the file, or the file is new, or you do
not care about its old contents anyways, this is the ac-
cess type that should be specified. Note that you need
WRITE access to the file to open it in this mode. OUT-
KEEP access is useful for opening files to write to
them, but NOT DESTROYING THEIR OLD CON-
TENTS (as OUT access would do). You need WRITE
access to the file to open it with this access type.

Often you do not need to write over the old contents
of a file — you merely need to add new records to it. In
that case, APPEND access is for you — it forces the
record pointer to be positioned at the end of the file and
only permits you to append records to the file. Another
advantage of it is that it requires that you have only

]APPEND access (not WRITE access) to the file to open

it thus. So, if you wish to permit users to only append
and not overwrite data in a given file, they should be
allowed only APPEND and not WRITE access to this
file. For instance, VESOFT’s SECURITY/3000 permits
APPEND access to its security violation log file, but not
WRITE access (so user’s can not obliterate the record
of their violations).

The above access types permit you either to READ
ONLY or WRITE ONLY, but never both. INOUT ac-
cess lets you both READ and WRITE to the file. All
intrinsics (except FUPDATE) can be used against that
file in this mode. Note that you need READ and
WRITE access to open a file in this way.

There is also a special form of access called UPDATE
access that is PRECISELY the same as INOUT access
except that it permits the usage of the FUPDATE in-
trinsic. Since this is apparently no less expensive than
INOUT access, and requires no extra access to the file,

it is suggested that this option be used instead of the
INOUT access type because it is more powerful and no
more dangerous.

Another access, permissible only to programs that
run in Privileged Mode (Ohmigod!), is EXECUTE ac-
cess; its advantages are twofold. For one, it requires
only EXECUTE access to a file, not READ access;
moreover, it allows you to write to loaded program or
SL files. This is listed only for the sake of complete-
ness, and all you nice non-privileged users out there
don’t even need to know about it. For a discussion of
privileged mode, see PRIVILEGED MODE: USE VS.
ABUSE, SCRUGletter July 1981, Vol 4, #4.

Posting End of File to Disc

As was mentioned before, each file has a special re-
cord called ‘“the file label” (which contains all sorts of
information about the file, such as its type, name, and,
among other things, its end of file, which is the number
of records which the file contains). Now, if every time
that you wrote a record to the file, MPE would have
updated that file’s file label, your programs would run
quite slow — after all, that would mean extra disc I/Os
to handle. For this reason, MPE does not post the end
of file to disc until a record write would cause it to
allocate a new extent (in which case it would have to
change the file label anyway), thus saving the extra
1/Os.

This is all fine and dandy, provided that MPE will
actually get a chance to post the end of file to disc
sometime. But, what if the system crashes after you
wrote the record but before MPE posted the end of file?
Then, even though the record (or records, as the case
may be), are already out on disc, MPE does not know
about it because the end of file pointer does not reflect
this. So, you’'ve just lost all those records that were
written before the system crashed. You can, however,
minimize your losses through a little-known feature of
the file system by calling the FCONTROL intrinsic (see
System Intrinsics Manual) with a parameter 6 (WRITE
END OF FILE) which lets you post the end of file to
disc. If you do this after you write each record, the most
records that you will ever lose due to a system failure is
one! Of course, this will triple the number of disc I/Os
that you’ll have to do, so this is not advised for large
batch runs; however, if you are updating a disc file in-
teractively, the time it takes to input all of the data from
the screen will dwarf the time it will take to do the extra
I/O to such a degree that that the posting of the end of
file will be virtually free in terms of time, and may save
you hours of re-entering vital data.

When You Are Not Alone

When you use any of the access types listed above
except read only (IN) access, the file specified will be
opened EXCLUSIVELY; that is, you can not open it if
anybody else has it opened, but, once you have it
opened, NOBODY ELSE CAN USE IT UNTIL YOU

CLOSE IT. This is, of course, somewhat of a problem if
that file is intended to be read and written by many
different users. There are several ways to get around
this dilemma.

Exclusive Allow Read Access

One of those ways is Exclusive Allow Read (EAR)
access. This permits you to forbid all other users from
writing to a file, while letting them read that file. Also,
this access (unlike EXCLUSIVE) access will be
granted to you even if the file is already being accessed
for read access (but not for write access) by someone
else. This can be specified by setting the appropriate
bits in the access options of the FOPEN call, or issuing
a FILE equation with the EAR keyword. TRUE
SHARED ACCESS But, you sometimes want not just
to have one writer of a file, or one writer and several
readers, but MORE THAN ONE PERSON WRITING
TO A GIVEN FILE. This can be accomplished with
SHARED ACCESS (to use, specify the appropriate bits
in the FOPEN call or append the SHR keyword to the
file equation for that file), which is the default mode for
read only access, but has to be explicitly specified and
handled when writing to a file. Shared access is a very
complicated form of access, one at which we will look
closer in the next chapter.

CHAPTER III
SHARED FILES

Sharing Files With
Input/Output Access

Merely specifying SHR access when opening the file
will get you where you are going — it will allow you and
anybody else who opens the file with SHR access to
read and write to this file. But, let us suppose the follow-
ing situation: two processes have opened one file for
IN/OUT access in SHR mode, and the following hap-
pens:

PROCESS A
Reads a record

PROCESS B

Reads the same record
Changes the record

Changes the record
Writes the record back

Writes the record back

In the above scenario, process A reads the record

before process B reads the same record but writes it
back out after process B reads it in! That way, process
A’s changes WILL NOT BE REFLECTED IN THE
FILE because of the interference of process B. In fact,
what is needed is a method of “LOCKING OUT” all
other writers of the file while the file is being updated!
Well, MPE’s FLOCK and FUNLOCK intrinsics pro-
vide this method.

11 —17 —7

Dynamic Locking and Unlocking
for Shared Files

In order to use dynamic locking, the process that
opens the file must open it with dynamic locking ena-
bled (the LOCK parameter on the :FILE equation —
together with the IN/OUT SHR access, the file equation
would now look like :FILE file;LOCK;SHR;ACC=
INOUT — or the appropriate bit in the access options
of the FOPEN intrinsic call). Then, before each “logical
transaction” (a period in time in which the data in the
file is not consistent — in the above example, while the

record is being changed, the current state of the file-

does not reflect the true intended state; therefore, the
file must be locked before the read and unlocked after
the write) the file must be locked and then be unlocked
after the end of the transaction (note that opening a file
with dynamic locking enabled does not actually lock the
file). This will ensure that there will be no inconsisten-
cies like the one shown above. Note that THIS WILL
WORK ONLY IF ALL WRITERS LOCK THE FILE
IN APPROPRIATE CASES — this locking arrange-
ment only works for programs that honor it.

Sharing Files with Append Access

In some cases, however, locking does not really help.
For example, if two writers are just writing to a file (no
reading, etc.), the “logical transactions” like the ones
described above are composed of merely one write. For
these transactions, it does no good to lock the file. One
of the most common example of this type of file access
is shared append access to a file by two or more writers.

In fact, if the file has a blocking factor of 1, there is no
need to do anything but the write. However, look at
what happens when the file has a blocking factor other
than 1, for example 3; consider process A and process
B, both writing to the same file:

PROCESS A PROCESS B

Record 1 written;
kept in buffer
Record 1 written;
kept in buffer
Record 2 written;
kept in buffer
Record 2 written;
kept in buffer
Record 3 written;
buffer flushed
Record 3 written;
buffer flushed
Note that, by the principles of buffering, the actual
disc I/O is not done until the third record is written and
the buffer is flushed out to disc. But, because of that,
when it is flushed out to disc, the buffers from process A
and process B interfere with each other, and data can be
lost. Therefore, the rule for locking when appending (or

11—17—8

performing any other such operation in which each
transaction contains only one operation) is: LOCK
WHEN THE BLOCKING FACTOR IS GREATER
THAN 1; IF THE BLOCKING FACTORIS 1, LOCK-
ING I S UNNECESSARY.

Multiple File Access

Another way to ensure that no data is lost while writ-
ing to a file is with a useful tool (which is even more
useful under MPE IV) called MULTIPLE FILE AC-
CESS. With multiple file access in shared mode, the
internal file control information and the I/O buffers are
shared, as well as the file itself, thus avoiding many
problems of ordinary shared access.

So, if process A and process B (IN THE SAME
JOB/SESSION) access a file SHARED, APPEND, and
MULTI, then their internal end of file and buffer
pointers are shared; thus, the risk of one’s file I/O inter-
fering with the other’s is eliminated. To specify
MULTI-access, set the appropriate bit in the FOPEN
parameters or specify the ;MULTI keyword on a :FILE
command for the file in question.

So, very many of the problems and complicated lock-
ing strategies discussed above can be avoided if
MULTI-access to that file is used. However, there are
two things that you must keep in mind when using
MULTI-access; for one, ordinary sequential reads and
writes to that file will not behave as expected. Why?
Well, the current record pointer is among those values
that is shared with MULTI-access and thus if process A
reads a record sequentially and then process B requests
to read a record sequentially, process B will get the next
record because the record pointer was already in-
cremented by A’s read. Thus, if the two processes read
the file sequentially with MULTI-access, each one will
read approximately half the file instead of the full file!

MPE III vs. MPE IV

Another problem for all you unlucky people who still
do not have MPE IV, MULTI-ACCESS IS PERMIS-
SIBLE ONLY WITHIN ONE JOB/SESSION UNDER
MPE III! However, under MPE IV, you can use the
GMULTI (Global MULTI access), which can be
specified in the FOPEN parameters or with the
GMULTI keyword of the :FILE equation, to have
MULTI-ACCESS ACROSS JOBS/SESSIONS, with
which you can avoid most of the problems of shared file
access very easily.

More About Locking

There are two methods of locking files: UNCONDI-
TIONAL, which means “if the file is already locked by
somebody else, wait for them to unlock it, and then
establish the lock” and CONDITIONAL, which means
““if the file is already locked by somebody else, return to
me immediately with an error condition.”” The UN-
CONDITIONAL method is usually the most useful, al-
though the CONDITIONAL option is handy when you

™

)

do not want to take the risk of waiting a long time (if the
program that has it locked won’t unlock it for a while).
Needless to say, the file should not be locked for a long
time, and SHOULD NEVER BE LOCKED WHILE A
TERMINAL READ IS GOING ON unless you do not
mind the fact that if the terminal operator goes to lunch,
everybody else who tries to unconditionally lock the file
will hang.
Locking Multiple Files,
Or The Secrets of Multiple Rins (MR)

Let us consider another hypothetical circumstance:
Process A locks File 1; meanwhile Process B locks File
2. Then, Process A tries to unconditionally lock File 2
and is then impeded until Process B unlocks File 2.
Meanwhile, Process B tries to unconditionally lock File
1 and is then impeded until Process A unlocks File 1.
Thus, Process A is waiting for Process B and Process B
is waiting for Process A. Result: Deadlock. Both pro-
cesses are hung until the system is re-started. The sages
of Cupertino thought of that when designing the system;
in fact, their solution (which may not sound like much of
a solution, but is better than nothing) is TO FORBID
PROGRAMS TO LOCK MORE THAN ONE FILE AT
A TIME. But, one may object, what if I have to lock
more than one file at a time? Well, the answer to that
problem is that you can get around (but at your own
risk) that restriction if the program that does the locking
has Multiple RINs (MR — not to be confused with Mul-
tiple Record access) capability (i.e., was :PREPped
with it. By the way, RIN stands for Resource Identifica-
tion Number. These programs can, IF THEY REALLY
HAVE TO, lock two or more files at a single time.
Needless to say, this capability should not be freely
given to everybody and his brother, but only to people
who really need it, and smart enough to use it without
causing deadlocks.

That brings us to the problem of: How do you get
around the deadlock problem? Well, you may have al-
ready noted that the reason why the programs got into a
deadlock was that one locked File 1 before File 2 and
the other locked File 2 before File 1. If they had only
kept a consistent locking arrangement (e.g., File 1 must
ALWAYS be locked before File 2), they would not have
had the problem — this is probably the best way to
avoid the deadlocks. Another way is to lock the files
CONDITIONALLY, and if the lock fails, do something
else (or even go into a loop, which can at least be broken
out of by aborting the job or doing a break/:ABORT,
rather than re-starting the system).

Summary of Locking
And Locking Strategy

The following are the 10 commandments of locking:
1. Thou shalt lock around logical transactions which
involve two or more operations. For example, that kind
of a logical transaction would be a read of a record
followed by a modification of that record followed by a

write. If you do not lock around this, you stand the risk
of losing data consistency.

2. Thou shalt also lock around all logical transactions
that involve a file which you share with somebody who
has transactions which involve two or more operations.
That means that if process A’s transactions are just
single writes and process B’s transactions are reads fol-
lowed by writes, both process A AND process B must
lock around their transactions.

3. Thou need not lock a shared file if all its writers’
transactions involve just one operation and its blocking
Sactor is 1. Thus, if process A and process B are writing
to a shared file, and their transactions are merely single
writes (e.g., they are appending to a file), neither one
has to lock the file.

4. Thou shalt use GMULTI access under MPE IV
when you are appending to a shared file. This can save
you time, worry, and your neck.

S. Honor thy locking arrangements. This means that
if it has been decided that a shared file is to be locked by
its writers, all writers must lock it. If so much as one
writer fails to lock the file, all of the locking arrange-
ments will be useless.

6. Thou shalt not keep a file locked while a terminal
read is in progress. If you did, then the file will be
locked down until something is entered, which could
mean an indefinite waiting period for any other program
that wants to lock the file. ’

7. Thou shalt not lock more than one file at the same
time without MR Capability. The second file lock will
fail unless your program was :PREPped with MR capa-
bility.

8. Thou shalt protect thyself from deadlocks by estab-
lishing a fixed file locking sequence if you use MR
capability. Thus, if process A locks file 1 and then file 2,
process B must lock in the same order, i.e., file 1 and
then file 2 (not file 2 and then file 1!).

9. Thou shalt not give MR capability to just anybody.
MR capability can cause big trouble, and thus should be
passed out sparingly.

10. Thou shalt use IMAGE/3000 if thy file locking
arrangements get too complicated. IMAGE/3000 has
file locking capabilities far superior to MPE's file lock-
ing features. If you find that your locking arrangements
are getting too complicated or programs are waiting in-
ordinate amounts of time to get at a shared file, think
about converting it to an IMAGE file — it may be worth
your while.

CHAPTER IV
FILE DOMAINS AND EQUATIONS

Permanent and Temporary Files

Most of the files that we discussed in previous sec-
tions were usual PERMANENT files — files that, once
built, exist until they are :PURGEd or somehow de-
leted. There is, however, another type of file, one that is

11 —17—9

also often quite useful. This is the JOB/SESSION
TEMPORARY FILES. These files, once built (by plac-
ing the ;TEMP keyword on the :BUILD or :FILE
command), exist until they are :PURGEd (by perform-
ing a “:PURGE filename, TEMP”) OR UNTIL THE
JOB OR SESSION IN WHICH THEY WERE
CREATED LOGS OFF. Why are these files desirable?
Imagine, for instance, that you want to create a certain
file that you want to stream. After the file is streamed
(in the same job or session that it was built in), you no
longer need it. If you were to create that file as a perma-
nent file and then purge it, it is quite possible that some-
body else may have built a file with the same name; for
instance, if the same program is being run on another
terminal and that file is created there.

However, if you create it as a temporary file, you can
be certain that creating it will not interfere with any-
body else; the nature of job/session temporary files is
such that two different jobs or sessions can create
within them temporary files with the same name which
do not interfere with each other.

Most MPE commands either attempt to open the file
given to them as a temporary file and then (if the tem-
porary open fails) as a permanent file (e.g.,
:STREAM,:COBOL,:RUN, etc.), thus being able to ac-
cept both temporary and permanent files, or have spe-
cial keywords that instruct them to open the file as a
temporary file (e.g., PURGE file, TEMP). Programs that
open files as permanent can be instructed to open the
file as job/session temporary by issuing a file equation
of the form “:FILE fil ename,OLDTEMP”. Note that
some commands and subsystems (e.g., :BASICOMP,
:PREP, :SEGMENTER’s -BUILDUSL command)
build files as temporary files; others can be instructed to
build files as temporary by using a file equation like
“:FILE filename;TEMP”.

If you need to keep a temporary file as a permanent
file with the same name, you can do a “:SAVE fil
ename’’; if you want to keep it as one with a different
name, do a ‘“:RENAME oldfile,newfile, TEMP” and a
“:SAVE newfile”. The names of your temporary files
can be listed with LISTEQ2 or (in a more complete,
:LISTF-like format, with MPEX/3000’s %LISTF
fileset: TEMP command).

$NEWPASS and SOLDPASS

Two other useful critters are the system-defined files
called SNEWPASS and $OLDPASS. Consider, for in-
stance, the :COBOL command. When the USL file is
omitted on this command, it is usually followed by a
:PREP command that is to prepare the resultant USL
file into a program file. But, what intermediate USL file
should be used? Well, if you use a permanent or tem-
porary file you run the risk of having a file with that
name already in existence. This is where NEWPASS
and $OLDPASS come in. SNEWPASS is a peculiar file
that, when closed, magically turns into SOLDPASS. So,
once you open SNEW PASS, write to it, and close it,

11—17—10

you can then open $SOLDPASS, and read it.

So, in the case of the :COBOL and :PREP, the USL
file parameter of the :COBOL command defaults to
$NEWPASS. The USL file is closed, and, presto!, it
becomes SOLDPASS. Now, you can execute a com-
mand of the form *“:PREP $OLDPASS progfile”, and
that USL will be :PREPed into the specified program
file. If you really want to be fancy and you don’t need
the program file to be a temporary or permanent file,
you can do a “:PREP $OLDPASS ,$NEWPASS”, and,
after this is done, the program file (which was specified
as SNEWPASS) becomes $OLDPASS. Now, you can
just “:RUN $OLDPASS”. Note that SOLDPASS con-
tains the USL file from :COBOLPREP (or
:FORTPREP, :SPLPREP , etc.) and the program file
from :COBOLGO (or :FORTGO, :SPLGO, etc.).

If you decide that you want to save the contents of
$OLDPASS in a permanent file, just do a “:SAVE
$OLDPASS filename”. A rather bizarre undocumented
feature is that to save $OLDPASS as a TEMPORARY
file, you can do a “:RENAME $OLDPASS filename”’!
Of course, SOLDPASS vanishes as soon as you :BYE
off.

The Care and Feeding
of :File Equations

Perhaps one of the single most important and least
understood tools in handling files is the :FILE equation.

- The file equation allows one to re-define certain open

parameters of old and new files. For example, let us say
that you are keeping a file with EDITOR, and you want
to keep it with blocking factor 16 and 32 extents. Then,
you would issue the file equation ““:FILE filename;RE-
C=,16;DEV=,32". Note that THIS DOES NOT
BUILD THE FILE! However, when you execute the
/KEEP command (and EDITOR therefore opens the
file) or when you open it from your own or any other
program as a new file, it will be opened with blocking
factor 16 and 32 extents.

If, however, the specified file already exists and has a
blocking factor of 3 and 8 extents and you issue the file
equation in hopes that the equation will magically
transform it, you’re in for a letdown. This is because if
that file already has a blocking factor of 3, it will always
have a blocking factor of 3 even if you say on the :FILE
equation or when opening the file that it has a blocking
factor of 16. Its blocking factor is 3 and merely opening
it with another blocking factor changes nothing. To
truly change the blocking factor, record size, number of
extents, file limit, or any one of the other file paramet-
ers, you need to either rebuild the file (remember, these
parameters can be redefined when you are building a
new file) and copy the old contents of the file into it, or
use utilities such as MPEX/3000.

However, some options can be redefined for OLD
files. These are not the file options (like CCTL or REC)
but the access options (like ACC, BUF, MR, etc.),
which are not inherent parts of the file, but rather at-

tributes of the access, defined when the file is opened.
These can therefore be redefined for OLD or NEW
files. Another class of :FILE equation parameters gov-
erns actions that are to be performed not at OPEN time,
but rather at CLOSE time. The only parameters in this
class are disposition parameters. The SAVE option in-
structs the program to close the file as a permanent file;
the TEMP option tells it to close the file as a job/session
temporary file (q.v. TEMPORARY vs. PERMANENT
FILES); and, the DEL option will delete the file refer-
enced when it is closed. Note that although all :FILE

equation parameters correspond to some FOPEN or
FCLOSE parameter, not all FOPEN and FCLOSE
parameters can be redefined with a :FILE equation; for
instance, the number of user labels (on open), or the flag
that indicates whether space between end of file and
file limit is to be released (on close) can not be redefined
with :FILE equations.

If you do not want the user to be able to re-define the
open or close parameters of a file, you should open the
file with the Disallow File Equations bit in the FOP-
TIONS parameter of the FOPEN intrinsic set.

APPENDIX B

A Glossary of Common Disc File Handling Terms

ACCESS-MODES — The file’s ACCESS MODE (one
of IN, OUT, OUTKEEP, APPEND, INOUT,
UPDATE, or execute) that is defined at file
open time and restricts the actions that can be
performed on the file. This can be redefined
with the ACC= parameter of the :FILE equa-
tion. See APPEND ACCESS, IN ACCESS,
INOUT ACCESS, OUT ACCESS, OUTKEEP
ACCESS, UPDATE ACCESS.

ACCESS-OPTION — The ACCESS OPTIONS are a
parameter to the FOPEN intrinsic (q.v.) that
define the access mode, sharing status, dynamic
locking flags, etc. See FOPEN.

ASCII — ASCII files are fixed/undefined length files
that are padded or initialized to blanks instead
of zeroes. That is, writing a record that is
shorter than the record size causes the result to
be blank-padded. To create, use ASCII as the
4th subparameter of the REC= parameter of
the :FILE/:BUILD command. See BINARY.

BINARY — BINARY files are fixed/undefined length
files that are padded or initialized to zeroes
(nulls). To create, use BINARY as the 4th sub-
parameter of the REC= parameter of the
:FILE/:BUILD command. See ASCII.

BLOCK — A BLOCK is the unit in which data is
transferred between I/0O devices and file buffers
on disk. 1 BLOCK = BLOCKIN G FACTOR
records. Each block always starts on a sector
boundary, and thus, for disc space usage effi-
ciency should be equal to an integral number of
sectors whenever possible. See BLOCKING
FACTOR, BLOCK SIZE.

BLOCKING-FACT — The BLOCKING FACTOR is
the number of records per block. To optimizing
disc space usage, set the blocking factor such
that BLOCKING FACTOR * RECORD SIZE
is a multiple of 128 words. To optimize file ac-
cess speed, set the blocking factor as large as
possible. To minimize memory usage, set the

blocking factor as small as possible. To set the
BLOCKING FACTOR for new files, specify it
as the 2nd subparameter of the REC= parame-
ter of the :FILE or :BUILD command. See
BLOCK, BLOCK SIZE.

BLOCK-SIZE — For fixed record length files, BLOCK
SIZE = BLOCK FACTOR * RECORD SIZE.
For variable record length files, BLOCK SIZE
= BLOCK FACTOR * RECORD SIZE +
(BLOCK FACTOR + 1) * (2 bytes). The most
efficient disc space usage occurs when the
block size of a file is equal to an integral number
of SECTORS. See BLOCK, BLOCK FAC-
TOR.

BUFFERING — The default mode of file access is
BUFFERED FILE ACCESS — in this mode
records are not immediately read from or writ-
ten to disc, but rather kept in an extra data seg-
ment which contains (BUFFERS) buffers of
length (BLOCK SIZE) words each. See BUF-
FERS, NOBUF ACCESS.

BUFFERS — When a file is accessed in buffering
mode, a certain number of BUFFERS is allo-
cated, each one of length (BLOCK SIZE)
words, in one extra data segment. The default
number of buffers is 2, and can be redefined
with the BUF= parameter of a file equation.
See BUFFERING.

DEADLOCK — A situation in which two processes are
hung, each one waiting for the other to do some-
thing. This can happen when several files are
locked by processes with MR capability. See
LOCKING FILES, MR CAPABILITY.

DEVICE — The DEVICE on which a disc file resides
can be a single disc (specified by placing its
device number in the FOPEN call or as the 1st
subparameter of the DEV= keyword of the
:FILE equation) or a device class, a collection
of disc devices grouped under a generic name
(specified in the same place as the device

11—17—11

number). All of the extents of the file are placed
on this device or device class.

DOMAIN — The DOMAIN of a file can be PERMA-
NENT or TEMPORARY. This can be specified
on a :BUILD command (;TEMP indicates
TEMPORARY, omission of it means PERMA-
NENT) or a :FILE command (for old files,
:FILE filename,OLD means PERMANENT
and :FILE filename,OL DTEMP means TEM-
PORARY:; for new files, :FILE filename;TEMP
means TEMPORARY and ;SAVE means per-
manent). See PERMANENT, TEMPORARY.

EAR — EAR (short for Exclusive Allow Read) is an
access mode that permits a user to open a file
for write access, but still allow other users read
access to the file. See EXCLUSIVE ACCESS,
SHARED ACCESS.

END-OF-FILE — The END OF FILE is usually the
number of records that have been written to a
given file. It is usually less than the file limit
(q.v.), which is the maximum number of re-
cords in a file, but could be greater than it in
variable record length files (q.v.).

EXCLUSIVE — EXCLUSIVE ACCESS to a file is an
access mode in which the accessor forbids
everybody else to access that file while he is
accessing it. This mode is the default mode for
all non-read access. It can be specified in the
access options of an FOPEN call or in a :FILE
equation with the EXC parameter. See EAR
ACCESS, LOCKING, SHARED ACCESS.

EXTENT — An EXTENT is a collection of blocks that
occupies contiguous space on a given disk.
There can be up to 32 such extents in a file, but
the default is 8. See EXTENT SIZE,
MAXIMUM EXTENTS, NUMBER OF EX-
TENTS.

EXTENT-SIZE — The extents of any file must all be of
equal length (in sectors), except the last one,
which may be of smaller length. For formulae
for these lengths, see APPENDIX B — DE-
TERMINING DISC SPACE USAGE. See
EXTENT.

FILE-CODE — The FILE CODE of a file is an integer
which describes the type of this file; some of the
more common codes have special mnemonics
corresponding to them (e.g., PROG = 1029 =
file code of program files). These mnemonics
show up on :LISTFs of that file, and can also be
specified on-a :BUILD or :FILE command.
The code, whether mnemonic or numeric, can
be placed on the CO DE= parameter of a
:BUILD or :FILE command.

FILE-EQUATION — A file equation is a useful tool
that allows a user to redefine certain open or
close parameters of the file (e.g., the file code
(CODE), the access type (ACC), the close dis-

11 —17 —12

position (SAVE/TEMP), etc.). It can be
specified through the MPE :FILE command.

FILE-LABEL — The FILE LABEL of a file contains
information about that file (e.g., file name,
creator id, file code, record size, extent infor-
mation, etc.) needed by MPE. Ordinary users
need not worry about this entity.

FILE-LIMIT — The maximum number of records per-
mitted in a file, necessary for knowing how
much disc space to allocate, specified at file
creation time. Note that the END OF FILE can
actually exceed the FILE LIMIT for variable
record length files. The file limit can be
specified in a :BUILD or :FILE command as
the first subparameter of the DISC= keyword.

FIXED-LENGTH — FIXED RECORD LENGTH files
are files whose records have a fixed length — if
a record of smaller length is written to the file,
the record is padded on the right with an appro-
priate number of blanks (ASCII files) or nulls
(BINARY files). An example of this kind of file
is the usual EDITOR file which has a fixed
length of 80 bytes. To build fixed record length
files, specify F as the third subparameter of the
REC= parameter on a :BUILD or :FILE com-
mand (e.g., REC=-80,,F). See VARIABLE
RECORD LENGTH, UNDEFINED RECORD
LENGTH.

FOPEN — FOPEN is a system intrinsic that permits its
caller to open a file. BASIC, COBOL, FOR-
TRAN, and RPG users need not be concerned
about this intrinsic because their languages
provide file access features already (this is
therefore mostly used by SPL programmers);
however, we often allude to this intrinsic in this
paper because all file open commands in all lan-
guages eventually translate out to this intrinsic.

GMULTI-ACCESS — GMULTI access is an extended
form of MULTI access (q.v.) available only on
MEPE IV. Its usage (which can be specified by
appending the GMULTI keyword to the :FILE
equation) together with SHR and ACC=AP-
PEND provides a painless way of appending to
shared files. See MULTI, SHARED ACCESS.

LOCKING — MPE’s DYNAMIC FILE LOCKING
mechanism (available through the FLOCK and
FUNLOCK intrinsics) gives users a way to
have more than one program write to a file
without jeopardizing data consistency. In order
to call FLOCK and FUNLOCK, the file must
have been previously opened with the dynamic
locking access option set (which can be done in
the FOPEN call or using the LOCK parameter
of the :FILE command). See DEADLOCKS,
MULTIPLE RINS, SHARED ACCESS.

MAX-EXTENTS — The MAXIMUM NUMBER OF
EXTEN TS defines into how many extents

B

(J

(q.v.) afile is to be split. Note that (usually) not
all of these extents are allocated at the time a
file is built — the default is 1 (although more can
be allocated initially by specifying their number
as the 3rd subparameter of the DISC= keyword
of the :FILE command). The maximum number
of extents can be specified as the 2nd sub-
parameter of the DISC= keyword of the :FILE
command, and defaults to 8. See EXTENTS,
NUM EXTENTS.

MULTI-ACCESS — MULTI access is a form of access
that is very useful for sharing files. It permits
you to share not just the files but also internal
file control information and file buffers. It can
be specified by placing the MULTI keyword on
a :FILE command. See GMULTI ACCESS,
SHARED ACCESS.

MULTIPLE-RINS — The MR (MULTIPLE RINS)
capability is an account, file, group, and user
capability that governs a program’s ability to
have more than one file locked at at a time. In
order for a program to be permitted to do this, it
must have been :PREPped with MR capability
by a user who had MR capability, and it must
reside in a group that has MR capability. See
DEADLOCKS, LOCKING.

MULTI-RECORD — MULTI-RECORD ACCESS
(abbreviated MR) is a mode in which a file ac-
cessor can read more than one record at a time,
thus greatly speeding up file access. This option
must be used together with the NOBUF option
(see NOBUF ACCESS). It can be specified on
a :FILE equation as the MR parameter. See
NOBUF ACCESS.

$NEWPASS — SNEWPASS is a special system-
defined temporary file that, when closed, turns
into SOLDPASS (q.v.). This file (and $OLD-
PASS) disappear (along with all job/ session
temporary files) at logoff time. See $OLD-
PASS, TEMPORARY FILES.

NUM-BUFFERS — The NUMBER OF BUFFERS is
the number of I/O buffers allocated for buffered
file access (q.v.). This number can be specified
with the BUF= parameter of a :FILE equation.
See BUFFERING.

NUM-EXTENTS — The NUMBER OF EXTENTS is
the number of extents that that are currently
allocated in the file; this starts out as the in-
itially allocated number of extents (see EX-
TENTS), and is increased by 1 whenever a re-
cord is written to the file which will not fit into
the currently allocated number of extents. See
EXTENTS, MAXIMUM EXTENTS.

$OLDPASS — $OLDPASS is a special system-defined
temporary file that was the last SNEWPASS

(q.v.) file closed. This file disappears at logoff
time, but can be saved with the MPE :SAVE

command. See SNEWPASS, TEMPORARY
FILES.

PERMANENT-FILE — A permanent file is a disc file

that is accessible by all users in the system (that
have the proper access to it, of course) and re-
mains until it is :PURGEd, as opposed to a
temporary file (q.v.) that can be accessed only
by the session in which it was created and is
automatically deleted when that session logs
off. The fact that a file is to be accessed as an
OLD permanent file can be specified by execut-
ing a file equation of the form ‘‘:FILE
filename,OLD”’; the fact that a file is to be
saved as a NEW permanent file can be specified
by placing the SAVE keyword on a :FILE
equation for that file. See TEMPORARY
FILES.

RECORD-LENGTH — The RECORD LENGTH of a

file is the length of each records in that file if it
is a fixed or undefined record length file, and
the maximum length of the records in that file if
it is a variable record length file. This parameter
can be specified as the 1 st subparameter of the
REC= parameter on a file equation. See
FIXED RECORD LENGTH, UNDEFINED
RECORD LENGTH, VARIABLE RECORD
LENGTH.

SECTOR — A SECTOR is 128 words of disc space.
SHARED-ACCESS — Files open in SHARED AC-

CESS mode can be written by more than one
program at the same time. This option can be
specified in a :FILE equation with the SHR
parameter. It is imperative for data consistency
that the dynamic locking (q.v.) facility be used
by all programs that write to a file shared by
two or more writing programs. See EAR AC-
CESS , EXCLUSIVE ACCESS.

TEMPORARY-FILE — A temporary file is a disc file

that can be accessed only by the session that
created it, and is automatically purged when
that session logs off. It can, however, be saved
as a permanent file (q.v.) with the MPE :SAVE
command, and purged before the session logs
off with the PURGE filename , TEMP command.
The fact that a file is an OLD temporary file can
be specified by using a file equation like *“:FILE
filename , OLDTEMP”; the fact that it is to be
saved as a NEW temporary file can be specified
by appending the TEMP keyword to a :FILE
equation for that file. See PERMANENT
FILES.

UNDEFINED-LEN — Undefined record length files

are not intended to be used as disc files. Use
instead fixed / variable record length files. See
FIXED RECORD LENGTH, VARIABLE
RECORD LENGTH.

USER-LABELS — User labels are records which, al-

11 —17—13

though they are parts of the file, are transparent
to the normal reader of that file, and can only be
accessed via the FREADLABEL and
FWRITELABEL intrinsics.

VARIABLE-LEN — Variable record length files are
files in which not all records have to have the
same length. When records of length less than
the record length (which, incidentally, is the
maximum length of any record in that file) are
written to the file, no padding is done (which

means that the ASCII / BINARY distinction
has no meaning here), but rather the size of the
record to be written becomes the record length
of that particular record. A result of this is that
no space is wasted due to padding, which makes
these files much more efficient users of disc
space than fixed record length files (q.v.). See
FIXED RECORD LENGTH, UNDEFINED
RECORD LENGTH.

APPENDIX B

Determining Disc Space Used By Files
Given File Parameters

Perhaps because there are so many different file
parameters (record size, blocking factor, end of file, file
limit, etc.) that are involved in determined the disc
space used up by a certain file, the formula for this
calculation is hard to come by and is quite complicated.
However, we will attempt to list it together with all its
interesting ramifications below. Note that this method
will work only for FIXED RECORD LENGTH FILES
that are to be WRITTEN IN A SEQUENTIAL FASH-
ION (i.e., no directed writes). The parameters needed
for this algorithm are the RECORD SIZE (in words),
BLOCKING FACTOR, END OF FILE, FILE LIMIT,
NUMBER OF USER LABELS, and MAXIMUM
NUMBER OF EXTENTS REQUESTED. This method
will yield the NUMBER OF SECTORS USED BY
THE FILE, THE EXTENT SIZE OF MOST EX-
TENTS, THE EXTENT SIZE OF THE LAST EX-

TENT OF THE FILE, THE MAXIMUM NUMBER
OF EXTENTS GRANTED, THE NUMBER OF EX-
TENTS ACTUALLY USED, and THE BLOCK SIZE
OF THE FILE.

Blocking Considerations

The first parameter that must be determined for this
calculation is the BLOCK SIZE, in SECTORS, which
we will denote by the ‘‘variable’’ name BLKSIZE.
Using standard SPL notation, the names BLKFACT =
blocking factor and RECSIZE = record size, and keep-
ing in mind that ALL DIVIDES PERFORMED BY US
FROM NOW ON WILL BE “CEILING” DIVIDES,
i.e., DIVIDES IN WHICH THE RESULT IS THE
SMALLEST INTEGER THAT IS LARGER THAN
OR EQUAL TO THE FRACTIONAL DIVIDE RE-
SULT (e.g., 5/2=3, 20/4=5), we get the following for-
mula:

BLKSIZE =/ RECSIZE+«RBLEKFACT 3/ 128&; {{ Record size IN WORDS >3

Next, we must find out the number of blocks (not
records, but blocks) that are used up by the data portion
of the file and the label (user label and file label) portion

DATARLKS :=FLIMIT/RBLKFACT;
LABBLKS : =C(ULAR+1)/BLKSIZE;

TOTALBELKS : =DATARL KE+LABRLKS;

Extent Considerations

At this point, we can determine the extent size (in
blocks or in sectors) of each file extent. The formula is

<< the 1

of the file. The formulae for this (note FLIMIT = file
limit, ULAB = number of user labels allocated) are:

i for the file label >>
<{ blccks used by both >

(given MAXEXTS is the maximum number of extents
requested by the file creator at creation time) as fol-
lows:

EXTEIZE ‘BLOCKS :=TOTALBLKSA/MAKEXTS; {< in blocks >3, or
EXTSIZE "SECTORS : =EXTSIZE 'BLOCKS*BLKSIZE ; << in sgectors >>

For our purposes, we will use the
EXTSIZE’BLOCKS-in-blocks formula. Now, let us
digress for a moment. As we have said before, the
maximum number of extents of a given file can be
specified on a :BUILD or :FILE command, and de-

11—17 — 14

faults to 8. But, the maximum number of extents actu-
ally granted (this is NOT the number of extents actually
used!) may be smaller than the maximum number of
extents requested in this way! In order to explain the
reason for this, we must first recall a fact that will be of

D

paramount importance to us in this entire discussion:
ALL EXTENTS OF A FILE MUST BE OF THE
SAME LENGTH, EXCEPT THE LAST ONE,

-WHICH MAY BE OF SMALLER LENGTH. Let us

suppose that you try to :BUILD a file with 100 blocks
and 16 as the maximum number of extents (for instance,
with an MPE command like :BUILD
MYFILE;DISC=100,16). Now the file system must fit
an integer number of blocks into one extent. Now, how
many blocks can fit into one extent? Well, the number is

7 (the ceiling of 10 0/16). But, by the rule stated above,
all extents of a file except the last one must be of the
same length. Thus, each extent except the last one must
be 7 blocks long. But, only 14 such extents can fit into
100 blocks, leaving 1 2-block extent! So, the file system
can not possibly grant you a maximum number of ex-
tents larger than 15, even though you asked for 16! n
short, the “real” number of maximum extents granted
turns out to be:

REALMAKEXTS i =TOTALELKS/EXTSIZE ‘BLOCKS;
where TOTALBLKS and EXTSIZE ‘BLOCKS were defined above,

where TOTALBLKS and EXTSIZE’'BLOCKS were
defined above.

Now, the above statements have yet to use the END
OF FILE parameter. Nevertheless, this parameter is a

vital one to our calculation. It permits us to determine
another crucial factor, the number of extents currently
used (USEDEXTS), through the following formula:

USEDEMTS 1 =0 LARBLKS+EGF /BLKFACT J/ENTSIZE "BLOLKS;

The above takes the number of blocks actually used
by the file and divides it by the number of blocks per
extent, thus getting the number of extents actually used.
Now, we have the answer: if the number of extents used

is the real maximum number of extents, i.e., all of the
file’s extents are allocated, the number of sectors used
can be found by the following:

SECTORS :=TOTAlL BLKS*RLKSIZE;

If, however, some of the extents of the file remain
unallocated, we can find the number of sectors used

SECTORS:: =1F USEDEXTS=RFALMAXEXT!

TOTALBLKS*BLKETZE
ELSE

with this formula:

THEN
if all extents are allocated >

USEDEXTS#EXTEIZE 'BLOCKMS*RILKSIZE;

The Facts in a Nutshell
In short, the above rantings and ravings boil down to

{variables:

the following algorithm:

MAKEXTE = maximum number of extents requested
RECSIZE = record size (in words) of the file
BLKFACT = blocking factor of the file

FLIMIT = the file's file limit

EQF = the file's end of file

uLAB =

DATARLKS :=FLIMNITABLKFaLT;
LARBLKS :={ UL .Ak+1) /BLKSIZE;
TOTALBLKS : =DATABLKS+LARRLKS ;

the number of user labels allocated inm that filed
BLKSIZE :={RECSIZE*BLKFACT 3/1268;

EXTSIZE 'BLOCKS :=TUTALBLKS/MAKERTS ;

REALMAKEXTS : =TOTALBLKS/EXNTSI1ZE "BLOCKS

USEDEXTS i =C LABRELKS+EQF/BLKFRALT)/EXTSIZE ‘BLOCKS;
SECTORS1=IF USEDEXTS=REALMAXEXTS THEN

TOTALBLKS*BLKSIZFF
ELSE

USEDEXKTS*EXTSTIZE "BLOCKE*RLKSIZE;

11 —17 —15

Let us analyze an example case (you can verify it yourself!):

MAXEKTS = 8 extents
RECSIZE = 40 words
BLKFACT = 3 records per block
FLIMIT = file limit of 10000
EOF = 4600 records
UL RE = 0 user labels
BLKSIZE 1= (40233/128 = | gector:
DATAELKS 1= 10000/3 = 3334 blocks;
LABBLKS 1= 1/1 = {1 block;
TOTALRLKS 1= 333441 = 333T blocks:
EXTSIZE ‘BIL.OCKS 1 333578 = 417 blocks:
REALMAKEKTSE 1= 33357417 = &8 extents;
USEDBEXTS 1= (1446007327417 = 4 extents;
SECTORS 1= gince USEDEXTS (4) <> REALMAXEXTS (8>, then

44417%1 = 16568 sectors;

APPENDIX C
A Summary of Methods to Save Disc Space
The following is a summary of some of the possible making them unreadable (methods are arranged in order

methods of saving disc space without deleting files or of descending average percentage savings):

1% savings method]

e e A AN S A B M G A S B W e e SED MY G T Aee M N W R M) GRS W) K VD D G D G BB G WS G G GNu B B AN WU UED G G @R (e M M 0 B e e

if the file limit of a file iz not ite end of file
disc space is probably being lost, Note that for data
fileg, the file limit should be greater than end of
file to allow for expansion.

S B 0o BIS W BER e W W G G WP G M e D e B VD 0 G VD MR (B0 WD G G0 G SRR R ke S S R B AR SUR W B R B (S G MR A S G e W - S W :

| 2EN-758 Curmvert gsource files to QERIT/ROBELLE format; !
! this format is very efficient in terms of disc space !
) usage yvat still readable by compilers, !
1 25%-504% Gonvert data/COBOL fileg to variable record length; !
! this can be accompligshed with EDITOR'’s /SET VARIABLE !
! command, !
1 0A-S0% Improve blocking factor of filasx)]
] a file‘s block size should be a multiple of 128 words
' or dise space will be wasted, !
voOm-25% Set file limit of files to end of file; !

!

}

!

e mm wr M. Ge ee B e e e Ge ee we - = > =

These operations can be performed on files one by one, or en masse using MPEX/3000.

11 —17—16

APPENDIX D
A Summary of Methods to Speed Up File Access

The following is a summary of some possible methods
of speeding up disc file access, arranged in order of

1% savings method

than 8,000,
file system error S7

@0 %8 @r we wn Ns we @ %6 ws ae se =e

T ESES DN O SR G S T N - B - — - - re W™ D G - - W B D W o W W G - o -

Use MR NOBUF access for file reading’/writing;

for easy use of this access method, David Brown’s
FAST I/0 routines are suggested.

Increase the block factor of files; .

this will increase the block size, and thus the buffer
size of files accessed with buffering, and thus
decrease the number of disc I/0s needed to access them.

D G -~ - A - ——— S - - e D W - pos oo v

descending average percentage savings of file access
time:

e we ®e we =

RIS

Make the block =ize as large as possible, but no more
Set BUF=1 C(only 1 buffer) to avcid getting:
COUT OF WIRTURL

S n R R D D D v e P et G - G - -

MEMORY >,

APPENDIX E
Related Papers / Useful Programs

As we could not (and never intended to) say every-
thing there is to say about disc files, we would like to
refer you to the following useful reference documents
and utility programs:

PAPERS

* Another MPE Feature (BUG).”” A discussion of a bug
in Multi-Record file access by Vladimir Volokh,
VESOFT Consultants. SCRUGletter, Volume 4,
Issue 1 for January 1981.

“How to Avoid Problems With MPE Ca.mage Control
(CCTL).” All there is to know (well, almost) about
Carriage Control. Robert M. Green, Robelle Consult-
ing Ltd., 27597-32B Avenue, Aldergrove, B.C. Can-
ada VOX 1A0.

HP3000 Computer Systems MPE Commands Reference
Manual. Section VI — MANAGING FILES.

HP3000 Computer Systems MPE Intrinsics Reference
Manual. Section III — ACCESSING AND ALTER-
ING FILES.

HP3000 Computer Systems MPE IV Intrinsics Refer-
ence Manual. Section III — INTERPROCESS
COMMUNICATION AND CIRCULAR FILES.
Section X — ACCESSING AND ALTERING
FILES.

“Privileged Mode — Use and Abuse.’” What is
privileged mode and how to use it safely by Eugene
Volokh, VESOFT Consultants. SCRUGletter, Vol-
ume 4, Issue 4 for June 1981.

SOFTWARE

“FAST I/O (aka BLOCKED I/0).” A product that
permits fast, easy MR NOBUF file access available
from EASY Software Co., 410 Chipeta Way, Re-
search Park, Salt Lake City, UT 84108.

“MPEX/3000.” Many useful extensions to MPE avail-
able from VESOFT Consultants.

“QEDIT/ROBELLE.” A superior editor, with disc
space-saving features available from Robelle Con-

sulting Ltd., 27597-32B Avenue, Aldergrove, B.C.
Canada V0X 1A0.

APPENDIX F
Cryptic File System Error Message De-Crypted

In addition to its other failings, the System Intrinsics
Manual does not explain the exact reason for and/or
work-around for most file system errors. In fact, most
file system error messages are very hard to understand.
The following is an attempt at an adequate explanation
of the causes, effects, and work-arounds for different
file system errors that pertain to disc files:

0 END OF FILE (FSERR 0): This error is encoun-
tered when a program attempts to read beyond the
end of file or write beyond the file limit.
WORKAROUND: Change the program or the
file.

1 ILLEGAL DB REGISTER SETTING (FSERR
1): Should never occur for non-privileged mode

11—17—17

10

11

12

22

26

programs. For privileged mode programs, this
means that the programmer attempted to do an
FFILEINFO, FGETINFO, FOPEN, or FRE-
NAME in split-stack mode (i.e., after a call to the
EXCHANGEDB or SWITCHDB procedures).
WORKAROUND: Do not perform the function in
split-stack mode.

ILLEGAL CAPABILITY (FSERR 2): A function
that requires privileged mode capability (e.g.,
open file for NOWAIT 1/O, open file for EXE-
CUTE access, etc.) was attempted without
privileged mode capability. WORKAROUND:
Enter privileged mode before executing the func-
tion or do not attempt to execute it at all.
ILLEGAL PARAMETER VALUE (FSERR 8):
Parameters specified on the FOPEN call are
mutually contradictory; for instance, an attempt
to open a file NOWAIT on a serial disc was de-
tected, or the program tried to open a new KSAM
file without specifying the FORMALDESIG-
NATOR or KSAMPARAM parameters on the
FOPEN. WORKAROUND: Correct the parame-
ter.

INVALID FILE TYPE SPECIFIED IN FOP-
TIONS (FSERR 9): The file type field of the
FOPEN file options is not one of 0 (STD = stan-
dard file), 1 (KSAM file), 2 (RIO file), 4 (CIR = cir
cular file), or 6 (MSG = message file).
WORKAROUND: Correct the file type field.
INVALID RECORD SIZE SPECIFICATION
(FSERR 10): The record size requested was more
than 32767 bytes. WORKAROUND: Specify a
smaller record size.

INVALID RESULTANT BLOCK SIZE (FSERR
11): If the user request were honored, the block
size (BLOCK FACTOR * RECORD SIZE) of the
resultant file would be greater than 32767 bytes.
WORKAROUND: Specify a smaller record size
or block factor. :

RECORD NUMBER OUT OF RANGE (FSERR
12): The user passed a negative record number to
the FPOINT, FREADDIR, or FWRITEDIR in-
trinsic — this is illegal. WORKAROUND: Cor-
rect your program.

SOFTWARE TIME-OUT (FSERR 22): The user
tried to read an empty message file or write to a
full message file, an action which would cause the
user to be impeded until the file stopped being
empty or full, respectively (see MPE IV INTRIN-
SICS MANUAL). However, a time out was set
with the FCONTROL intrinsic (mode 4) and the
request timed out before it could be honored.
WORKAROUND: Do not set the time out or en-
sure that the request can be serviced before it
times out.

TRANSMISSION ERROR (FSERR 26):
Hardware failure. WORKAROUND: Call your
CE.

11 —17 —18

30

41

42

43

45

46

UNIT FAILURE (FSERR 30): Hardware failure.
WORKAROUND: Call your CE.

OPERATION INCONSISTENT WITH ACCESS
TYPE (FSERR 40): The access type specified at
FOPEN time does not permit this operation; fori
nstance, an FWRITE is not permitted when a file
is opened with ACC=IN. WORKAROUND:
Specify an access type at FOPEN time that per-
mits this operation or do not perform the opera-
tion at all.

OPERATION INCONSISTENT WITH RE-
CORD TYPE (FSERR 41): It seems that this error
should never show up and is merely a left-over
from a previous version of MPE.

OPERATION INCONSISTENT WITH DEVICE
TYPE (FSERR 42): The program tried to execute
an operation that is incompatible with the device

- that it is trying to perform it on; for instance, it is

trying to read the line printer or change the baud
rate of a disc drive. WORKAROUND: Do not
execute the operation.

. WRITE EXCEEDS RECORD SIZE (FSERR 43):

An attempt was made to write a record that would
not fit in the destination file, e.g., to write a 100-
byte record into a file of record length of 80 bytes.
WORKAROUND: Change the file’s record size,
change the length of the record to be written, or
open the file with the Multi-Record (MR) access
option.

UPDATE AT RECORD ZERO (FSERR 44): The
FUPDATE intrinsic (which is equivalent to the
COBOL REWRITE statement) was called with
the record pointer at record 0, which indicates that
no record has been read and thus no record can be
updated. WORKAROUND: Call FPOINT or
FREAD before the FUPDATE call.

PRIVILEGED FILE VIOLATION (FSERR 45):
A program attempted to open a privileged file (one
with a negative file code; e.g., an IMAGE file)
while specifying a filecode not equal to the file’s
filecode or while not in privileged mode.
WORKAROUND: Enter privileged mode before
the call or specify the correct filecode.

OUT OF DISC SPACE (FSERR 46): The device
class on which this file resides (if this error is got-
ten at extent allocation time) or is requested to
reside (if this error is gotten at file creation time)
does not have enough contiguous disc space to
accommodate this file; i.e., if NUMEXTS is the
number of extents to be allocated and EXTSIZE
is the size (in sectors) of one extent, this device
class does not have NUMEXTS contiguous
chunks of EXTSIZE sectors each. WORK-
AROUND: Move the file to another, less full, de-
vice class, decrease the requested file size, or de-
crease the extent size by increasing the number of
extents in the file.

47

48

49

50

51

52

53

54

56

I/0 ERROR ON FILE LABEL (FSER R 47): The
internal file label of this file can not be accessed.
Most likely, the file is totally cloberred and will
return INVALID FILE LABEL (FSERR 108)
when it is subsequently accessed. WORK-
AROUND: None.

OPERATION INVALID DUE TO MULTIPLE
FILE ACCESS (FSERR 48): One of the following
conditions is true: 1) The program is trying to
purge (i.e., close with disposition DEL) a file that
is currently loaded or being stored/restored, 2)
The program is trying to rename (with the FRE-
NAME intrinsic) a file that it does not have exclu-
sive access to, or 3) The program is trying to open
with LOCK access a file that someone else has
opened with NOLOCK access or vice versa.
WORKAROUND: 1) Don’t purge the file or wait
for the file to become purgeable again, 2) Don’t
rename the file or open the file with EXC access,
or 3) Open the file with LOCK or NOLOCK ac-
cess (whichever is the one with which the other
program has the file open).
UNIMPLEMENTED FUNCTION (FSERR 49):
The program specified an invalid parameter value
in a file system intrinsic call; e.g., a disposition of
5, 6,to 7 at FCLOSE time or a file type of RIO on
pre-Athena systems (ones which do not support
RIO files). WORKAROUND: Correct your pro-
gram.

NONEXISTENT ACCOUNT (FSERR 50): An
attempt was made to open a file in an account
which was not configured in the system.
WORKAROUND: Correct the filename or build
the account.

NONEXISTENT: GROUP (FSERR 51): An at-
tempt was made to open a file in a group which
was not configured in the system.
WORKAROUND: Correct the filename or build
the group.

NONEXISTENT PERMANENT FILE (FSERR
52): An attempt was made to open a file which
does not exist. WORKAROUND: Correct the
program or build the file.

NONEXISTENT TEMPORARY FILE (FSERR
53): The program tried to open a temporary file
which does not exist. WORKAROUND: Correct
the program or build the file.

INVALID FILE REFERENCE (FSERR 54): The
program tried to open a file whos e filename was
invalid; for instance, the file, group, or account
name was longer than 8 characters long, an invalid
system-defined file was specified (e.g., $XYZZY),
or no file equation was found for a back-refenced
file (e.g., *MANSION with no file equation for file
MANSION). WORKAROUND: Correct the
filename specified. NEED

INVALID DEVICE SPECIFICATION (FSERR

57

58

61

62

64

71

72

56): The device number or device class on which
the file was to be opened is not configured on the
system. WORKAROUND: Correct the program.

OUT OF VIRTUAL MEMORY (FSERR 57): The
buffer size (NUMBER OF BUFFERS * RE-
CORD SIZE * BLOCKING FACTOR) of the file
to be opened exceeds 8,192 words (or 14,000
words starting with the D MIT version of MPE).
WORKAROUND: Decrease number of buffers
(by specifying BUF=1 on a :FILE equation, for
instance), decrease the record size of the file, or
decrease the blocking factor of the file.

NO PASSED FILE (FSE RR 58): The program
attempted to open SOLDPASS, but no $OLD-
PASS file exists. WORKAROUND: Correct the
program or build a SOLDPASS file.

GLOBAL RIN UNAVAILABLE (FSERR 60):
The program requested dynamic locking at file
open time, but the RIN (Resource Identification
Number) necessary for dynamic locking could not
be gotten. WORKAROUND: Free some global
RINs (with the :FREERIN command), file RINs
(by closing files opened with LOCK access), open
the file with NOLOCK access, or enlarge the RIN
table.

OUT OF GROUP DISC SPACE (FSERR 61):
The program tried to allocate more disc space
than is allowed for a given group; e.g., it tried to
build a 10,000-sector file in a group which already
had 95,000 sectors and was limited to 100,000 sec-
tors. WORKAROUND: Decrease the amount of
disc space used by files in that group (by purging
or squeezing files) or a ask the account manager to
increase the group disc space limit.

OUT OF ACCOUNT DISC SPACE (FSERR 62):
The program tried to allocate more disc space
than is permitted for the account in which it tried
to allocate it. WORKAROUND: Decrease the
amount of disc space used by files in that account
(by purging or squeezing files) or ask the system
manager to increase the account disc space limit.
USER LACKS MULTI-RIN CAPABILITY
(FSERR 64): The program was not :PREPed with
MR (Multi-Rin) capability, yet tried to lock a file
when another file (or RIN) was already locked by
that program. WORKAROUND: :PREP the pro-
gram with MR capability or do not try to lock a
file when you have already locked another one.
TOO MANY FILES OPEN (FSERR 71): The
program attempted to open a file, but there was
not enough room in the system area (PCBX) of the
program’s stack for the information for that file.
WORKAROUND: Close some no longer neces-
sary files before trying the open, or run the pro-
gram with the ;NOCB keyword on the :RUN.
INVALID FILE NUMBER (FSERR 72): An at-
tempt was made to access (e.g., read or write) a

11—17 —19

73

74

91

92

93

94

100

file that has not been opened or that is a privileged
file; for instance, a read was requested against file
number 10, but no file is opened as file number 10.
WORKAROUND: Correct your program or enter
privileged mode before trying to access the file (if
the file is privileged).

BOUNDS VIOLATION (FSERR 73): You are at-
tempting to read or write more data than could fit
into your I/0O buffer (e.g., you are trying to read
100 words into an 80-word array). WORK-
AROUND: Decrease the length of the data you
are trying to read or write or enlarge your prog-
ram’s 1/0 buffer.

NO ROOM LEFT IN STACK SEGMENT FOR
ANOTHER FILE ENTRY (FSERR 74): See file
system error number 71 above.

90 EXCLUSIVE VIOLATION: FILE BEING
ACCESSED

(FSERR 90): Exclusive access was requested to a
file which is already being accessed; thus, exclu-
sive access cannot be granted. WORKAROUND:
Specify SHR (shared) or EAR (exclusive — allow
read) access when opening the file or wait for the
accessor to close the file.

EXCLUSIVE VIOLATION: FILE BEING AC-
CESSED EXCLUSIVELY (FSERR 91): Access
was requested to a file which is being accessed
exclusively by some other user. WORK-
AROUND: Wait for the accessor to close the file.

LOCKWORD VIOLATION (FSERR 92): An in-
valid lockword was specified at file open time or
when the file system prompted the user for a
lockword. WORKAROUND: Specify a correct
lockword or remove or change the lockword on
the disc file.

SECURITY VIOLATION (FSERR 93): Permit-
ting the user to access this file in the specified
access mode would be a breach of file security.
WORKAROUND: Change the access mode
specified in the program to one which is permitted
or ask the file’s creator to :RELEASE or
:ALTSEC the file.

USER IS NOT CREATOR (FSERR 94): An at-
tempt was made to :RENAME or FRENAME a
file by someone other than the file’s creator.
WORKAROUND: Do not perform the :RE-
NAME or FRENAME, ask the creator of the file
to do the :RENAME, or (if you have read and
write access to the file and are a user of MPEX/
3000) use MPEX’s %RENAME command.

DISC I/O ERROR (FSERR 96): Hardware failure.
WORKAROUND: None.

DUPLICATE PERMANENT FILE NAME
(FSERR 100): The program tried to save (close
with SAVE disposition) a new or temporary file
as a permanent file, but a permanent file with that
name already exists. WORKAROUND: Purge

11—17—20

101

102

103

104

105

106

107

108

109

110

the other file with that name.

DUPLICATE TEMPORARY FILE NAME
(FSERR 101): The program tried to save as tem-
porary file (close with TEMP disposition) a new
file, but a temporary file with that name already
exists. WORKAROUND: Purge the other tem-
porary file with that name.

DIRECTORY I/0 ERROR (FSERR 102): The di-
rectory (or part of it is cloberred. You're in big
trouble. WORKAROUND: None.

PERMANENT FILE DIRECTORY OVER-
FLOW (FSERR 103): There is no more room in
the system file directory for this file (the system
file directory typically allows approximately 1200
files per group). WORKAROUND: Purge some
of the files in the group in which you wish to build
the file.

TEMPORARY FILE DIRECTORY OVER-
FLOW (FSERR 104): There is no more room in
your job/session temporary file directory for this
file. WORKAROUND: Purge some temporary
files or :RESET some :FILE equations or :CRE-
SET some :CLINE equations.

BAD VARIABLE BLOCK STRUCTURE
(FSERR 105): The variable record length file
being accessed has an inconsistent structure or
would have an inconsistent structure if this access
were to go through (if you are writing NOBUF).

WORKAROUND: If you are writing NOBUF,

correct your program; otherwise, none.

EXTENT SIZE EXCEEDS MAXIMUM
(FSERR 106): The program attempted to build a
file which would have extents larger than 65534
sectors, the maximum permitted. WORK-
AROUND: Increase the number of extents in the
file or decrease the extent size by decreasing the
record size or file limit of the file.

INSUFFICIENT SPACE FOR USER LABELS
(FSERR 107): The maximum number of user
labels for a file is 254. WORKAROUND: De-
crease the number of user labels requested by the
program.

INVALID FILE LABEL (FSERR 108): The file
is inaccessible because the file is invalid (probably
irrecoverably destroyed). WORKAROUND:
None.

INVALID CARRIAGE CONTROL (FSERR
109): The program tried to do a write with a CCTL
code of 1 (imbedded CCTL) but with a buffer
length of 0; or, the program attempted an FCON-
TROL mode 1 (transfer CCTL code) with a
parameter of 1. WORKAROUND: Correct the
program.

ATTEMPT TO SAVE PERMANENT FILE AS
TEMPORARY (FSERR 110): An attempt was
made to close a permanent file with temporary

148

149

150

(TEMP) disposition; this is
WORKAROUND: Correct the program.
INACTIVE RIO RECORD (FSERR 148): An
FPOINT, FREADDIR, or FSPACE positioned
the record pointer at an inactive record in an RIO
(Relative I/0) file. WORKAROUND: None nec-
essary.

MISSING ITEM NUMBER OR RETURN-
VARIABLE (FSERR 148): An item number was
specified without a corresponding variable or vice
versa in an FFILEINFO intrinsic call.
WORKAROUND: Correct the program.

INVALID ITEM NUMBER (FSERR 15 0): An
item number specified in an FFILEINFO intrinsic

illegal.

151

call is invalid. WORKAROUND: Correct the
program.

CURRENT RECORD WAS THE LAST RE-
CORD WRITTEN BEFORE THE SYSTEM
CRASHED (FSERR 151): The current record in
the MSG (message) file was the last one written

before the system crashed and may contain in-
valid information.

ACKNOWLEDGEMENT

Praises and kudos GOTO: Robert Saunders (of the HP lab)
for much important information; Vladimir Volokh (of VES-
OFT Consultants), Robert Green (of ROBELLE Consulting),
and many others for comments, questions, criticisms, sugges-
tions, and overall moral support.

11—17-21

/

(,

	Section 11—Miscellaneous
	The Truth About Disc Files

