
IMAGE/COBOL: Practical Guidelines
David J. Greer

Robelle Consulting Ltd.
Aldergrove, B.C., Canada

SUMMARY

This document presents a set of practical "rules" for
designing, "accessing, and maintaining IMAGE
databases in the COBOL environment. This document
is designed to ~d systems analysts, especially ones who
are new to the HP3000, in producing "good" IMAGE
database designs. Each "rule" is demonstrated with ex­
amples and instructions for applying it. Attention is paid
to those details that make using the database trouble­
free for the COBOL programmer, and maintaining the
database easier for the database administrator.

CONTENTS

1. Database Design
2. Polishing Database Design
3. The Schema
4. Establishing the Programming Context
S. Database Maintenance
6. Bibliography

Copyript 1981. All rishts reserved.
Permission is sranted to reprint this document (but not for profit), provided

that Copyl'isht notice is siven.
This document was prepared with Prose, a text formatter distributed with

software to all Robello customers.

DATABASE DESIGN

IMAOE/3000 is the database system supplied by
Hewlett-Packard;8 it is used to store and retrieve appli­
cation information. A database does not suddenly ap­
pear out of thin air; it develops through a long and in­
volved process. At some time, a logical database design

must be translated into the actual schema that imple­
ments a physical IMAGE database. This phase is the
most difficult of the database development cycle. 7 The
IMAGE/3000 Reference Manuale contains a sample
database called STORE, which demonstrates most of
the attributes of IMAGE.- Throughout this document,
the STORE database will be referenced when examples
are needed.

Logical Database Design

The foundation of a new database is a logical design,
which is created by examining the user requirements for
input forms, for on-line enquiries, and for batch reports.
The database should be viewed as an intermediate stor­
age area for the information that comes from the input
forms and is eventually displayed on the output re­
ports.9 10

Database design is normally done from the bottom
up, as opposed to structured program design, which is
usually done from the top down. The starting point for a
database is the elements (items) that will be stored in
the database. These data elements represent the user's
information. In the early stages, the size and type of
these elements are not needed, only the name and val­
ues.

Rule: Start your logical database design by naming
each data item, then identify what values it can
have and where it will be used.

Here is an example of a subset of data items for the
STORE database:

CUST-STATUS

DELIV-DATE

ON-HAND-QTY

PRODUCT-PRICE

J

Two characters, attached to each customer record.
Valid values are: 10=advanced, 20=current,
30=arrears and 40=inactive.

Six numeric characters; Date, YYMMDD, attached to
every sales order as the promised delivery date.

Sev~n numeric characters, attached to every inventory
record to show the current quantity of an
inventory item available for shipping.

Eight numeric characters, (6 whole digits, 2 decimal
places), attached to every sales record. This is
the price of a product sold, on the date that
the sale was made.

4-4-1



As the logical database design develops to deeper
levels of detail, the elements needed should eventually
reach a stable list. These elements should then be com­
bined into records by grouping logically related items
together.

It is important that "repetition" be recognized early
in the design. An example of this is a customer's ad­
dress. The most flexible method of implementing ad­
dresses is a variable number of records associated with
the customer account number. Another method is to
make the address field an X-type variable (e.g., X24)
repeated 5 times (e.g., 5x24). Repeated items are often
the most natural way to represent the user's data, so the
use of repeated items is encouraged.

Mter the records are designed, enquiry paths must be
assigned. During the early stages of database design, it
is important to use elements that are readable and easy
to implement with the tools at hand. This permits test­
ing of the database using tools such as QUERY, AQ,
and PROTOS.

Physical Database Design

Mter the local database is designed, the IMAGE
schema must be developed. The restrictions of IMAGE
must now be worked into the database design.

IMAGE requires that all items needed in the database
be defined at the beginning of the schema, and a size
and type must be associated with each. Initially, declare
each item as type X (display); later, the data type may
be altered.

Records are implemented as IMAGE datasets. Start
by treating each record format as a master dataset.

Rule: If a record is uniquely identified by a single key
value, start by making it a master dataset (e.g.,
customer master record keyed by a unique cus­
tomer number).

The STORE database assumes that each CUST­
ACCOUNT field is unique. Furthermore, there is only
one customer record for each CUST-ACCOUNT. All of
the information describing one customer is gathered to­
gether to result in the M-CUSTOMER dataset:

NAME: M-CUSTOMER,
ENTRY:

CITY
., CREDIT-RATING
,CUST-ACCOUNT(1)
,CUST-STATUS
,NAME-FIRST
,NAME-LAST
,STATE-CODE
,STREET-ADDRESS
,ZIP-CODE

MANUAL (1/2);

«KEY FIELD»

«PREFIX = MCS»

,
CAPACITY: 211; «M-CUSTOMER,PRIME; ESTIMATED»

Rule: Ifa "natural" master dataset will require on-line
retrieval via an alternate key, drop it down to a
detail dataset.

The detail dataset will have two keys: the key field of
the original master dataset, and the alternate key. You
will have to create a new automatic, master for the origi­
nal key field, and you may have to create an automatic

master for the alternate key (unless you already have a
manual master dataset for that item).

Take the M-CUSTOMER dataset as an example. As­
sume that in addition to needing on-line access by
CUST-ACCOUNT, it is also necessary to have on-line
access by NAME-LAST. The following dataset struc­
ture would result:

NAME: A-CUSTOMER,
ENTRY:

CUST-ACCOUNT(2)

AUTOMATIC (1/2),

«KEY FIELD»

«PREFIX = ACS»

NAME-LAST(1)

,
CAPACITY: 211 ;

NAME: A-NAME-LAST,
ENTRY:

«PREFIX = ANL»

,
CAPACITY: 211 ·.'

«A-CUSTOMER, PRIME; ESTIMATED»

AUTOMATIC (1/2),

«KEY FIELD»

«A-NAME-LAST,PRIME; CAP(A-CUSTOMER»>

4-4-2

NAME: D-CUSTOMER, DETAIL (1/2); «PREFIX = DCS»



ENTRY:
CITY

,CREDIT-RATING
,CUST-ACCOUNT(IA-CUSTOMER)
,CUST-STATUS
,NAME-FIRST
,NAME-LAST(A-NAME-LAST)
,STATE-CODE
,STREET-ADDRESS
,ZIP-CODE

«KEY FIELD, PRIMARY»

«KEY FIELD»

,
CAPACITY: 210; «D-CUSTOMER; CAP(A-CUSTOMER»>

Rule: If an entry can occur several times for the pri­
mary key value, store it in a detail dataset.

Detail datasets are for repetition and multiple keys.
Master datasets 'can only contain one entry per unique
key value. An example of repetition in a detail dataset is

a customer address field. The customer address can be
stored as a repeated field in a master dataset, but even­
tually there will be an address that will not fit into the
fixed-size repeated field. Instead of a repeated field, use
a detail dataset to store multiple lines of an address. For
example:

ADDRESS-LINE,

CUST-ACCOUNT·,

LINE-NO,

X24;

Z8;

X2;

« An individual line of address. This
item is used in D-ADDRESS to provide an
arbitrary number of address lines for
each customer.

»
« Customer account number. This field

is used as a key to the M-CUSTOMER

IMAGE/COBOL: Practical Guidelines

and D-ADDRESS datasets.
»
« Used to keep address lines in D-ADDRESS

in the correct order. This field also
provides a unique way of identifying
each address line for every
CUSTOMER-ACCOUNT.

»

NAME: .D-ADDRESS
ENTRY:

DETAIL (1/2); «PREFIX.: DAD»

ADDRESS-LINE
,CUST-ACCOUNT(IM-CUSTOMER(LINE-NO))
,LINE-NO

«KEY FIELD, PRIMARY PATH»
«SORT FIELD»

,
·CAPACITY: 844; «D-ADDRESS; 4 * CAP(M-CUSTOMER»>

Dataset Paths

The following definition of PATHs and CHAINs
comes from Alfredo Rego: 11

A PATH is a relationship between a MAS­
TER dataset and a DETAIL dataset. The
master and the detail must contain a field of
the same type and size as a common "bond,"
called the SEARCH FIELD. A path is a
structural property of a database.

A CHAIN, on the other hand, contains a
MASTER ENTRY and its associated DE-

TAIL ENTRIES (if any), as defined by the
PATH relationship between the master and
the detail for the particular DETAIL
SEARCH FIELD.... A chain is nothing
more than a collection of related entries (for
instance, a bank customer would be the mas­
ter entry and all of this customer's checks
would be the detail entries; the "chain" would
include the master AND all its details; the
chain for customer number 1 would be com­
pletely different from the chain for customer
number 2).

4-4-3

.i



Paths provide fast access at a certain cost: adding and
deleting records on the path is expensive. The more
paths there are, the more expensive it gets. 1 Another
restriction of paths is that there can be a maximum of
64,000 records on a single path for a single key value.
This sounds like a large number, but it can be very easy
to expand a chain to this size if a key is specified for a
specific, reporting summary program (e.g., billing cycle,
in monthly billing transactions).

Rule: Avoid more than two paths into a detail dataset.

There are some instances where three paths are nec­
essary, but these should be avoided as much as possi­
ble. Before adding a path, examine how the path is
going to be used. If it is added just to make one or two
batch programs easier to program, the path is not jus­
tified. The batch programs should serially read and sort
the dataset, then merge the sorted dataset with any
other necessary information from the database.

The date paths of the SALES dataset of the STORE

database are good examples of unnecessary paths. Be­
cause the chain lengths of paths organized by date are
almost always very long, such a chain is rarely allowed.
Also, users are often interested in a large range of dates
(such as a month, quarter or year), not just a specific
day.

In order to obtain the same type of reporting by date,
it is possible to do one of the following: (1) read the
database every night and produce a report of all records
entered every day; (2) keep a sequential file of all re­
cords added to the dataset on a particular day. This fIle
can then be used as an index into the database. .

These are not the only solutions to removing the date
paths, but they indicate the kind of solutions that are
possible. Because of the high volume and length of the
average chain, date paths are prime candidates for re­
moval from a database.

The following example demonstrates how the SALES
dataset should hav'e been declared:

« The D-SALES dataset gathers all of the sales records
for each customer. The primary on-line access is by customer,
but it is necessary to have available the product sales
records. The PRODUCT-PRICE is the price at the time
the product is ordered. The SALES-TAX is computed based
on the rate in effect on the DELIV-DATE.

»
DETAIL (1/2);NAME:

ENTRY:
D-SALES,

CUST-ACCOUNT(IM-CUSTOMER)
,DELIV-DATE
,PRODUCT-NO(M-PRODUCT)
,PRODUCT-PRICE
,PURCH-DATE
,SALES-QTY
,SALES-TAX
,SALES-TOTAL

·«PREFIX = DSA»

«KEY FIELD, PRIMARY PATH»

«KEY FIELD»

.,
CAPACITY: 600; «D-SALES; 3 * CAP(M-CUSTOMER»>

Rule: Avoid sorted paths.

Because sorted paths can require. very high overhead
when records are added or deleted, they should be
avoided as much as possible. There are some instances
when a sorted path makes the system and program de­
sign much easier, but this convenience must be traded,
offagainst the highest cost ofmaintaining sorted chains.

The most important criteria in evaluating sorted
chains are: (1) whether the chain is needed for batch or
on-line access. In batch, it is possible to read and sort

i the dataset, rather than relying on sorted chains. In an
j' on-line program, this is usually not possible, so sorted
, chains are required. (2) How long is the average chain

going to be? The longer the chain, the more expensive it
I is to keep sorted. If chains have fewer than 10 entries

per key value on average, sorted chains can be permit-

4-4-4

ted. (3) How are records being added to the dataset? Ifa
sorted chain is present, and data is added to the dataset
in sorted order, there is very little extra overhead in the
sorted chain. If, on the other hand, data is added in
random fashion, there is a very high cost associated
with the sorted chain. II - 13

Locking Strategy

Early in the database design, it is important to iden­
tify the locking necessary for the application. The
easiest choice is to use database locking. Unless spe­
cific entries are going to be modified by many users,
database locking should work. Remember: locking is
only needed when updating, adding, or deleting entries
from the database, not when reading entries. Never
leave the database locked when interacting with the
terminal user.



The next level of locking to be considered is dataset
locking. This takes more programming, but provides for
a more flexible locking strategy.

.Rule: Never permit MR capability to programmers,' in­
stead, use lock descriptors (and a single call to
DBLOCK) to lock all data~ets needed.

For very complicated systems (e.g., an inventory sys­
tem with inventory levels that must be continually up­
dated), record locking should be used. The database
design should help the application programmer by mak­
ing the easiest possible locking strategy available for
each program. 2

Passwords

Most application systems go overboard in their use of
database passwords. The simplest scheme to implement
is a two-password system. The database is declared
with one password for reading and one for writing. Each
password is applied at the dataset level; and item-level
passwords are not used.

Rule: Use the simplest password scheme that does not
violate the database integrity.

The advantages to this scheme are that there are
fewer passwords to remember, IMAGE is more effi­
cient (because all security checks are done at the
dataset level, instead of the data item level), and the
user can still use tools such as QUERY, by being al­
lowed the read-only password.

In sensitive applications, a separate dataset or
database can be used to isolate data requiring special
security. This still permit~ the simplest password
scheme pos$ible, with an extra level of security. The
following example shows how to declare passwords for
read-only access and read/write access on a dataset
level:

PASSWORDS: 1 READER;
2 WRITER;

Rule: Build your test databases early. Use an applica­
tion tool to verify that the database design is cor­
rect.

In some cases, the end user may not be able to access
the database, but the database designer must go through
this testing process. This examination of tl:)e database
design may uncover design flaws which can be fIXed
easily at this early stage. After the logical database de­
sign has been roughly packaged as an actual IMAGE
database and verified against the user requirements, the
design should be 'optimized and the finishing touches
added (see next section).

Very Complex Databases

IMAGE has a number of size restrictions that it im­
poses on the database design. For example, the number
of items in a database is liinited to 255, and the number
of datasets in a database is limited to 99. For many
applications, these limits pose no problems; but with the
larger databases being designed today, it is not difficult
to imagine databases which exceed these lmits" What
can you do to get around this problem?

Bottom-Up Design

The design method outlined above must be extended.
For small projects, it is adequate to simply group related
data items into datasets, because the entire application
will fit into one database. However, for large projects,
another step is required: related datasets must be
grouped into separate databases.

Multiple databases introduce new problems for the
application. programmer. These include larger pro­
grams, which result in larger data stacks, as well as
problems with locking. In designing a multiple database
system, it is best to minimize the number of programs
that must use more than one database.

If an application decomposes into independent sub­
units, few programs will require more than one
database. The design of the system and the database
may have to be revised to increase the independence of
the sub-systems.

The declarations for the M-CUSTOMER and the
D-SALES datasets contain "(t2)" on the line that de­
clares the name of the datasets. The "(Yl)" indicates
that the READER and WRITER passwords are in effect
for the whole dataset.

Early Database Testing
The early database design should allow the user or

analyst to experiment on the database design with test
data. User tools such as QUERY or AQ should be used
to access the database. At this stage, the item types may
be left approximate, so long as the user or analyst gets a
chance to interact with the database design. The analyst
should check that all requirements of the user can be
met by the database design.

POLISHING DATABASE DESIGN
The database designer has two main concerns in

completing the database design. Will the application
programs be able to access the database within the de­
fined limits of the .HP3000? Does the database take best
advantage of COBOL and other tools avail­
able?3-:-8-11-13

Overall Performance

Rule: Always make a formal estimate of on-line re­
sponse times and elapsed times for batchjobs.
If the project is going to require additional
hardware resources, it is better to know it be­
fore the project goes into production.

The following material is taken from On Line System

4-4-5



Design and Development, 9 with comments and exam­
ples to expand on the original. The HP3000 is able to
perform approximately 30 I/Os .per second. On various
machines under different operating systems, it may be
possible to obtain more than this. Because it is ex­
tremely difficult to obtain the theoretical maximum of
30 I/Os per second, it is best to plan for a maximum of
20 I/Os per second.

Each IMAGE procedure results in a specific amount
of I/O. Before going ahead with a large application, the

total I/O required for the application must be computed
and compared against the maximum. This is done by
estimating the I/O for each on-line function, then sum­
ming the I/Os of the functions that might reasonably
occur concurrently. Also, the total elapsed time for
batch jobs must be estimated to ensure that they will
complete in the time available.

The following gives an approximate measure of the
number of I/Os necessary for each IMAGE procedure
in an on-line environment:

-'-

Procedure I/O

DBGET 1
DBFIND 1
DBLOCK a
DBUNLOCK a
DBUPDATE 1
DBPUT 2 + 2 * Number of keys in the dataset.
DBDELETE 2 + 2 * Number of keys in the dataset.

The figures for DBPUT and DBDELETE do not take
into account sorted chains. If sorted chains are kept
short, the above figures will work. If sorted chains are

long, the following formula gives an approximate meas­
ure of how many I/Os are tequired to add records in
random fashion to a sorted chain:

2 + 2 * number of keys + (average chain length / 2)

Serial DBGET I/Os = number of records / blocking factor

All of the above figures for the number of I/Os for
each IMAGE procedure are the same in batch, with one

If the batch program also does a sort of all of the
selected records from the serial DBGET, the number of
I/Os will be increased.

Batch Calculation Example

exception. If a batch program reads a dataset serially,
the I/Os required will be:

The following example computes how long a specific
batch program will take to run; the program makes the
following IMAGE calls:

,-- .. '

125,000 DBGETs serial; blocking factor is 5.
80,000 DBPUTs to a detail dataset with two keys.
80,000 DBFINDs.
80,000 DBGETs to the dataset with the DBFIND.
80,000 DBUPDATEs.

Total l/Os required =

I/Os for DBGET (205,000 / 5) plus
I/Os for DBFIND ( 80,000 X 1) plus
I/Os for DBPUT (80,000 X 6) plus
l/Os for DBUPDATE(80,000 X 1).

equals 681,0001/Os.

We can do approximately 20 l/Os a second so

681,000
= 34,050 seconds = 9.5 hours

20

4-4-6



If the batch program also is intended to run overnight,
but is unlikely to finish in one evening, because time is
also needed for backup and other daily functions.

Improving Performance

How can the total time of this program example be
reduced to 3.9 hours? One way is to replace the DBPUT
with a DBUPDATE. In many instances it is possible,
through changes in the application and database design,
to use a DBUPDATE instead of a DBPUT. This is
especially true in environments where there are recur­
ring monthly charges, which change only slowly over
time.

There is another advantage to using DBUPDATE.
For each DBPUT, a record is added to the database,
and this record must later be deleted using DBDE­
LETE. Because it takes as long to delete the record as it
did to add it in the first place, the DJBUPDATE can
provide as much as an eight-fold decrease in running

time, compared with DBPUT/DBDELETE.

COBOL Compatibility

When designing a database, keep in mind how the
database is going to be used (COBOL, QUERY, AQ,
PROTOS, etc.). The following rules apply to item types
and should be used throughout the database.

Numeric Fields

When the database was first designed, all fields were
initially declared as type X (display). By now you
should know the likely maximum value for each data
item. Once the size of each data item is fIXed, the time
has come to specify a more efficient data type for
numeric fields.

The type of field used for numeric values depends on
the maximum size of the number to be stored (Le., the
number of digits, ignoring the sign). The following table
should be used in determining numeric types:

Number of Digits

<5
<10

>=10

IMAGE Data type

J 1
J2

Packed-decimal of the appropiate size.

Rule: For numeric fields, use J1 for fewer than five
digits; use J2 for fewer than ten digits; otherwise,
use a P-field (packed-decimal) ofthe appropriate
size.

In COBOL, an S9(2)V9(2) COMP variable is consid­
ered to have a size of 4, or Jl. The one exception to this
rule is sort fields. All sort fields must be type X. If a
numeric sort field is required, it must be declared as
type X and redefined as zoned in all COBOL programs.
Remember that packed fields in IMAGE are always de-

clared one digit larger than the corresponding COBOL
picture (S9(11) COMP-3 becomes P12) and must be al­
located in multiples of four.

COBOL databases must not contain R-fields, because
R-fields ha~e no meaning in the COBOL language. In­
stead of an R-type field, a J-type or P-type field must be
used. The STORE database contains an R-type field,
CREDIT-RATING, which should have been declared
as:

CREDIT-RATING, J2; « Customer credit rating. The larger
the number, the better the customer's
credit. Used to five decimal places.

»

Key Types

Every key, whether in a master or detail dataset, must
be hashed to obtain the actual data associated with the
key value. Hashing is a method where a key value, such
as customer number 100, is turned into an address. The
method used tries to generate a different address for
every key value, but in practice this is never possible.
The choice of the type ofkey has a large bearing on how
well the hashing function will work.

Rule: Always use X-type, V-type, or Z-type keys, and
never use J-type, R-type, P-type, or I-type keys.
Type X, type U, and type Z keys give the best
hashing results.

When using a Z-type for a key, leave it as unsigned in
all COBOL programs. Because key values rarely have
negative values, there is no effect on the application by
removing the sign from a zoned field. The advantages to
leaving off the sign are: (1) displaying the field in
COBOL or QUERY results in a more "natural"
number, and (2) problems between positive, signed, and

.unsigned zoned numbers are avoided.

Date Fields

Rule: Dates must be stored as J2 (89(6) COMP) in
YYMMDD format.

This format provides the fastest access time in
COBOL and takes the least amount of storage. Use a

4-4-7



standard d.ate-editing routine to convert from internal to
external format and vice versa.4

The only exception to this is when .a detail chain must
be sorted by a date field. Because IMAGE does not
allow sorting on J2 fields, X6 is used. For the chain to be
sorted correctly, the date must still be stored in
YYMMDD format.

Other Item Types

The only item types that should be used are J- or
P-types for numeric values, and X-, U- or Z-types for

keys. The K-, 1- and R-types should never be used in a
commercial application where COBOL is the primary
development language.

Example

Earlier, in the discussion of logical database design,
four items were described: CUST-STATUS, DELIV­
DATE, ON-HAND-QTY, and PRODUCT-PRICE. The
following example gives the actual IMAGE declaration
for each of these items, according to the rules of this
section:

CUST-STATUS,

DELIV-DATE,

ON-HAND-QTY,

PRODUCT-PRICE,

X2;

J2;

J2;

J2;

« Defined state of a particular customer
account. The valid states are:
10 = advance
20 = current
30 = arrears
40' = inactive

»
« Promised delivery date.
»
« Amount of a specific product currently

onhand. Only updated upon
confirmation of an- order.

»
« Individual product price, including

two decimal points.
»

Primary Paths

Rule: Assign a primary path to every detail dataset.

IMAGE organizes the database so. that accesses
along the primary path are more efficient than along
other paths. The primary path should be the path that is
accessed most often in the dataset.

If there is only one path in a detail dataset, it must be
the primary path. If there are two paths that are acces­
sed equally often, but one is used mostly in on-line pro­
grams and the other mostly in batch programs, assign
the primary path to the one that is used in on-line pro­
grams. A primary path is indicated by an exclamation
point (!) before the dataset name that defmes the path.
A path with only one entry per chain should not be
selected as a primary path.

The Schema
The IMAGE schema is the method by which you tell

both IMAGE and the programmers what the database
looks like. The schema should be designed with
maximum clarity for the programmer, because IMAGE
is only partly concerned with the schema's layout.

Rule: The schema file name is always XXXXXXOO,
where XXXXXX is the name of the database.

\ This naming convention makes locating the schema
easier for all staff. The file is always located in the same

4-4-8

group and account as the database. If the database
name was STORE and t~e STORE database was built in
the DB group of the USER account, the schema name
would be STOREOO.DB.USER.

Layout

A clear layout of the schema makes the programmer's
job easier. Some requirements of the layout are im­
posed by IMAGE, but there are still a number of things
that the database designer can do to make the schema
more understandable.

Every database schema should start with a SCON­
TROL line. The SCONTROL line must always contain
the TABLE and BLOCKMAX parameters. The default
BLOCKMAX size of 512 should always be used when
first implementing the database. Later, after careful
consideration, the BLOCKMAX size may be changed.
When first designing the database, $CONTROL
NOROOT should be used.

The $CONTROL line should be followed by the name
of the database. This is followed by a header comment.
This comment describes the designer of the database,
the date, the conventions used in designing the schema,
abbreviations that ar-e used within IMAGE names, and
sub-systems with which the database is compatible and
incompatible.

The following are the opening lines of the example
STORE database:

",-,,"



$CONTROL TABLE,BLOCKMAX=512,LIST,NOROOT
BEGIN

DATA BASE

«

AUTHOR:

DATE:

STORE;

STORE DATABASE FROM THE IMAGE MANUAL

DAVID J. G~EER, ROSELLE CONSULTING LTD.

DECEMBER 15, 1981

CONVENTIONS:

This schema is organized. in alphabetic order. All master datasets are
listed before detail datasets, and automatic masters come before
manual master datasets.

All dates are stored as J2, YYMMDD, except where they are used as
sort fields. If a date is a sort field, it is stored as X6, YYMMDD.

The following abbreviations are used throughout the schema:

NO
CUST
QTY

= Number
= Customer
= Quantity

This database can be accessed by COBOL, QUERY', AQ and PROTOS. Note
that the STREET-ADDRESS field is incompatible with QUERY, but AQ
can correctly add and modify the STREET-ADDRESS field.
»

Naming of Items and Sets

Rule: Names must be restricted to 15 characters; the
only special character allowed in names is the
dash (-). This ensures that the names are compat­
ible with V/3000 and COBOL.

The percent sign (%) should be replaced with the ab­
breviation "-PeT", and the hash sign (#) should be re­
placed with the abbreviation "-NO".

Item Layout

The easiest layout to implement, maintain and under-

stand is to declare everything in the database sorted in
alphabetic order. The items in the database should
begin with a'$PAGE command to separate the items
from the header comment. Each item appears sorted by
its name, regardless of the item's type or function.

In many IMAGE applications, the schema also acts
as the data dictionary. For this reason, it is very impor­
tant that every part of the database design be com­
pletely documented in the schema. Document each item
as it is declared'. To make each item stand 'out, the fol­
lowing layout should be used:

CUST-NO, Z10; « The customer number is used as a
key field in the M-CUSTOMER dataset.
It is also the defining path in
the D-ORDER-DETAIL dataset.

»

The item name, its type, and the comment start in the
same column for every item. Each part of the item defi­
nition will stand out, and because the item names are in
sorted order, the applications programmer can easily
fmd a particular item.

Dataset Layout

Every dataset declaration must be preceeded by a .
header comment that describes the use of the dataset
and any special facts that the programmer should be

aware of.
When accessing the dataset from a COBOL program,

it will be necessary to have a COBOL record which
corresponds to the dataset. In order to prevent confu­
sion between two occurrences of the same item as a
field in several datasets', a prefix will be assigned to each
of the variables in the COBOL buffer declaration. This
prefix is selected by the database .designer and must
appear on the same line as the name of the database.
For example:

4-4-9



« The M-CUSTOMER dataset gathers all of the static information
about each customer into one dataset. A customer must exist
in this dataset before any sales are permitted to the
customer. This dataset also provides the necessary path
into the D-SALES dataset.

»
NAME: M-CUSTOMER, MANUAL (1/2); «PREFIX=MCS»

The AUTOMATIC, MANUAL or DETAIL keyword
must always appear in the same column. This makes
reading the schema easier, and by searching the file for
a string (by using \L"NAME:" in QEDIT) it is possible

to produce a nice index of dataset names, their types,
and their prefixes. The following example prints an
index of the STORE dataset names:

:RUN QEDIT.PUB.ROBELLE
ILQ STOREOO.DB "NAME:"
NAME: M-CUSTOMER, MANUAL (1/2); «PREFIX = MCS»
NAME: M-PRODUCT, MANUAL (1/2) ; «PREFIX = MPR»
NAME: M-SUPPLIER, MANUAL (1/2); «PREFIX = MSU»
NAME: D-INVENTORY, DETAIL (1/2); «PREFIX = DIN»
NAME: D-SALES, DETAIL (1/2); «PREFIX = DSA»

Rule: Automatic master datasets have names that start
with UA_".

They must be declared immediately after the ite~

declarations, separated from item declarations by a
$PAGE command, and they must appear in alphabetic
order.

Rule: Manual master datasets have names that start
with UM_".

The manual master datasets follow the automatic
master datasets, again preceded by a $PAGE command.
Like the automatic masters, the manual master datasets
must be declared in alphabetic sequence.

Rule: Detail dataset names start with uD_".

The detail datasets follow the manual master
datasets, and the two are separated by a $PAGE com­
mand. The detail datasets also appear in alphabetic or­
der.

Field Layout

Without exception, the fields in every dataset must be
declared sorted alphabetically. There is a strong ten-

dency to try to declare the fields within a dataset in
some other type of logi~al grouping. Because this logi­
cal grouping exists only in the mind of the database
designer and cannot be explicitly represented in IM­
AGE, it should never be used. By declaring" fields in
sorted order, the applications programmer can work
much faster with the database, since no time has to be
spent searching for fields within each dataset.

The database designer can still group fields together
in a dataset by starting each field with the same prefIX.
If a dataset contains a group of costs, they might be
called VAR-COSTS, FIX-COSTS and TOT-COSTS. To
group these items together in the dataset, call them
COSTS-VAR, COSTS-FIX and COSTS-TOT. This
maintains the sorted field order in each dataset, while
allowing for logical grouping of fields.

Most datasets contain one or more key fields. A key
field is specified by following it with (). Because the ()
pair is sometimes hard to see, a comment should be
included beside every key field, indicating that the field
is a key. In a detail dataset, the primary key should
include a comment to that effect. The following exam­
ple shows how to declare the fields in a dataset:

« The D-SALES dataset gathers all of the sales records
for each customer. The primary on-line access is by customer,
but it is necessary to have available the product sales
records. The PRODUCT-PRICE is the price at the time
the product is ordered. The SALES-TAX is computed based
on the rate in effect on the DELIV-DATE.

»
NAME: D-SALES,

4-4-10

DETAIL (1/2); «PREFIX = DSA»



ENTRY:
CUSt-ACCOUNT(!M-CUSTOMER)

,DELIV-DATE
,PRODUCT-NO(M-PRODUCT)
,PRODUCT-PRICE
,PURCH-DATE
,SALES-QTY
,SALES-TAX
,SALES-TOTAL

«KEY FIELD, PRIMARY PATH»

«KEY FIELD»

,
CAPACITY: 600; «D-SALES; 3 * CAP(M-CUSTOMER»>

Capacities

Analysis of the data flow of the application should
result in an approximate capacity for each dataset.

Rule: The capacity ofmaster datasets must be a prime
number.

To see if a number is prime :RUN the PRIME pro-

gram contributed by Alfredo Rego. Master datasets
should never be more than 80% full (see DBLOADNG
below, under "Database Maintainence"), and detail
datasets should never be more than 90% full.

The line with the capacity must be formatted in the
following way:

CAPACITY: 211 ; «M-CUSTOMER,PRIME; ESTIMATED»

The comment after the capacity gives a method for
determining the approximate capacity of the dataset.
Most detail datasets have a capacity that is related to
the master datasets having paths into the detail
datasets. These relationships should be described in the
capacity comment.

By doing a \L"CAPACITY", it is possible to obtain

quickly an index of the capacity of each dataset in the
schema. Because the capacity is always the last line of
each dataset declaration, doing a \L"M-CUSTOMER"
will identify the beginning and ending declarations for
the M-CUSTOMER dataset. The following example
lists the capacity of the datasets in the STORE
database:

:RUN QEDIT.PUB.ROBELLE
/LQ STOREOO.DB "CAPACITY:"
CAPACITY: 211; «M-CUSTOMER,PRIME; ESTIMATED»
CAPACITY: 307; «M-PRODUCT;PRIME; ESTIMATED»
CAPACITY: 211; «M-SUPPLIER,PRIME; ESTIMATED»
CAPACITY: 450; «D-INVENTORY; 2 * CAP(M-SUPPLIER»>
CAPACITY: 600; «D-SALES; 3 * CAP(M-CUSTOMER»>

Final Checkout

Mer the schema is entered into a file, it must be

:RUN through the schema processor, and any typing
mistakes should be eliminated:

:FILE DBSTEXT=STOREOO.DB
:FILE DBSLIST;DEV=LP;CCTL
:RUN DBSCHEMA.PUB.SYS;PARM=3

The table produced at the end of the schema should
be studied. The following anomalies should be checked:

1. Large-capacity master datasets with a blocking
factor less than four (either' increase the
BLOCKMAX size to 1024, or change the master
dataset to a detail dataset with an automatic mas­
ter dataset).

2. The blocksize is too small (IMAGE optimizes the
blocking factor to minimize disc space); use RE­
BLOCK of ADAGER to increase the blocking fac­
tor. The blocksize of all dataset blocks should be

as close to the BLOCKMAX size as possible.
3. Are there more than two paths into a detail

dataset? If there are, can some of them be deleted?

Establishing the Programming Context

By using IMAGE, the COBOL programmer's job
should be simplified, since all access to the database is
done through the well-defined IMAGE procedures.
Like most powerful tools, IMAGE (and COBOL) can
be abused by the unsuspecting user.

Rule: Define a standard IMAGE communication area

·4-4-11



and put this area in the COPYLIB.

The starting point for using IMAGE is the standard
parameter area, which includes the IMAGE status area,

the various access modes used, a variable for the
database password, and a number of utility variables
which are needed when using IMAGE. For example:

05 DB-ALL-LIST PIC X(2) VALUE "@ ft.

05 DB-SAME-LIST PIC X(2) VALUE "* "
05 DB-NULL-LIST PIC S9(4) COMP VALUE o.
05 DB-DUMMY-ARG PIC S9 (4) .
05 DB-PASSWORD PIC X(8) .
05 DB-MODE1 PIC S9(4) COMP VALUE 1.
05 DB-KEYED-READ PIC S9(4) COMP VALUE 7.
05 DB-STATUS-AREA.

10 DB-COND-WORD PIC S9(4) COMP.
88 DB-STAT-OK VALUE ZEROS.
88 DB-END-OF-CHAIN VALUE 15.
88 DB-BEGIN-OF-CHAIN VALUE 14.
88 DB-NO-ENTRY VALUE 17 .
88 DB-END-FILE VALUE 11 .
88 DB-BEGIN-FILE VALUE 10.

10 DB-STAT2 PIC S9(4) COMP.
10 DB-STAT3-4 PIC S9(9) COMP.
10 DB-CHAIN-LENGTH PIC S9(9) CaMP.

88 DB-EMPTY-CHAIN VALUE ZEROS.
10 DB-STAT7-8 PIC 39(9) CaMP.
10 DB-STAT9-10 PIC S9(9) COMP.

Rule: Establish naming standards for all variables as­
sociated with IMAGE databases.

Standard prefixes must be used on all database var­
iables, including the database, dataset, data field and
dataset buffer declarations. A suggestion is to start all

01 DATASET-M-PRODUCT.

05 DB-SET~M-PRODUCT

05 DB-BUFFER-M-PRODUCT.
10 MPR-PRODUCT-DESC
10 MPR-PRODUCT-NO

Field Lists

The selection of the type of field lists depends on the
answer to this question: Can your total application be
recompiled in a weekend?

Rule: Use "@" field list is you can recompile in a
weekend (prepare a COPYLIB member for each
dataset); use u*" field list otherwise and hire a
DBA!

If the answer to the question is "yes," the at ("@")
field list and full buffer declarations should be used
when accessing the database. This method requires that
all dataset buffers be declared and added to the
COPYLIB. If a dataset changes, the buffer declaration
must be changed in the COPYLIB, and all affected pro­
grams must be recompiled. The simplest solution is to
recompile the complete application system whenever a
dataset changes.

4-4-12

database variables with "DB-", all data,set names with
"DB-SET-", and all database buffer declarations with
"DB-BUFFER-". Data field names are prefIXed by the
special dataset prefix (which the designer established in
the schema), so that each field has a unique name. For
example:

PIC X(10) VALUE "M-PRODUCT;".

PIC X(20).
PIC 9(8).

There must be two complete COPYLIBs available for
every application. One is for production, and one is for
development.

Rule: Use a test COPYLIB during development.
Double-check that all existing programs will re­

, compile and :RUN correctly before moving the
new COPYLIB into production!

When a database is restructured, the buffer decla­
rations are fIrst changed in the development COPYLIB.
When the new database is put into production, the de­
velopment COPYLIB is also moved into production, as
well as any programs that required modification or re­
compilation.

If the application system is so large that it cannot be
recompiled in a weekend, it should use partial field lists
and the same ("*") field list. This requires that an appli­
cation program declare a matching field list and buffer

"---



area for each dataset that it accesses. The field list de­
clares the minimum subset of the dataset that the appli­
cation program needs.

Because partial field lists are more expensive at run
time, the applications programmer must code a one­
time call to DBGET for every dataset that the applica­
tion program will use. The same ("*") field list is used
on all subsequent DBGET calls. Note that this can
cause problems if a common subroutine is called that
uses one of the same datasets, but with a different field
list.

In order to maintain an application with partial field
lists, there must be a way to cross reference every
program/dataset relationship. When a dataset changes,
the cross reference system is checked to see which pro­
grams use the dataset. Each of these programs must be
examined to see if it is affected by the change to the

01 DB-BUFFER-M-CUSTOMER.
05 MCS-CITY
05 MCS-CREDIT-RATING
05 MCS-CUST-ACCOUNT
05 MCS-CUST-STATUS

88 MCS-CUST-ADVANCE
88 MCS-CUST-CURRENT
88 MCS-CUST-ARREARS
88 MCS-CUST-INACTIVE

05- MCS-NAME-FIRST
05 MCS-NAME-LAST
05 MCS-STATE-CODE
05 MCS-STREET-ADDRESS
05 MCS-ZIP-CODE.

10 MCS-ZIP-CODE-1
10 MCS-ZIP-CODE-2

Repeated items should be declared with an occurs
clause, or sub-divided, whichever the application re­
quires. For example, a cost field may be declared as a
repeated item ~epresenting fIXed, variable, overhead,

dataset. It is not enough to fix the COPYLIB and re­
compile, since the field declarations are in the individual
so~rce files, not in the COPYLIB fIle.

Dataset Buffers

The database designer assigns a short, unique prefIX
to each dataset of each database. These prefixes are
used in the declaration of the database buffers for the
datasets. In addition, dataset buffer declarations must
include all 88-level definitions for flags, and sub­
definitions for IMAGE fields that are logically sub­
divided within the application.

The following is the full buffer declaration for the
M-CUSTOMER dataset of the STORE database. Note
that each variable is prefix~d with "MCS-", which is the
prefiX that was assigned by the database designer..

PIC X( 12) .
PIC S9(4)V9(5) COMP.
PIC 9(10).
PIC X(2).

- VALUE "10".
VALUE "20".
VALUE "30".
VALUE "40".
PIC X(10).
PIC X(16).
PIC X(2).
PIC X(25) OCCURS 2.

PIC X(3).
PIC X(3).

and labor costs. Rather than declare the costs field as a
repeated item in the actual buffer declaration-, sub­
divide it into the four costs. For example, assume a
declaration for costs such as:

COSTS, 4J2; «Cost of an item. Each cost has two
decimal points and the cost item
is broken down as follows:
COSTS(1) = Variable costs
COSTS(2) = Fixed costs
COSTS(3) = Overhead costs
COSTS(4) = Labour costs

»

Assuming that the COSTS field was declared in the
D-INVENTORY dataset, which has a prefix of "DIN",

01 DB-BUFFER-D-INVENTORY.
05 DIN-COSTS.

10 DIN-VARIABLE-COSTS
10 DIN-FIXED-COSTS

10 DIN-OVERHEAD-COSTS
10 DIN-LABOUR-COSTS

the following buffer declaration would be used for the
COSTS field:

PIC S9(1)V9(2) CaMP.
PIC S9(1)V9(2) CaMP.

IMAGE/COBOL: Practical Guidelines

PIC S9(1)V9(2) COMP.
PIC S9(7)V9(2) CaMP.

4-4-13



Rule: Prepare sample COBOL calls to IMAGE in
source files, with one IMAGE call per file.

The sample IMAGE calls should be organized with
one parameter per line. When programming, these
template IMAGE calls must be copied into the COBOL
program and modified with the database name, dataset
name, and any other necessary parameters.

General purpose SECTIONS, declared in the

COPYLIB, should NOT be used for the IMAGE calls.
These SECTIONS obscure the meaning of the COBOL
code. In addition, they can cause unnecessary branches
across segment boundaries.

A scheme for handling fatal IMAGE errors must be
declared, and the sample IMPAGE calls should refer to
the fatal-error section. Here is a sample call to the
IMAGE routine DBFIND:

CALL "DBFIND" USING DB-
DB-SET­
DB-MODE1
DB-STATUS-AREA
DB-KEY­
DB-ARG-

IF NOT DB-STAT-OK AND NOT DB-NO-ENTRY THEN
PERFORM 99-FATAL-ERROR.

The fatal-error section (99-FATAL-ERROR) should
call DBEXPLAIN. It should also cause the program to
abort, and the system job-control word should be set to
a fatal state. Note that just using STOP RUN Will not

set the system job-control word to a fatal state. The
following is an example of a fatal-error section. The
routine MISQUIT calls the QUIT intrinsic, which
causes the pr~gram to abort.

$PAGE "[99] FATAL ERROR"
*******************************••*********************1*1**1**
* THIS SECTION DOES THE FOLLOWING: *
* 1. CALLS DBEXPLAIN WITH THE IMAGE STATUS AREA. *
* 2. CALLS MISQUIT TO ABORT THE PROGRAM. *
* ** NOTE: THIS MODULE MUST ONLY BE CALLED AFTER A FATAL ERROR'
* HAS OCCUR.ED WHEN CALLING AN IMAGE ROUTINE. *
* ****I*I1***I**I I I I I I 1.*****I **I***1* *I I*******I****I I*I****I*I I*

99-FATAL-ERROR SECTION.

CALL "DBEXPLAIN" USING DB-STATUS-AREA.

CALL "MISQUIT" USING DB-COND-WORD.

99-FATAL-ERROR-EXIT. EXIT.

Rule: Avoid tricky data structures, especially if they
cannot be easily retrieved arid displayed with the
available tools (QUERY, AQ, PROTOS, QUIZ,
etc.).

Some examples of data structures to avoid: (1) julian
dates; (2) bit maps; (3) alternate record structures (RE­
DEFINES); (4) implied and composite keys/paths; and'
(5) implied description structures. The more compli­
cated the database structure, the more .likely. it is that
programming or system errors willbe created as a result
of the database design.

Database Maintenance

There are a number of steps that the database admin­
istrator must take in order to guarantee that a database

4-4-14

remains clean after it is implemented. A number of
standard programs must be run against each production
database at least once a month; others must be run
daily.

Backup

A number of other people have commented on the
backup problem of databases,12 but the problem is im­
portant enough to deserve comment again. Most
HP3000 shops do a full backup once a week and a par­
tial backup once a day. This is normally sufficient for
most purposes (e.g., source fdes, PUB.SYS, utilities),
but it is not adequate for most IMAGE applications. An ~
IMAGE database consists of several interrelated fdes. 7
A database that is missing one dataset is nearly useless.

Rule: EVERY backup tape should include ALL of the



files of ALL of the database that are used in
day-to-day applications.

There should be an easy way to store complete
databases onto partial backup tapes, without having to
do selective stores. The BACKUP program (available
from the San Antonio Swap Tape) helps solve this prob­
lem. The BACKUP program is run once a day against
every production database. It accepts the database
name as input and causes the last-modified date to be
changed to today's date on every file of the database.
This causes the entire database to be included on the
daily partial b.ackup.

In addition, the BACKUP program prints a listing
with the following information: the dataset name, the
current number of ~ntries in the dataset, and the capac­
ity of the dataset. Further, the BACKUP program ex­
amines the relationship between the number of entries
and the capacity of each dataset, and prints a warning if
it thinks the capacity is too small. This listing must be
checked daily, in order to have time to expand the
capacity of a dataset before it is exceeded.

Measuring Database Performance (DBLOADNG)

The penormance of a given database will change as
the database matures.

Rule: The performance of every application database
should be' measured at least once a month.

There is one program that will measure, in great detail,
the performance of an IMAGE database. This program
is DBLOADNG,I-12 and it is available from the HPIUG
contributed library.

DBLOADNG examines the performance of both
master and detail datasets, and reports a large number
of statistics. The most important are the perceqtage of
secondaries in master datasets, and the elongation of
detail datasets.

If there are a large number of secondaries in master
datasets, either the hashing algorithm is not working
well, or the capacity of the dataset needs to be in­
creased. Note that the hashing performance of a key,
such as customer number, can be improved by adding a
check digit'to every customer number.

The "elongation" of a detail dataset indicates whether
logically related records are being stored physically ad­
jacent. For primary paths, the elongation factor should
be very small (l=perfect), since IMAGE tries to place
records of a primary-path in the same disc block (see
the DBLOADNG documentation and Optimizing IM­
AGE: An Introduction. 1

If the performance of detail datasets is very poor be­
cause logically related records have been spread around
the disc, there is only one solution: RELOAD the
database using DBUNLOAD/DBLOAD. This will
cause the detail dataset to be organized along the pri­
mary path, and could result in significant performance
improvements.

Logical Database Maintenance

During the design phase of an IMAGE database,
many logical assumptions are made about the data in
the database. Some assumptions might be: (1) status
fields, which are two characters long in a detail dataset,
but have a long description in a master dataset; (2) keys
that are stored in detail datasets, but do not have an
explicit path into a master dataset; and (3) IMAGE
chains that are limited to a specific length (e.g., one
address per customer) or a range of lengths (e.g., no
more than 10 items per order).

Rule: When designing a database, keep a list oflogical
assumptions.

These assumptions are dangerous, because they must
be maintained by the application software, n~t by IM­
AGE.

Rule: A' program to check logical assumptions should
be implemented for every application system.

This program is often called DBREPORT, and its
purpose is to check these logical assumptions.
DBREPORT is often left until last, and often never im­
plemented. This is unfortunate, since the DBREPORT
program is the most important program in an applica­
tion system.

In Alfredo Rego's paper, DATABASE THERAPY: A
practitioner's experiences 12, he describes periodic
checkups for a database. The following is taken from his
paper:

Please notice that a good diagnosis system
must be nasty and sadistic by nature. It has as
its primary objective to FIND ERRORS, not
to certify a system as being error-free (there is
no such system anyway!). A good diagnosis
system must also be extremely patient and
humble, since it will fail many times. Please
keep in mind that there is a psychological in­
version in effect here: A good diagnosis sys­
tem fails if it does not detect any errors. And
most of the time it will not detect any errors,
since we hope and assume that the entity
being tested is reasonably error-free."12

The DBREPORT program must be designed with Al­
fredo's philosophy in mind. It should check EVERY
dataset in an application, and it should check EVERY
r~cord for logical consistency. This includes simple
checks to see that every field in every dataset is within a
reasonable limit. Examples of this are status fields that
take on values from 1 to 10, but which are implemented
as Jl. A Jl variable can take on values from - 32768 to
+32767, which is certainly a larger range than 1 to 10.

The DBREPORT program must check all logical
dataset relationships. What happens if every customer
record has its address in a detail dataset? If the system
crashes while the user is adding a new customer, the
address record may not be added. DBREPORT must

4-4-15



check for these types of relationships (what will your
billing program do when it can't find an address?).

ADAGER

Rule: If an application system is going to depend on
IMAGE, ADAGER is a requirement, not an op­
tion.

ApAGER provides all of the restructuring facilities
necessary to maintain IMAGE databases; these
transformations cannot be accoplished with
DBLOADIDBUNLOAD. Without ADAGER, nu~er­

ous conversion programs must be written.

While DBLOAD/DBUNLOAD can be used for some
simple database restructuring, it is prone to err. AD­
AGER is designed to be friendly to the end user, but,
more importantly, ADAGER guides the user through
every phase of the database restructuring process.

ADAGER provides a powerful facility, but it can also
be misused by the unsuspecting. In order to make AD­
AGER changes effectively, test them first on a devel­
opment database. Following changes to the database
structure, the application programs must be recompiled
(with buffers changed in the development COPYLIB),
and each program must be tested against the new
database.

Currently, ADAGER cannot be run from batch (at
least, not conveniently), nor does it produce a hard­
copy audit trail of the changes to a database.

Rule: ADAGER must be run on a printing terminal.

Keep the listing of the ADAGER changes to the test
database. Use it to verify that the changes to the prod­
uction database match exactly the changes to the test
database. After changing the production database,
move the development COPYLIB into production and
recompile all affected programs. File the hard-copy list-

4-4-16

ing of the ADAGER changes and keep it for future ref­
erence.

Because the schema is also used as the data dictio­
nary, it must be modified to indicate the new database
design. ADAGER's SCHEMA function can be used to
double check that all schema changes were made prop­
erly. When modifying the database schema, be sure to
apply all of the rules in the Schema section of this pa­
per.

BIBLIOGRAPHY
To gain a complete understanding of IMAGE, study the references

in this bibliography. A suggested order of study is: References 6, 7, 9,
10 and 11 for more ideas on database design; S for some hints on
common programming errors; arid 1, 3, 8, 12 and 13 for notes on
optimizing IMAGE databases and application systems in general.
Reference 1 is an excellent introduction to database optimization, and
it includes a discussion of the DBLOADNG program.
IRick Bergquist, Optimizing IMAGE.' An Introduction, HPGSUG
1980 San Jose Proceedings.

IGerald W. Davidson, !mage Locking and Application Design, Jour­
nal of the HPGSUG, Vol. IV, No.1.

3Robert M. Green, Optimizing On-Line Programs, Technical Report,
second edition, Robelle Consulting Ltd.

4Robert M. Green, SPLAlDS2 Software Package, contains date edit­
ing routine (SUPRDATE) available from Robelle Consulting Ltd.

5Robert M. Green, Common Programming Errors With IMAGE/
3000, Journal of the HPOSUG, Vol. I, No.4.

8Hewlett-Packard, IMAGE/3000 Reference Manual.
~Karl H. Kiefer, Data Base Design - Polishing Your Image,
HPGSUG 1981 Orlando Proceedings.

8Jim Kramer, Saving the Precious Resource - Disc Accesses,
HPGSUG 1981 Orlando Proceedings. .

9Ken Lessey, On Line System Design and Development, HPGSUG
198·1 Orlando Proceedings.

lOBrian Mullen, Hiding Data Structures in Program Modules,
HPGSUG 1980 San Jose Proceedings.

llAlfredo Rego, Design and Maintenance Criteria for IMAGE/3000,
Journal of the HPGSUG, Vol. Ill, No.4.

12Alfredo Rego, DATABASE THERAPY: A practitioner's experienc­
es, HPGSUG 1981 Orlando Proceedings.

13Bernadette Reiter, Performance Optimization for IMAGE,
HPGSUG 1980 San Jose Proceedings.


	Section 4—Language Support
	IMAGE/COBOL: Practical Guidelines


