
PASCAL? ADA?? PEARL!!!
Process and Experiment Automation Realtime Language

in Industrial and University's Environment
PEARL on HP3000/HPlOOO Networks

Klaus Rebensburg
Technical University of Berlin (West Germany)

INTRODUCTION

Steadily increasing software costs and the inherent
risks computer automation projects made it necessary
to replace the obsolete technology of assembler prog
ramming by structured programming in a high-order
real-time language. At present, PEARL is the world's
most powerful and advanced high-order real-time lan
guage used .for industrial process automation.

PEARL has been developed for application en'
gineers. In comparison to system implementation lan
guages like Concurrent PASCAL, MODULA or ADA,
PEARL is the only real-time language which the user
can learn quickly and apply readily. In contrast to
(Process-) FORTRAN, PEARL is a homogeneous lan
guage which e.g. has built-in language elements for pro
cess input/output and for task-scheduling. Thus
PEARL offers a higher degree of portability than any
other language for process automation.

At the Technical University of Berlin PEARL is im
plemented on a HP3000 Series II and HPI000 F in
autonomous versions and in the university's pro
cess-control network as cross-version between
HP3~HPl000computers.

PASCAL?
PASCAL offers good tools for structured program

ming. For a lot of applications the user needs tasking
facilities and process-input/output. Built-in language
elements are the best solution to program such prob
lems. PASCAL does not have these scheduling and I/O
elements.

ADA??
ADA is a high order programming language for so

called "embedded systems." ADA was developed in
order and under control of the Department of Defense
(DOD) and is supposed to be'come a widely spread
programming language. ADA offers good tools for
structured programming. Especially the attempt to de
fme the compiler environment is a good approach for
cost-effective software-production.

Multiprogramming facilities are provided with a min
imal set of basic operations. No attempt is made to
define special features covering the large range of
input/output applications. The language facilities are
designed in a way that the user has' to 'provide I/O
packages to define special process-I/O features.

That means there is no standardization for process
I/O in ADA. Until now there is no official ADA
compiler system running. Software producers have to
wait - how long? There are some problems to make
ADA learnable for application engineers, especially the
so-called rendesvouz-concept might be difficult to map
it on real technical processes. There are some other
problems to develop ADA programs on minicomputers
as ADA is designed for cross-software development on
big computer systems.

How many years must a HP-user wait for ADA3000
or ADAI000?? Remember - PASCAL was defined in
1971, now in the 1980s we will look forward to use the
'official PASCAL on HP3000. ADA was defmed 1979.

PEARL !!!

• Algorithmic language elements
• Abstract data types
• Modular program structure
• Real-time language elements
• Description of the hardware-configuration /

Input/output language elements
• Who uses PEARL
• Standardization of PEARL
• Availability of PEARL for Hewlett-Packard Com

puters

What Are the Characteristics of PEARL?

PEARL offers all language characteristics which the
user needs in order to solve his industrial automation
problems. Some software houses use PEARL as im
plementation language for all kinds of greater
software-problems, like database-management, big
software-packets.

4-13 -1

Algorithmic Language Elements

The language elem'ents for the formulation of al
gorithms and procedures correspond to the state of the
art of modem programming languages (e.g., PASCAL).

Algorithmic elements can be written as declarations

variable := expression;
GOTO identifier;
CALL proc iden ti fier;
RETURN (expression);
INDUCE signal_identifier;

ON signal identifier: statement;

BEGIN declarations
statements

END;

IF condition
THEN, sta temen ts
ELSE statements

FIN;

CASE expression
AI.T statements

OUT sta temen"ts
FIN;

FOR variable
FROM expr BY expr TO expr
WHILE condition

REPEAT declaration list
,statements

END;

Abstract Data Types

The modem concept of data types in PEARL enables
the user to define problem oriented, composite data
types and new operators. These abstract data types

basic types: FIXED
FLOAT
BIT
CHAR

REF
CLOCK, DURATION
SEMA, BOLT

structures: array (dynamic)
STRUCT
bit chain
DATION

of procedures, functions, and user-defined operators (!)
and tasks (!). (The last two features are e.g. not pro
vided by PASCAL.)

Tasks are elements for parallel execution.
List of PEARL statements:

assignation)

procedure call)
return from procedure,function
raise an exception)

reaction on exception)

block)

(if-then-else construct)

(case construct)

for-while-Ioop construct ')

permit a great number of checks at compile time and
contribute to a refined modular program structure
(strong typing).

fixed)
floating point
bit)
character

pointer)
real-time !!)
semaphores, bolts 11

(standard and user-defined
peripherals)

"_.

(structures can be nested)

allocation of variables:
at address determined by compiler
RESIDENT attribute indicates fast access

4-13 -2

access to variables:
by name or reference

standard operators:
many standard operators are defined in the langage,
e .g ., AS S, LWS, TOF IXED, TOF LOAT, 'TOB IT, TOC HAR,
and CSHIFT.

Modular Program Structure

A PEARL program is composed of separately com
pilable modules with exactly defmed interfaces. This
structure greatly facilitates communication between the

members of a project team and supports the modular
composition of complex program-systems.

Example:

MODULE (reportwriter); /* written by programmer A */"
SYSTEM;

/* contains description of configuration */
PROBLEM;

/* specification of imported objects ;
declaration of tasks,procedures,operators,data,types,dations */....,

MODEND; /* end of module reportwriter */

MODULE (brewery control); /* written by programmer B */
PROBLEM; -

MODEND; /* end of module brewery_control */

Real-time Language Elements /
Multiprogramming Facilities of PEARL

For programming task scheduling, PEARL contains

real-time language elements, which can be learnt and
applied easily.

Example:

AFTER 5 SEC ALL 7 SEC DURING 106 MIN ACTIVATE relay PRIORITY 5;
(5 seconds after the execution of this statement the computing
process 'relay' is activated with priority 5 every 7 seconds
for a total period of 106 minutes)

extended time specification ACTIVATE task; (scheduling)
TERMINATE task;
SUSPEND task;
time spec CONTINUE task;
time-spec RESUME task;
PREVENT task;

operations on semaphores:
REQUEST, RELEASE

operations on bolt variables:
RESERVE, FREE, ENTER, LEAVE

operations on.interrupts:
DISABLE, ENABLE, TRIGGER

synchronization, communication)

multiple reader-writer problems)

interrupt-handling

WHEN interrupt_identifier task_control_statement;

operations on signals:
ON signal: statement;
INDUCE signal;

Example: At 16:00:30 RESUME task;

except ions)
react upon exception
raise an exception)

delay

WHEN interrupt id AFTER 10 SEC EVERY 20 MIN UNTIL 15:20:00
ACTIVATE task_Td;

4-13-3

tion by user defmed identifiers. This capability greatly
enhances documentation value and portability of
PEARL programs.

Example:

Description of the Hardware-configuration /
Input/output Language Elements

In the System-Division of PEARL the hardware con
figuration, especially process peripherals, can be de
scribed independently of the special hardware realisa-

MODULE (demo); 1* this module contains a PEARL - program *1

SYSTEM;

display: stdio(l); 1* display is the identifier used in the
program for standard-I/O. stdio(1) is a
system defined name for the HP3000
implementation *1

disk disc(3); 1* the user disk *1

engine

PROB LEM;

prog_cont;l* engine is the identifier used in the
program for 16 Bit I/O. The HP3000 knows
it as programmable controller interface *1

1* we start with the specification of the peripherals *1

SPECIFY display
disk
engine

D~TION INOUT ~LPHIC CONTROL(ALL),
DATION IN ~Lr. DIM(,) CONTROL(ALL),
D~TION OUT BASIC;

1* now we use these peripherals *1
STARTtest: TASK;

DECL~RE on
off

INV BIT(16) INIT ('0000000000000111'),
INV BIT(16) INIT ·('0000000000000001');

°f* let's switch the engine *f

SEND on TO engine;
AFTER 2 MIN RESUME; 1* continue 2 minutes later *f
SEND off TO engine;
PUT 'we have stopped the engine' TO display by 'SKIP,A(30) ,SKIP;,

END; 1* end of task STARTtest *f

MODEND; f* end of module *f

Another example for PEARL I/O:

TAKE pressure FROM pressure_sensor;

SEND open TO valve; f* output of the value 'open' to device
'valve' */

Input and output features: Data-stations (DATIONs),
generalizing real or virtual peripherals or I/O channels.
Interfaces, mapping data-stations with different prop
erties onto each other to offer the possibility to define
formatting routines (objects of type CONTROL).

Most of these PEARL systems don't use Hewlett
Packard computers (?). PEARL compilers are offered
by many (mostly European) computer manufacturers
and software houses.

4-13 -4

An object of type DATION represents in general a set
of one to four channels:
Data channel (transfer values of PEARL objects)
Control channel (transfe(s values of type CON-

TROL)
Interrupt channel (signals events of type INTER- ~

RUPT)
Signal channel (signals events of type SIGNAL)

Who Uses PEARL?

PEARL is already widely used (with applications
mostly in W-Germ Process computer projects in many
different areas have been sucessfully programmed with
PEARL.

The following table is a survey of PEARL activities
(1980):

Field of Application Number of PEARL Systems

Metal Processing, Rolling Mills 41
Power Distribution 36
Power Generation 5
Raw Materials, Chemical Industry 21
Water Supply 14
Other Industrial Applications 21
Mail Order Houses, Warehouses 12
Television, Transport, Aerospece

Applications 21
Development and Education 32

204

Following computer systems are available with
PEARL compilers: AEG 80-20, AEG 80-60, Data Gen
eral NOVA, DPI000/1500 by BBC PDP 11 family,
Krupp-Atlas EPR 1100/1300/1500, Hewlett-Packard
HPl000 and HP3000, Interdata 7/32, INTEL 8086, LSI
11, Micronova MUCI61, MUDAS 432, MULBY 3,
NORD 10 by Norsk Data, Digital Equipment PDPl1
family, PDP 11/34, Siemens 300,310,404/3, VAX 11/780,
ZSO, MOTOROLA MC68000.

Standardization of PEARL

The standardization of PEARL ensures its uniformi
ty. The draft standard DIN 66253 part 1 "BASIC
PEARL" has been available since 1978. Draft standard
DIN 66253 part 2 "FULL PEARL" followed in August
1980. Parallel to these activities, PEARL has been sub
mitted'to ISO for international standard'ization (TC97/
SC5/WGl)~ For these purposes PEARL was described
completely with petri-nets and attributed grammars
(formal syntax and semantics).

Ava~lability of PEARL for UP Computers

The Technical University of Berlin uses PEARL in
three different ways. The' university's real-time
process~controlcomputer network consists of 1HP3000
series II 512 KByte, 16 HP1000 computers (M,E,F) and
30 microcomputer systems. The central computer
HP3000 is used for program-development, documenta
tion, cross-software, statistics, graphics, education,
whereas the decentral HP1000 systems are used for
process-control applications.

a) PEARL3000 is the autonomous PEARL Program
ming System on HP3000. It is used for program devel
opment and training courses. Typical courses are vis
ited by 18 persons each, 3-4 teachers 7 terminals, 5 days
mixed theory, practical work, discussions. Participants
are BDP leaders, engineers, programmers from industry
and university.

The Technical University Berlin is responsible for
design and execution of the official PEARL courses,
offered by the VDI (Verein der Ingenieure) Germany
and by the PEARL Association Duesseldorf.

In connection to the compiler system a PEARL
Testsystem on language level is available. It simulates,
e.g., tasking, checks for deadlocks, I/O. PEARL3000 is
running under MPE4 on HP3000 Series II/III com
puters.

b) PEARL1000 is the autonomous PEARL Program
ming System on HPIOOO. It is used for program devel
opment, training courses, real-time and process-control
applications. Most of the PEARLl000 implementation
was developped by the Technical University of Berlin.
The implementation was sponsored by the Ministry of
Research and Technology of (West-) Germany.
PEARLI000 is running under RTE4B with HPl000 F
Computers (256 KBytes)
c) PEARL3000/1000 is the Cross PEARL System for
HP3000/HPI000 networks. Compilation, interface
check, relocation is done on HP3000 with the obvious
advantage that during the coding phase many program
mers can work simultaneously.

The cross-version supports small HPl000 configura
tions, core-resident systems which are autonomous in
process-control and loosely coupled with V.25 lines to a
HP3000 multiplexor for transfer of relocated code to
HPlOOO and process-data to HP3000. PEARL3000/1000
supports HPIOOO computers under RTEM3 operating
systems.

The HP3000 has proven to be a good development
computer system for all kinds of other computers. We
not only use it for HPlOOO computers but also for more
than 14 different types of microprocessors.
In all three cases the same PEARL compiler is ·used.
Code generation in each case is adapted to the target
computer. Of course runtime routines and operating
system kernel are tailored to the different HP standard
operating systems.

No change of MPE or RTE operation system was
necessary for the implementation. (Cross-version has
some minor changes of RTEM3 operating system.)

Use and handling of the PEARL Compilation Sys
tems is easy and comparable to FORTRAN3000 or
other HP subsystems.

REFERENCES
1. DIN 66253 Part 1 "BASIC PEARL" (draft standard, language:

English). 1978 Beuth Verlag GmbH Berlin 30, W-Germany.
2. DIN 66253 Part 2 "FULL PEARL" (draft standard, language:

English). 1980 Beuth Verlag GmbH Berlin 30, W-Germany.
3. Werum, Wulf: Windauer, Hans; PEARL Process and Experiment

Automation Realtime Language. 1978 Vieweg Verlag
Braunschweig; Book, which describes HP3000/HPlOOO PEARL
language. Language: English and German

4. Kappatsch, A.; Mittendorf, H.; Rieder, P. PEARL Systematic

4-13-5

description for the application engineer. R. Oldenbourg Verlag
Muenchen Wien 1979. Language: German

s. Kappatsch, A., PEARL Survey of language features.
Kernforschungszentrum Karlsruhe KtK-PDV 141 August 1977.
Language: English

6. Martin,T.; PEARL AT THE AGE OF THREE. 4th International
Conference on Software-Engeneering, September 17-19, 1979
Munich, Gennany IEEE No.79 CHI479-SG. Language: English.

7. Martin, T.; PEARL AT THE AGE OF FIVE. Updated Version,
published in Computers in Industry, Vol. 3, Number 2, 1981. Lan
guage: English.

8. Hommel,G.; Experience with PEARL in Industrial Applications.
VDE-Congress, Berlin 6.-9.10. 1980. Language: German.

9. Windauer, H.; Development and Implementation of Portable
Compilers for Realtime Languages. Proceedings of Real-Time
Data 79 Berlin Oct. 1979. Language: English.

10. Martin,T.; Realtime Programming Language PEARL Concepts
and Characteristics. Proceeding 2nd Computer Software and Ap
plications Conf., Chicago, 1978, pp 301-306 IEEE Cat.No.78CH
1338-3C.

11. Brinkkoetter, H., Groessler,J., Nagel, K., Nebel, H., Kneuer,E.,
Rebensburg, K.; PEARL on Hewlett-Packard Computers 1m-

4-13 -6

plementation and Demonstration. 27.4.1981 Berlin. Language:
German.

12. Rebensburg, K.; Real-time Computing with the Process-Control
Computer Network of the Technical University Berlin. Lan
guage: English.

13. Brinkkoetter, H., Nagel, K., Nebel, H., Rebensburg, K.; Sys
tematic Programming with PEARL. PEARL Training Course
Handbook, WI/PEARL Association, 1981 Berlin. Language:
German.

14. PEARL Association; PEARL-RUNDSCHAU. Official bi
monthly publication by the PEARL Association Verein. Contains
contributions of PEARL applications, software-houses, educa
tional aspects, scientific applications, PEARL' News etc. Lan
guage: German.

All information about PEARL can be obtained from the author and
from:

PEARL Association
Graf-Recke-Strasse 84

4000 Duesseldorf 1

P.S. PEARL information is also available in Spanish, Portuguese,
Chinese, French and Serbocroatic languages.

, .

	Section 4—Language Support
	PASCAL? ADA?? PEARL!!!: Process and Experiment Automation Realtime Languagein Industrial and University's Environment: PEARL on HP3000/HP1000 Networks

