
Overview of Optimizing
(On-Line and Batch)

Robert M. Green
Robelle Consulting Ltd.

SUMMARY
The petformance of many HP3000 installations can

often be improved significantly. There are general prin
ciples for delivering better response time to on-line us
ers, and other principles to speed execution of produc
tion batch jobs. As long as users continue to consumer
the extra horsepower of new HP3000 models by loading
them with new applications, there will continue to be a
need for optimizing knowledge and tools. And, if inter
est rates remain at current levels, many managers may
not be able to upgrade to faster computers as soon as
they would like.

CONTENTS
I. How to Improve On-line Response Time

A. Make Each Disc Access Count
B. Maximize the Value of Each "Transaction"
C. Minimize the Run-Time Program "Size"
D. Avoid Constant Demands for Execution
E. Optimize for the Common Events

II. On-line Optimizing Example: QEDIT
A. QEDIT and "Disc Accesses"
B. QEDIT and "Transaction Value"
C. QEDIT and "Program Size"
D. QEDIT and "Constant Demands"
E. QEDIT.and "Common Events"
F. R:esults of Applying the Principles to QEDIT

III. How to Increase Batch Throughout
A. Bypass Inefficient Code (CPU hogs)
B. Transfer More Information Per Disc Access
C. Increase Program Size to Save Disc Accesses
D. Remove Structure to Save Unneeded Disc Ac

cesses
E. Add Structure for Frequent Events

IV. Batch Optimizing Example: SUPRTOOL
A. SUPRTOOL and "Bypassing Inefficient Code"
B. SUPRTOOL and "Transferring More Informa-

tion"
C. SUPRTOOL and "Increasing Program Size"
D. SUPRTOOL and "Removing Structure"
E. SUPRTOOL and "Adding Structure"

Copyright 1982, All rights reserved.
Permission is granted to reprint this document (but NOT for profit), provided

that copyright notice is given.
This document was .prepared with QGALLEY, a text formatter distributed

with software to all Robelle customers.

F. Results of Applying Batch Rules to
SUPRTOOL

SECTION 1
HOW TO IMPROVE

ON-LINE RESPONSE TIME
I have identified five general principles which help in

optimizing the petformance of on-line programs:
• Make each disc access count.
• Maximize the value of each "transaction."
• Minimize the run-time program "size."
• Avoid constant demands for execution.
• Optimize for the common events.
On a systems programming project, such as a data

entry package or a text editor, you should be able to
apply all five of these principles with good results. That
is because systems software usually deals with MPE
directly and most of the sources of slow response are
under your control. Applications software, on the other
hand, usually depends heavily upon data management
sub-systems such as IMAGE and V/3000. The optimiz
ing principles proposed here may not be as easy to
apply when so many of the causes of slow response are
beyond your control. However, there are still many
ways in which you can apply the guidelines to applica
tion systems (monitoring program size, designing your
database and laying out your CRT screens). Relying
upon standard software not only increases your pro
grammer productivity, it also provides an unexpected
bonus: any improvements that the vendor makes in the
data management tools will immediately improve the
efficiency of your entire application system, with no
re-programming or explicit "optimizing" on your part.

I. A. Make Each Disc Access Acount

Disc accesses are the most critical resource on the
HP3000. The system is capable of performing about 30
disc transfers per second, and they must be shared
among many competing "consumers." (This can in
crease to 58 per second under the best circumstances,
and can degrade to 24 per second when randomly ac-

I cessing a large file.) MPE IV can double the maximum
disc throughput for multi-spindle systems by doing
"look-ahead" seeks, but only for the Series II/Series
III, not the Series 30/33/44.

1-6-1

.The available disc accesses will be "spent" on several
tasks:

• Virtual memory management (i.e., swapping).
• MPE housekeeping (logon, logoff, program load,

etc.).
• Lineprinter spooling.
• Accesses to disc fdes and databases by user pro

grams (the final payoff).
If the disc accesses are used. up by overhead opera

tions, there will not be sufficient left to provide quick
response to on-line user transactions. Some examples
ofoperations that consume disc accesses on the HP3000
are:

• Increasing the number of keys in a detail dataset,
thus causing IMAGE to access an extra master
dataset on each DBPUT. Also, making a field a key
value means that a DBDELETE/DBPUT is re
quired to change it (which is 10 times slower than a
DBUPDATE).

• Increasing the program data stack by 5000 words,
thus causing the MPE memory manager to perform
extra, swapping disc accesses to find room in
memory for the larger stack.

• Improperly segmenting the code of an active pro
gram, causing many absence traps to the memory
manager to bring the code segments into main
memory.

• Constantly logging on and off to switch accounts.
• Defining a database with a BLOCKMAX value of

2000 words, thus limiting IMAGE to about 13 data
buffers in the extra data segment that is shared by
all users of that database. With such a small
number of buffers, there can be frequent buffer
"thrashing." This effectively eliminates the bene
fits of record buffering for all users of the database,
and greatly increases disc accessing.

Much of the remainder of this document is devoted to
methods of"saving the precious resource - disc acces
ses."

I. B. Maximize the Value of Each "Transaction"

This principle used to read, "Maximize the Value of
Each Terminal Read," but I have generalized it to
"transaction" to take into account the prevalence of
V/3000, DS, MTS and other "communications" tools.
In the terms of MPE IV, a "transaction" begins when
the user hits the 'return' key (or Enter) and ends when
the user can type input characters again. This includes
the time needed to read the fields from the terminal (or
from another HP3000), to validate them, perform
database lookups and updates, format and print the re
sults, and issue the next "read" request.

Each time a program reads from the terminal,' MPE
suspends it and may swap it out of memory. When the
operator hits the 'return' key, the input operation is
terminated, and MPE must. dispatch the user process

1-6-2·

again. If MPE has overlaid parts of the process, they
must be swapped back into main memory again. Due to
the overhead needed to dispatch a process, a process
should get as much work done' as possible before it
suspends for the next terminal input.

The simplest way to program data entry applications
is to prompt for and accept only one field of data at a
time. This is also the least efficient way to do it. Since
there is an unpredictable "pause" every time the user
hits 'return' (depending upon the system load at the
moment), consistently fast response cannot be guaran
teed. The resulting delays are irritating to operators.
They can never work up any input speed, because they
never know when the computer is ready for the next
input line. If response time and throughput are the only
considerations, it is always preferable to keep the
operator typing as long as possible before hitting the
'return' key. ,Multiple transactions per line should be
allowed, with suitable separators, and multiple lines
without a 'return' should be allowed. If you are using
V/3000, the same principles applies: each high-volume
transaction should be self-contained on a single form,
rather than spread out over several different forms.

I. C. Minimize the Run-Time Program "Size"

The HP3000 is an ideal machine for optimizing be
cause of the many hardware features available at run
time to minimize the effective size of the program. Even
large application systems can be organized to consume
only a small amount of main memory at anyone time.
Each executing process on the HP3000 consists of a
single data segm·ent called the "stack," several extra
data segments for system storage, such as fde buffers,
and up to 63 code segments. All segments (code and
data) are variable-length and can be swapped between
disc and main memory.

Program code which is not logically segmented makes
it harder for the memory manager to do its job, causing
disc accesses to be used for unnecessary swaps. Proper
code segmentation is a complex topic (more like an art
than a science), but here is a simplified training course:
write modular code; don't segment until you have 4000
words of code; isolate modules that seldom run; isolate
modules that often run; aim for 4000 words per seg
ment, and group modules by "time" rather than "func
tion;" if you reach 63 segments, increase segment size,
but keep active segments smaller than inactive ones.

Although every process is always executing in some
code segment, the code segment does not belong to the
process, because a single copy of the code is used by all
processes that need it. Since code is shared, it does not
increase as the number of users running a given pro
gram increases. Most of your optmizing should be di
rected to the data areas (which are duplicated for each
user). A 3000 can provide good response to more termi
nals if most data segments are kept to a modest size
(5000 to 10,000 words). To keep stacks small, declare

most data variables "local" to each module
(DYNAMIC in COBOL), and only use "global" storage
(the mainline) for buffers and control values needed by
all modules. Dynamic local storage is allocated on the
top of the stack when the subroutine is entered, and is
released automatically when the subroutine is left. This
means that if the main program calls three large sub
routines in succession, they all reuse the same space in
the stack. The· stack need only be large enough for the
deepest ne~ting situation. By inserting explicit calls to
the ZSIZE intrinsic, you can further reduce the average
stack size of your program.

You can also minimize stack size by ensuring that
constant data items (such as error messages and screen
displays) are stored in code segments rather than in the
data stack. Since constants are never modified, there is
no logical reason that they should reside permanently in
the data stack. By moving them to the code segment,
one copy of them can be shared by all users running the
program. In SPL, this is done by including =PB in a
local array declaration or MOVEing a literal string into
a buffer. In COBOL, constants can be moved to the
code segment by DISPLAYing literal strings in place of
declared data items. In FORTRAN, both FORMAT
statements and DISPLAYed literals are stored in the
code.

.A frequently overlooked component of program
"size" is the effect of calls to system subroutines (IM
AGE, .V/3000, etc.). These routines execute on the cal
ler's stack, and the work they do is "charged" to the
caller. In many simple on-line applications (dataset
maintenance program, for example), 90% of the prog
ram's time and over 50% of the stack space will be
controlled by IMAGE and V/3000. You should be
aware of the likely impact of the calls that you make. Do
you know how many disc accesses a particular call to
DBPUT is. going to consume? As an example of how
ignoring the "extended size" of a program can impact
response time, consider the following case:

An application with many functions can be im
plemented with one of two different strategies. The
first, and simplest, strategy is to code the functions as
separate programs and RUN them via a UDC (or
CREATE them as son processes from a MENU pro
gram). Each function opens the databases (and forms
file, etc.) when you RUN it, and closes them before
stopping.

The second strategy is to code each function as a
subprogram that is passed in the previously opened
databases (and forms-file, etc.) as a parameter from a
mainline driver program. If the application requires fre
quent movement from function to function (performing
only a few transactions in each function), the "process"
strategy will be up to 100 times slower than the "sub
program" strategy. The resources required to RUN the
programs, open the databases, close the databases, and
perform other "overhead" operations will completely

swamp the resources needed to peIform the actual
transactions.

I. D. Avoid Constant Demands for Execution

The HP3000 is a multi-programming, virtual-memory
machine that depends for its effectiveness on a suitable
mix of processes to execute. The physical size of code
and data segments is only one factor in this "mix." The
"size" of a program is not just the sum of its segment
sizes; it is the product that results from multiplying
physical size by the frequency and duration of demands
for memory residence (i.e., how often, and for how
long, the program executes). A given 3000 can support
many more terminals if each one executes for one sec
ond every 30 secol)ds, rather than 60 seconds every two
minutes. Each additional terminal that demands con
tinuous execution (in high priority) makes it harder for
MPE to respond quickly to the other terminals.

Here are some examples of the kind of operation that
can destroy response time, ifperformed in high priority:

• EDIT/3000, a GATHER ALL of a 3000-line source
ftIe.

• V/3000, forms-file compiles done on four terminals
at once.

• QUERY, a serial read of 100,000 records (or any
application program that must read an entire
dataset, because the required access path is not
provided in the database).

• SORT, a sort of 50,000 records.
• COBOL, compiles done on four terminals at once.
You should first try to find a way to avoid these oper-

ations entirely. (Can you use QEDIT instead of EDIT/
3000? Would a new search item in a dataset eliminate
many serial searches, or could you use SUPRTOOL to
reduce the search time? Are you compiling programs
just to get a clean listing?)

After you have eliminated all of the "bad" operations
that you can, the remainder should be banished to batch
jobs that execute in lower priority (this works better in
MPE IV than III). Sincejobs can be "streamed" dynam
ically by programs, the on-line user can still request the
high-overhead operations, but the system fulfills the re
quest when it has the time. The major advantage of
batch jobs is that they allow you to control the number
of "bad" tasks that can run concurrently (set the JOB
LIMIT to 1 for best terminal response).

I. E. Optimize for the Common Events

In any application where there is a large variation
between the ·minimum and maximum load that a
transaction can create, the program should be optimized
around the most common s~e of transaction. If a pro
gram consists of 20 on-line functions, it is likely that
four of them will be most frequently used. If so, your
efforts should be directed toward optimizing these four
functions; the other functions can be left as is. Because
the HP3000 has code segmentation and dynamic stack

1-6-3

allocation, it is possible for an efficient program to con
tain many inefficient modules, as long as these modules
are seldom invoked.

Since MPE will be executing a great deal of the' time,
you should become competent at general system tuning.
Learn to use TUNER, IOSTAT, and SYSINFO (and
the new :TUNE command in MPE IV). Any improve
ment in the efficiency of the MPE "kernel" will improve
the response time of all users.

You do not have infmite people-resources for op
timizing, so you must focus your attention on the fac
tors that will actually make a difference. There is no
point in optimizing a program that is seldom run. The
MPE logging facility collects a number of useful statis
tics that can be used to identify the commonly accessed
programs and ftIes on your system. Learn to use the
contributed programs FILERPf and LOGDB (Orlando
Swap). Ifyou are using IMAGE transaction logging, the
DBAUDIT/Robelle program will give you transaction
totals by database, dataset, program, and user (total
puts, deletes, updates, and opens). Such statistics help
in isolating areas of concern.

You can optimize application programs around the
average chain length for detail dataset paths (the con
tributed program DBLOADNG will give you this in
formation). Suppose you need to process chains of en
tries from· an IMAGE dataset. If your program only
provides data buffers for a single entry, you will have to
re-read each entry on the chain each time you need it
(extra disc I/O!!). Or, if you provide room for the
maximum chain length, the data stack will be larger than
needed most of the time (the maximum chain length is
often much larger than the average). The larger data
stack may cause the system to overload, eliminating the
benefits of keeping the re~ords in your stack. You
should provide space in the stack for slightly more than
the average number of entries expected. This will op
timize for the common event.

SECTION II
ON-LINE OPTIMIZING EXAMPLE: QEDIT
QEDIT is a text editor for the HP3000 that was de

veloped by Robelle Consulting Ltd. The primary objec
tive of QEDIT is to provide the fastest editing with the
minimum system load. Other objectives include con
servation of disc space, similarity to EDIT/3000 in
command syntax, ability to recover the workfile follow
ing a system-crash or program abort, and increased pro
grammer productivity.

QEDIT is an alternative to a hardware upgrade for
users who are doing program development on the same
HP3000 that they are trying to use for on-line produc
tion. Every optimizing paper in recent years by an HP
performance specialist has recommended avoiding
EDIT/3000. They usually recommend the "textfile
masterfile" approach to program development. (You do
not actually edit your source program; instead, you
create a small "textfile" containing only the changes to

1-6-4

your "masterfile," then merge the two ftIes together at
compile-time). QEDIT allows you to have "real" edit
ing on your HP3000, with less overhead than the
"textfile masterfile" method, and still give good re
sponse time to your end-user terminals.

ll. A. QEDIT and "Disc Accesses"

In order to reduce disc accesses, QEDIT eliminates
the overheads of the TEXT, KEEP and GATHER ALL
commands of EDIT/3000. These three operations have
the most drastic impact upon the response time of the
other users. QEDIT attacks the problem of KEEPs by
providing an intetface library that fools the HP compil
ers into thinking that a QEDIT workfile is really a "card
image" file. As a result, it is never necessary to KEEP a
workfile before compiling it. Since KEEPs are rarely
used, most TEXTs are eliminated. The LIST command
was given the ability to display any file (e.g., /LIST
DBRPfl.S0URCE), so that a TEXT would not be re
quired just to look at a ftIe. TEXT is only needed when
you want to make a backup or duplicate copy of an
existmg file. Since most users choose to maintain their
source code in QEDIT workfiles (they use less disc
space), the TEXTing of workfiles is optimized (by using
NOBUF, multi-record access) to be four to seven times
faster than a normal TEXT of a card-image ftIe. The
GATHER ALL operation is slow because it makes a
copy of the entire workfile in another ftIe. QEDIT re
numbers up to 12 times faster by doing without the file
copy.

Disc accesses during interactive editing (add, delete,
change, etc.) are minimized by packing as many con
tiguous lines as possible into each disc block. Leading
and trailing blanks are removed from lines to save
space. The resulting workfile is seldom over 50% of the
size of a normal KEEP ftIe, or 25% of the size of an
EDIT/3000 K-file (workfile). Most QEDIT users
maintain their source programs in workfile form, since
this saves disc space, simplifies operations (there need
be only one copy of each version of a source program),
and provides optimum on-line performance.

QEDIT always accesses its workfile in NOBUF
mode, and bUffers all new lines in the data stack until a
block is full before writing to the disc. Wherever possi
ble in the coding of QEDIT, unnecessary disc transfers
have been eliminated. For example, the workfile
maintains only forward direction linkage pointers,
which reduce the amount of disc I/O substantially. Re
sults of a logging test show that reducing the size of the
workfile and eliminating the need for TEXT/KEEP re
duce disc accesses and CPU time by 70-90%.

II. B. QEDIT and "Transaction Value"

Like EDIT/3000, QEDIT allows either a single com
mand per line (/ADD), or several commands on a line,
separated by semi-colons (/LIST 5/10;M 6;D 5). The
principle of maximizing transaction value has been
applied with good results to t~e MODIFY command. In

EDIT/3000, several interactions may be needed to mod
ify a line to your satisfaction. QEDIT allows you to
perform as many character edits as you like on each
transaction; many users can perform all of their changes
in a single pass. For complex character editing, such as
diagrams, version 3.0 of QEDIT will provide "visual"
editing in block-mode.

II. C. QEDIT and "Program Size"

QEDIT is a comletely new program, written in highly
structured and modular SPL. The code is carefully
segmented, based on the knowledge of which SPL pro
cedures are used together and most frequently. Only
two code segments need be resident for basic editing,
and the most common function (adding new lines) can
be accomplished with only a single code segment pr~

sent.

QEDIT uses a modest data stack (3200 words) and no
extra data segments. The stack expands for certain
commands (especially the MPE :HELP command), but
QEDIT contracts it back to a normal size after these
infrequent commands are done. All error messages are
contained in the code, isolated in a separate code seg
ment that need not be resident if you make no errors.

Use of CPU time is th eother dimension to program
"size." QEDIT is written in efficient SPL and con
sumes only a small amount of CPU time (compared with
the COBOL compiler, or even EDIT/3000). Because
QEDIT does its own internal blocking and deblocking
of records, it can reduce the CPU time used in the He
system by opening files with NOBUF/MR access.

II. D. QEDIT and "Constant Demands"

Most QEDIT commands are so fast that they are over
before a serious strain has been placed on the host ma
chine. For example, a 2000-line source program can be
searched for a string in four seconds. For those opera
tions that still are too much load, QEDIT' provides the
ability to switch priority subqueues dynamically. In
fact, the system manager can dictate a maximum prior
ity for .compiles and other operations that cause heavy
system load.

II. E. QEDIT and "Common Events"

The design of QEDIT is based on the fact that pro
gram editing is not completely random. When a pro
grammer changes line 250, he is more likely to require
access to lines 245 through 265 next, than to lines 670
through 710. This observation dictated the design of the
indexing scheme for the QEDIT workfile. There are
many examples of optimizing for the most common
events in QEDIT:

• Each block of a QEDIT workfile holds a "screen
ful" of lines, with leading and trailing blanks elimi
nated.

• QEDIT has built-in commands to compile, PREP
and RUN (since these functions are frequently
used by programmers).

• QEDIT has a fast /SET RENUM command (it can
renumber 600 lines per second), instead of a slow
GATHER command.

• QEDIT can TEXT a workfile much faster than a
KEEP fde (since most text will end up in QEDIT
workfiles). .

• QEDIT can "undo" the DELETE command (be
cause programmers are always deleting the wrong
lines).

II. F. Results of Applying the Principles to QEl)IT

In less than seven seconds, QEDIT can text 1000
lines, renumber them, and search for a string. Com
mands are 80% to 1200% faster than EDIT/3000, pro
gram size is cut in half, and disc I/O and CPU time are
reduced by up to 90%. There are now more than 350
computers with QEDIT "installed, in all parts of the
world. Recently, we asked the QEDIT users what they
would tell another user about QEDIT. Here are some of
their answers:

"If he's doing program development, he
needs QEDIT." (Gerald Lewis, Applied
Analysis, Inc.)

"Would not live without it. $INCLUDEs in
FORTRAN; one rde or dataset per include
fde." (Larry Simonsen, Valtek, Inc.)

"Fantastic product." (Lewis Patterson,
Birmingham-Southern College)

"Buy it. The productivity advantages are
tremendous and don't cost anything iv ma
chine load. The disc savings in a larg;·,~ (13
programmers) shop will pay for it." (Jim
Dowlmg, Bose Corp.)

"It's great. We usually get into QEDIT and
just stay there for a whole session. Compiles
and PREPs are very easy. I really like FIND,
LIST, and BEFORE commands. QEDIT is
very fast. It is great for programmers. " (Larry
Van Sickle, Col~ & Van Sickle)

"It's a tremendous tool and should be used
by any medium-sized shop. I use it to produce
an index of all source or job streams for an
account." (Vaughn Daines, Deseret Mutual
Benefit Assoc.)

"QEDIT is the best editor I've used on the
market. It makes a programmer extremely ef
ficient and productive. In rewriting an exist
ing system completely, the on-line compile,
flexible commands, and savi~gs of disc space
all contributed to bringing the system up very
rapidly." (Glenn Yokoshima, HP Corvallis)

"Excellent product. Increases programmer
productivity dramatically (morale too!)."
(David T. Black, The John Henry Company)

"FAST, convenient. No need to TEXT and
KEEP. Somewhat dangerous for novice, be
cause changes are made directly. [It worked
well for us in] conversion of SPSS, BMDP,
and other statistical packages to the

1-6-5

HP3000." (Khursh Ahmed, McMaster Uni
versity)

"If you are writing a lot of programs, you
should get QEDIT. It is much easier than
EDITOR for this purpose. Program source
files demand complex editing capabilities,
which QEDIT has. I shudder to think of hav
ing to work on a 4000-statement SPL source
using EDITOR rather than QEDIT." (Bud
Beamguard, Merchandising Methods)

"Excellent product. Anyone using the HP
,editor more than 6 times per day (or more
than 1 hour/day averag~) should not be
without QEDIT!" (T. Larson, N. J. McAllis
ter and Associates Ltd.)

"Easier to use than HP editor and much
more efficient. I do not have to leave QEDIT
.to RUN, PREP." (Myron Murray, Northwest
Nazarene College)

"Takes a great load off the mind (i.e., the
"electronic brain"). There have been occa
sions when heavy editing would have killed
our system if we had been using EDITOR."
(Mike Millard, Okanagan Hel~copters Ltd.)

"Very good product - works well in de
velopment environment. Compilation of
source programs without leaving QEDIT is
very nice for debugging." (David Edmunds,
Quasar Systems Ltd.)

"Use it. It is so much better than HP editor
that there is no comparison." (Ilmar Laasi,
TXL Corp.)

"Fast text editor." (F. X. O'Sullivan,
Foot-Joy, Inc.)

"In one word. Fantastic." (Tracy Koop,
Systech, Inc.)

"Superb tool. Far be~ter than EDIT/3000.
Also, information about HP3000 that is
supplied gratis is very useful." (James
McDaniel, The UCS Group Ltd.)

"I would highly recommend it over EDIT/
3000. In benchmarks and actual use, it has
proven to be much less load on the computer.
In a University environment, we have many
students and faculty editing programs at one
time. QEDIT allows us to run with a high ses
sion limit and still get decent batch
turnaround." (Dan Abts, University of Wis
consin - La Crosse)

"QEDIT is an excellent product for the
price, and is one of the easiest ways to in
crease programmer productivity. The LIST
command has been invaluable for cross
referencing data items in COBOL source pro
grams." (Mark. Miller, Diversified Computer
Systems of Colorado)

"Absolutely. QEDIT has allowed us to con
trol the development of systems (requiring
off-line compiles, audit trails for source modi
fications) while actually increasing program
mer productivity." (Jean Robinson, Lease
way Information Systems, Inc.)

1-6-6

"Get it! It's great. Cheap at twice the
price." (Willian Taylor, Aviation Power Sup

. ply, Inc.)
"QEDIT is THE ONLY text editor that

you should use in a development environ
ment." (Craig T. Hall, Info-tronic Systems,
Inc.)

"Much better than HP's editor, well sup
ported, well documented and continually im
proving. An excellent product. We activate
QEDIT from our job fIle generator and acti
vate SPOOK from QEDIT for editing and
testing output andjob streams." (Patrick Hur
ley, Port of Vancouver)

"Excellent - can do more than Editor, fas
ter, and saves disc space. In searching for a
specific literal, QEDIT finds them all in one
command [e.g., LIST "literal"l." (Larry Pen
rod, Datafax Computer Services Ltd.)

"We could probably not operate if QEDIT
were not available." (Winston Kriger, Hous
~on Instruments)

"Buy it, or another computer (a second
HP3000, of course)" (John Beckett, Southern
Missionary College)

"Best software package I've bought for our
shop." (James Runde, Furman University)

SECTION III
HOW TO INCREASE

BATCH THROUGHPUT
By a "batch job" I mean a large, high-volume, long

running task, such as a month-end payroll or fmancial
report. Why is there any problem with this type of task?
Because the batch job is only a poor, neglected cousin
of the on-line session. "On-line" is "with it," new, Sili
con Valley, exciting; "batch" is old, ordinary, IBM, and
boring. The best people and most of the development
resources have been dedicated to improving the on-line
attributes of the HP3000. The result is predictable:
batch jobs are beginning to clog many HP3000 proces
sors. The overnight jobs are not completing overnight
and the month-end jobs seem never to complete.

The methods for maximizing the throughput of a
single batch job are not the same as for maximizing the
response time of a large number of on-line users. The
biggest difference: for an on-line application, it is sel
dom economical to optimize CPU usage. There isn't
enough repetition to amount to much CPU time. But, a
batch process may repeat a given section of code
100,000 or a million times. CPU time matters.

I have identified five general principles for increasing
batch throughput. Not surprisingly, they differ signifi
cantly from the principles used to improve on-line re
sponse time:

• Bypass Inefficient Code (CPU hogs).
• Transfer More Information Per Disc Access.
• Increase Program Size to Save Disc Accesses.

• Remove Structure to Save Unneeded Disc Acces
ses.

• Add Structure for Frequent Events.

For each optimizing principle, there are three differ
ent tactics you can apply, with three levels of complex
ity and cost:

• Changes in the Data Storage (simplest and
. cheapest, since no programming changes are

needed).
• Simple Coding Changes (still inexpensive, since

these are "mechanical" changes which do not re
quire re-thinking of the entire application).

• Changes to the Application Logic (the most com
plex and expensive, since the entire application
may have to be re-designed).

DI. A. Bypass Inefficient Code (CPU hogs)

Elimination of inefficient code is the simplest way to
produce big throughput improvements, assuming that
you can find any code to eliminate that is inefficient (or
more general-purpose than needed).

For a number of reasons, IMAGE is usually more
efficient than KSAM as a data management method. If
you don't need "indexed sequential" as your primary
access method, convert from KSAM files to IMAGE
datasets. Or, if you don't need "keyed" access to the
data, convert all the way from a data management sub
system to an MPE flat fIle, and use sequential searches.
The more powerful the data access method, the more
CPU time is required to maintain it.

Bypassing inefficient code is simply a matter of re
coding parts of programs to substitute an efficient alter
native for an existing method that is known to have poor
performance. For example, the MPE file system is
CPU-bound when handling buffered files, so converting
to NOBUF access will save considerable CPU time
(you transfer blocks and handle your own records). In
IMAGE, use the u*" or u@" field list instead of a list of
field names. In COBOL, re-compile your COBOL68
programs with the COBOL-II compiler and they will
run faster. The FORTRAN formatter is a notorious
"CPU hog"; either bypass it completely or learn its
secrets. The third-party software tool, APG/3000 (ap
plication profIle generator), should be helpful in identi
fying the portions of an application where the CPU time
is spent (APG was written by Kim Leeper of Wick Hill
Associates). Once APG has identified the key section of
code, you might want to recode it in SPL/3000 for
maximum efficiency.

As is usually the case, the biggest improvements are
obtained by re-evaluating the logic of the application.
For example, you should periodically check the dis
tribution of all reports to see if anyone is reading them.
If not, don't run the job at all- that is an infmite per
formance gain.

III. B. Transfer More Information Per Disc Access

Besides CPU time, the other major limit on
throughput is the access speed of the discs. One way to
transfer more information per disc access is to build
fIles with larger blocksizes. The "block" is the unit of
physical transfer for the fIle. A larger blocksize means
that you move more records per revolution of the disc.
However, there is a trade-off: increased buffer space
and impact on other users. In on-line applications, you
usually want a small blocksize. Below, I will explain
NOBUF/MR access, which is a technique that allows
you to "have your cake and eat it, too!"

Another way to transfer more useful information per
disc access is to ensure that the data is organized so the
records that are usually required together are in the
same disc block. Rick Bergquist's DBLOADNG pro
gram (contributed library) reports on the internal effi
ciency of 'IMAGE datasets. For example, if it shows
that the work orders for a given part are randomly dis
persed throughout a detail dataset (necessitating
numerous disc accesses), you can ensure that they will
be stored contiguously by doing a DBUNLOAD/
DBLOAD (assuming that part number is the primary
path into work orders).. For master datasets,
DBLOADNG shows you how often you can fmd a spe
cific entry with only a single disc read (the ideal). If
DBLOADNG shows that multiple disc reads are often
needed for a certain dataset, you may be able to correct
the situation by increasing the capacity of the dataset to
a larger prime number or by changing the data type
and/or internal structure of the key field.

Don't overlook the obvious either. If you can com
press the size of an entry by using a more efficient data
type (Z10 converted to J2 saves six bytes per field), you
can pack more entries into each block and thus reduce
the number ofdisc accesses to retrieve a specific entry.

You can often increase the "average information
value" of each disc acces's by re-thinking your applica
tion. For example, suppose you must store transactions
in a database in order to provide some daily reports,
many monthly reports, a year-end report, and an occa
sional historical report covering several years. If you
store all transactions in a single dataset, the daily jobs
will probably take three ~ours to find, sort, and total 100
transactions. Why not put today's transactions in a sep
arate dataset and transfer them to the monthly dataset
after the daily jobs are run? When the monthly reports
are completed, you can move the data to a yearly
dataset, and so on. This is called "isolating data by fre
quency of access." The fewer records you have to
search to find the ones you want, the more information
you are retrieving per access.

It is theoretically possible to transfer more informa
tion per second by reducing the average time per disc
access. Typically, you attempt to improve the "head
locality" (i.e., keep the moving "heads" of ea:ch disc
drive in th~ vicinity of the data that you will need next).

1-6.-7

Although it is hard to prove, it does seem that using
device classes to keep spooling on a different drive from
databases, for example, does improve batch
throughput. Under MPE IV, you can also spread "vir
tual memory" among several discs. The next "logical
step" is to place masters and details on separate drives.
However, in all tests that I have run with actual datasets
and actual programs, there was no consistent difference
in performance between having the datasets on the
same drive or on different drives. The dynamics of disc
accessing on the HP3000 are very complex. Unless you
have the time to do a RELOAD afterwards, don't move
fIles around; the moving process itself (:STORE and
:RESTORE) may fragment the disc space and eliminate
the potential benefit of spreading the ftIes. Remember
Gr~en's Law: "The disc heads are never where you
think they are."

You can also improve overall batch throughput by
recovering wasted disc accesses. The disc drives re
volve at a fixed speed, whether you access them or not.
Any disc revolution that does not transfer useful data is
wasted. Multiprogramming attempts to use these
wasted accesses by maintaining a queue of waiting
tasks. Unfortunately, maximum throughput under MPE
III coincided with JOB LIMIT = ONE (no multiprog
ramming!). Under MPE IV, however, I have obtained a
25% decrease in elapsed time on the Series III by run
ning two or three jobs concurrently. Try it.

Ill. C. Increase Program Size to Save Disc Accesses

In on-line optimizing, we are always trying to reduce
the size of the program (code, data, and CPU.usage), so
as to allow the system to provide good response time to
more users at once. In batch optimizing, we do not want
better response time (we won't be running 36 batch jobs
at a time, so we don't have to worry about mix); we
want better throughput. Since most of the on-line tricks
actually make the program slightly slower, we should
avoid them. Batch tricks usually consist of trading off a
larger program size for a faster elapsed time.

You can often save disc accesses by storing data in
larger "chunks," keeping more data in memory at any
time. Larger blocks will accomplish this, as will extra
buffers. MPE rtIe buffers can be increased above the
default of two via :FILE, but doing so actually appears
to degrade throughput. KSAM key-block buffers are
increased via :FILE (:FILE xx;DEV="yy :MNS where
xx is the KSAM data file and yy is the number of key
block buffers), which will help for empty files (KSAM
cannot deduce how many buffers it will need unless the
B-tree already exists). IMAGE buffers are increased via
the BUFFSPECS command of DBUTIL; this can be
effective for a stand-alone batch job, but only if it works
with a large number of blocks concurrently (Le., puts
and deletes to complex datasets with many paths).

Pierre Senant of COGELOG (the developer of ASK/
3000) has an ingenious method for "increasing program
size" dramatically. He has implemented "memory

1-6-8

ftles." An entire ftle is copied in main memory and kept
there. For a small file that is frequently accessed (e.g., a
master dataset containing only' a few edit codes that
must be applied to many transactions), Pierre's method
should save enormous numbers of disc accesses.

NOBUF access to files was mentioned above as a
way to save CPU time. If you use NOBUF with MR
access, you can save disc accesses also, but at the cost
of a larger data stack. MR stands for "multi-record,"
and gives you the ability to transfer multiple blocks per
access, instead of just one block. With a large enough
buffer, you will reduce the number of disc accesses
dramatically.

Since multi-block access is faster only if each block is
an exact multiple of 128 words in length, you should
always select a recordsfze and blockfactor such that the
resulting blocksize (recordsize times blockfactor) is
evenly divisible by 128 words. The resulting blocksize
need not be large; it need only be a multiple of 128 (Le.,
256, 384, 512, ...). As I promised earlier, here is your
way to have the best of both worlds. Build your fIles
with 512-word blocks (Le., 4 times 128, 8 times 64, 16
times 32) for on-line use, and redefine the blocksize to
8192 words in batch programs via NOBUFIMR access.

For a "stand-alone batch" job, you may as well set
MAXDATA to 30,000 words. This allows sorts to com
plete with maximum speed and provides other oppor
tunities for optimization. With a larger stack you can
keep small master datasets in the stack (e.g., a table of
transaction codes). When you have exhausted the
30,000 words of your data stack, there are always extra
data segments, which can be thought of as "fast, small
files. "

Re-evaluate your view of the data. Databases are
usually set up to make life easy for the on-line user
(rightly). Their organization may not be optimum for
batch processing. In order to provide numerous enquiry
paths, a single word order may be scattered in pieces
among seven different datasets, and may require up to
20 calls to DBFIND and DBGET for assembly. In a
batch job, if you are going to have to re-assemble the
same order many times, it may be more efficient to
define a huge, temporary record for the entire order,
assemble it once, and write it to a temporary rue. Then
you can sort the temporary-file record numbers in
numerous ways, and retrieve an entire order with a
single disc read whenever you need it. Of course, this
wastes disc space (temporarily) and increases your pro
gram size.

Ill. D. Remove Structure to Save
Unneeded Disc Accesses

"Structure" for data means organization, lack of ran
domness, and the ability to quickly fmd selected groups
of records. It takes work to maintain a "structure," and
the more structure there is, the more work (CPU time
and disc accesses) it takes.

Study your data structures critically. Can you reduce

the number of keys in a record? A serial search may be
the fastest way to get the data. Can you eliminate a
sorted path? Overall, the application may be faster if
you sort each chain in the .stack after reading it from the
dataset (Ken Lessey's SKIPPER package has this
capability), but only if you don't use the COBOL SORT
verb.

Another type of "structure" is consistency. IMAGE
is a robust data management system because it writes
all dirty data blocks back to the disc before terminating
each intrinsic call. You can make IMAGE faster, but
less robust, if you call DBCONTROL to defer disc
writes (only after a backup). Another IMAGE idea:
don't use DBDELETE during production batch jobs.
Just flag deleted records with DBUPDATE and
DBDELETE them later, when no one is waiting for any
reports. When you can, use a DBUPDATE in place of
DBDELETE and DBPUT.

For KSAM, if you are planning to sort the records
after you retrieve them, use "chronological access"
(FREADC) instead of default access (FREAD). Default
KSAM access is via the primary key; KSAM must jump
all over the disc to get the records for you in this sorted
order, just so you can re-sort them in another order!
Also for KSAM, try to keep only one key (no alternate
keys), do not allow duplicates (much more complex),
and avoid changing key values of records.

I am grateful to Alfredo Rego for pointing out a useful
way to "eliminate structure" from IMAGE. When you
are loading a large master dataset, use a Mode-8
DBGET prior to the DBPUT in order to fmd out if the
new entry will be a primary entry or a secondary entry.
Load only primaries on the first pass, then go back and
load the secondaries on a second pass. This effectively
turns off the IMAGE mechanism known as "migrating
secondaries," which although essential, is time
consuming when fIlling an entire dataset.

Ill. E. A4d Structure for Frequent Events

I saved this for last because it is one of the most
powerful ideas. Batch tasks usually repeat certain key
steps numerous times. Batch tasks have patterns of
repetition in them. If you make that key step faster by
adding structure to it, or re-structure the application so
that "like-steps" are handled together, you can make
the whole task faster. Extra structure (code complexity
or data complexity) is justified in the most frequent op
erations of batch processing.
Chec~ your data structures for patterns that you

could capitalize on. For example, if you have a ftle of
transactions to edit and post to the data base, could the
task be made faster if the rue were sorted by transaction
type (only do validation of the transaction type when it
changes) or by customer number (only validate the cus
tomer number against the database when it changes)?

Here are more examples of adding structure. If you
sort by the primary key before loading a KSAM ftle,
you can often cut the overall time in half. When erasing

an IMAGE detail dataset, sort the record numbers by
the key field that has the longest average chain length
and delete the records in that order. When loading a
detail dataset with long sorted chains, frrst sort by the
key field and the sort field. In all of these examples,
throughput is increased by adding code structure to
match the structure of the data.

If you frequently require partial-key searche's on
IMAGE records, use an auxiliary KSAM file (or a
sorted flat file and a binary search) to give you
"indexed-sequential" access, rather than only serial ac
cess, to your IMAGE dataset. (Mark Trasko's IMSAM
product enhances IMAGE by adding an indexed
sequential access method to the other access methods
of IMAGE.)

If you have used many IMAGE calls to fmd a specific
record, remember its record number. Then, when you
need to update it, you can retrieve it quickly with a
Mode 4' DBGET (directed read), instead of doing the
expensive search all over again. Ifcertain totals must be
recalculated each month, why not re-design' the
database so that they are saved until needed again? If
something takes work to calculate, check whether you
will need it again.

The general'principle is: look for patterns of repeti
tion and add structure to match those patterns.

SECTION IV.
BATCH OPTIMIZING EXAMPLE: SUPRTQOL

SUPRTOOL is a utility program for the HP3000 that
was developed by Robelle Consulting Ltd. The objec
tives of SUPRTOOL are to provide a single, consistent,
fast tool for doing sequential tasks, whether in produc
tion batch processing, file maintenance, or ad hoc de
bugging. Example tasks that SUPRTOOL can handle
are: copying files, extracting selected records from
IMAGE datasets (and MPE files and KSAM files), sort
ing records that have been extracted, deleting records,

. and loading records into IMAGE datasets and KSAM
fIles. SUPRTOOL can't do everything yet, but we are
adding new capabilities to it regularly (the most recent
enhancements are a LIST command to do formatted
record dumps and an EXTRACT command to select
fields from within records). SUPRTOOL embodies
many of the batch optimizing ideas discussed in the
previous section of this document.

IV. A. SUPRTOOL and
"Bypassing Inefficient Code"

By doing NOBUF deblocking of records,
SUPRTOOL saves enough CPU time to reduce the
elapsed time of serial operations visibly. For MPE fues,
NOBUF is now fairly commonplace (alt.hough it still
isn't the default mode in FCOPY - SUPRTOOL is 6 to
34 times faster in copying ordinary files). Where
SUPRTOOL goes beyond ordinary tools is in extending
NOBUF access to KSAM files (a non-trivial task) and
to IMAGE datasets (very carefully). By making only a

1-6-9

few "large" calls to the FREAD intrinsic, instead of
many "small" calls to DBGET (each of which must ac
cess two extra data segments, look up the dataset name
in a hash table, re-check user access security, and then
extract a single record), SUPRTOOL quickly cruises
through even enormous datasets with only a minimal

SUPRTOOL/Robelle
>BASE ACTIVE.DATA,5
>GET LNITEM
>IF ORD-QTY>10000
>XEQ
IN=60971. OUT=14479.
CPU-SEC=56. WALL-SEC=133.

Notice that SUPRTOOL used 1/9th as much CPU
time and 1/6th as much elapsed time. And, the QUERY
FIND command only builds a ftIe of record numbers; to
print the 14,479 records, QUERY must retrieve each
one from the dataset again. SUPRTOOL creates an
output disc file containing the actual record images, not
the record numbers. With suitable prompting,
SUPRTOOL can do this task even faster (see below for
the BUFFER command).

IV. B. SUPRTOOL and
"Transferring More Information"

SUPRTOOL transfers more information per disc ac
cess by doing multi-block transfers between the disc

consumption of CPU time.
For example, here is a comparison of SUPRTOOL

and QUERY, selecting records from a detail dataset
containing 60,971 current entries which are spread
throughout a capacity of 129,704 entries.

QUERY/3000
>DEFINE
DATA-BASE =»ACTIVE.DATA
>FIND LNITEM.ORD-QTY>10000
USING SERIAL READ
14479 ENTRIES QUALIFIED
(CPU-SEC=520. WALL-SEC=763.)

and the data stack in main memory. If records are 32
words long and stored as four per block (for a blocksize
of 128 words), reading multiple blocks can make a big
difference. For 20,000 records, one block at a time re
quires 5000 disc accesses. Using a 4096-word buffer and
reading ~2 blocks at a time reduces the number of disc
accesses to 157!

SUPRTOOL has an option (SET STAT,ON) that
prints detailed statistics after each task, so that you can
see how it was done and where the processing time was
spent. For example, suppose you want a formatted
dump in octal and ASCII of all the records from the fIle
described above for the order "228878SU." Below are
the commands and times for SUPRTOOL and FCOPY:

FCOPY/3000
>FROM=SUMMRY;TO=*SUPRLIST;SUBSET="228878SU",1;OCTAL;CHAR
EOF FOUND IN FROMFILE AFTER RECORD 19999
3 RECORDS PROCESSED *** 0 ERRORS
(CPU-SEC=78. WALL-SEC=114.)

SUPRTOOL/Robelle
>SET STAT,ON
>DEFINE A,1,8
>IN SUMMRY
>LIST
>IF A="228878SU"
XEQ
IN=20000. OUT=3. CPU-SEC=11. WALL-SEC=16.

** OVERALL TIMING **
CPU milliseconds:
Elapsed milliseconds:

** INPUT **
Input buffer (wds):
Input record len (wds):
Input logical dev:
Input FREAD calls:
Input time (ms):
Input records/block:
Input blocks/buffer:

Notice that SUPRTOOL was using its default buffer
size of 4096 words. FCOPY had to make 5000 disc
transfers, while SUPRTOOL only had to make 157.

1-6-10

10.854
16254

4096
32
12
157
6304
4
32

That is one of the reasons why SUPRTOOL fmished in
1/7th the time and used 1/7th the CPU time.

~..,.- ..

f

IV. C. SUPRTOOL and "Increasing Program Size"

SUPRTOOL gets a great deal of its petformance edge
by doing its own deblocking: allocating a large buffer
within its data stack, reading directly from the disc into
the buffer, and extracting the records from the blocks
manually. SUPRTOOL trades a larger program size for

a faster elapsed time. But you don't need to stop with
the 4096-word buffer that SUPRTOOL normally allo
cates. Using the BUFFER command, you can instruct
SUPRTOOL to work with buffers of up to 14,336 words
and observe the results with SET STAT,ON. Here is
the same selective file-dump that took 16 seconds with
4096-word buffers, done with 8192-word buffers:

SUPRTOOL/Robelle
>BUFFER 8192
>IN SUMMRY
>LIST
>IF A="228878SU"
>XEQ
CPU-SEC=10. WALL-SEC=13. [An additional savings of 3 seconds]

By combining SUPRTOOL with IMAGE, you can
have small data blocks for on-line access and large data
blocks for batch sequential access. Here is the same

database extract as done' above (in the QUERY vs.
SUPRTOOL test). Instead of using 4096-word buffers,
we will increase the buffer space to 14,336 words:

SUPRTOOL/Robelle
>BUFFER 14336
>BASE ACTIVE.DATA,5
>GET LNITEM
>IF.ORD-QTY>10000
>XEQ
IN=60971. OUT=14479. CPU-SEC=46. WALL-SEC=104. [Saved 29 sec.]

IV. D. SUPRTOOL and "Removing Structure"

SUPRTOOL can optimize batch operations by "re
moving structure." NOBUF deblocking of MPE ftles
and IMAGE datasets provides faster serial access by
saving CPU time and reading larger chunks of data, but
NOBUF deblocking of KSAM files does that and more:
it also eliminates structure. When you read a KSAM [lie
serially by default, the KSAM data management system
does not return the records to you in "physical" se
quence; it returns them to you "structured" by the pri
mary key value, and this takes work - a lot of work.

KSAM must search through the primary B-tree to
find the sequence of the key values, and must then re
trieve the specific blocks that contain each records.
Quite often, logically adjacent records may not be phys
ically adjacent; in the worst case, each logical record
requires at least one physical block read. The
SUPRTOOL NOBUF access to KSAM files cuts
through all of this and returns the raw records to you in
physical order; the savings in time can be impressive
and, if you are planning to sort the records anyway,
there is no loss of function. SUPRTOOL only removes
the structure that you were not going to use.

Another example of removing structure in
SUPRTOOL is the SET DEFER,ON command. When
used in conjunction with the PUT or DELETE com
mands, the :DEFER option causes SUPRTOOL to put
IMAGE into output-deferred mode (via a call to
DBCONTROL). Normally, IMAGE maintains a consis-

tent and robust "structure" in the database after every
intrinsic call. If you are planning to make a large
number of database changes and can afford to store the
database to tape first, you may be able to cut the
elapsed time in half (or more) by leaving the physical
database in an inconsistent state after intrinsic calls.
(DBCONTROL makes the database consistent again
when you. are done.)

Here is an example use of SUPRTOOL to fmd all
work orders that are completed (status="X") and old
(dated prior to June 1st, 1982), delete them from the
dataset, sort them by customer number and work-order
number, and write them to a new disc flle. SET DE
FER,ON is used to make the DELETE command fas
ter:

SUPRTOOL/Robelle
>BASE FLOOR.DATA
>GET WORKORDER
>IF WO-STATUS="X" AND WO-DATE<820601
>DELETE
>SORt CUSTOMER-NUM;SORT WORKORDER-NUM
>OUTPUT W08206
>SET DEFER,ON
>XEQ

Another way to look at SUPRTOOL is ~s follows: ifa
serial search is fast enough, you may not need to have
an official IMAGE "path" in order to retrieve the re
cords you need. On the Series III, SUPRTOOL selects

1-6-11

records at a rate of two seconds per 1000 sectors of
data.

IV. E. SUPRTOOL and "Adding Structure"

SUPRTOOL can optimize batch tasks by "adding
structure" to data. One way to add structure is to sort
data. Experiments have shown that sorting records into
key sequence can cut the time to load a large KSAM ftle
in half. SUPRTOOL easily reorganizes existing KSAM
ftIes by extracting the good records, sorting them by the
primary key field, erasing the KSAM ftIe, and writing
the sorted records back intQ it - all in one pass.

You can also add "structure" to raw data by defining
a record structure for it (QUERY can access IMAGE
entries because they have a structure defined by the

SUPRTOOL/Robelle
>BASE FLOOR
>INPUT W08206· = WORKORDER
>IF CUSTOMER-NUM="Z85626"
>LIST
>XEQ

And, since SUPRTOOL has access to the IMAGE
database that the entries originally came from,
SUPRTOOL can still format the entries on the linep
rinter with appropriate field names and data conver
sions (similar to REPORT ALL in QUERY).

IV. F. Results of Applying
Batch Rules to SUPRTOOL

Just before completing this paper, we sent a ques
tionnaire to the users of SUPRTOOL, askmg them what
they would tell other HP3000 sites about SUPRTOOL.
Here are their replies:

"I always recommend SUPRTOOL 'with any new
system. Without programming, I duplicated a master
[tIe from one application to another application. I set up
ajob stream to do this on a weekly basis (i.e., purge the
old dataset entries and add the new dataset entries eas
ily). SUPRTOOL creates files with different selection
criteria to feed the same program." (Terry Warns,
B P L Corp.)

"An essential package for efficient operation of a sys
tem. Most of our job streams include a SUPRTOOL
function. " (Vaughn Daines, Deseret Mutual Benefit As
soc.)

"Excellent. We had an application that serially
dumped a dataset of 185,000 records (4 hours) and then
sorted the 114-byte records in 6 hours (provided we had
the disc space needed). We changed to SUPRTOOL
with the OUTPUT NUM,KEY option and a modified
program using DBGET mode 4 and maximum
BUFFSPECS. The result was 4 hours altogether."
(Bobby Borrameo, HP Japan)

"SUPRTOOL is an excellent utility for copying stan
dard MPE [des and databases very quickly ... extract
ing and sorting records from a database (i.e., 40,000
records of 60,000), copying files across the DS line

1-6-12

schema). Normally, regular MPE files are not thought
of as having the same kind of record structure as
IMAGE datasets. Why is this so? Because you cannot
access the fields of the file's records by name in tools
such as fCOPY, even if the structure exists. In
SUPRTOOL, you can.
. If you use SUPRTOOL to archive old entries from

IMAGE datasets to MPE disc or tape [tIes, you can later
do selecti.ve extracts, sorts, and formatted dumps on
those MPE files, using exactly the same field names as
you did when the entries were in the database. (In fact,
you can even put selected records back into a tempor
ary database with the same structure and run QUERY
reports on them.) Here is how SUPRTOOL associates
structure with raw MPE files:

[implied record structure!]

(much quicker than FCOPy), copying tape to disc and
disc to tape." (Dave Bartlet, HP Canada)

"We couldn't operate without it. We are a heavy
KSAM user and SUPRTOOL has cut our batch proces
sing by at least 1/3." (Jim Bonner, MacMillan- Bloedel
Alabama)

"All sorts of marvelous things. [SUPRTOOL] is re
ally nice (and fast) to copy a database for test pruposes
or to make minor changes (instead of DBUNLOADI
LOAD) - even major changes, using a program to ref
ormat the SUPRTOOL-created file." (Susan Healy,
Mitchell Bros. Truck Lines) .
. "Just last night I told a·friend that, after working with

different sorts on IBM (DPD- and GSD-levelmachines),
Burroughs sorts, and even HP sorts, SUPRTOOL is the
best sort tool I have ever used." (Robert Apgood,
Whitney-Fidalgo Seafoods)

"Get it. Runs much faster than SORT. Cheap at twice
the cost." (Willian Taylor, Aviation Power Supply, Inc.)

"Fast and functional. SUPRTOOL is deeply embed
ded in our applications, most extracts are done with
SUPRTOOL. Ad hoc inquiries [via SUPRTOOL], in
volving pattern matching on our customer ftIe, extract
the appropriate keys, which are then passed to the re
port program." (Patrick Hurley, Port of Vancouver)

"SUPRTOOL is a product which no shop that uses
IMAGE and does batch report generation should be
without. By changing certain reports to use
SUPRTOOL instead of traditional selection techniques,
a savings of 60% in CPU and wall time was obtained."
(Vladimir Volokh, VSI/Aerospace Group)

"SUPRTOOL is a great timesaver when used with
BASIC (or RPG) to modify IMAGE datasets and place
them in another dataset or the same dataset." (John
Denault, Datafax Computer Services, Inc.)

	Section 1—System Management
	Overview of Optimizing (On-Line and Batch)

