
.LOOK/3000
A New Real-Time System Performance Monitoring Tool

Kim D. Leeper
Wick Hill Associates Limited

INTRODUCTION

All programs resemble one another. This might seem
to be a rash statement but let us examine the facts.
Programs were designed to perform the same task over
and over again; in order to do this, one must design the
program to iterate through a set of data. This is true
even on interactive programs. Each screen could be
thought of as an input step in preparation for future
major loop in the system. This paper will deal with how
to identify these loops without having seen the applica­
tion code.

If the reader directs his/her attention to Figure 1, slbe
will see a generic application flowchart. The application
in question has five loops labelled A, B, C, D and E. The
number of times each loop is executed is also noted
beside each loop. In order to transform this generic ap­
plication flowchart into a program, the chart must be
turned into a linear diagram. A linear diagram is re­
quired because a computer executes a single thread of
instructions. A programmer's job is to be able to
translate the two dimension flowchart into a linear se­
ries of instructions. This diagram may be seen in Figure
2.

If we were to examine the execution of this generic
program over a period of time, we would find that the
amount of time spent at a given location of memory
would be proportional to the number of times we exe­
cuted the corresponding program loop. This is
graphically demonstrated in the time graph of Figure 3.

Some obscure law of computing, probably one of
Murphy's Laws, tells us that the linear diagram as de­
scribed above is going to be too long to fit inside the
physical- constraints of the computer we are program­
ming for. This restriction presents us with an interesting
problem - how to divide up the program so we can
execute it on our machine. On the HP3000 this act of
dividing the program up is called segmentation. Before
delving into segmentation in depth, let us examine a
mathematical/graphical explanation of the subject of
locality.

What is Locality?

Locality is a measure of how well segmented your
program is. I define it as the ratio of the number of
intemalPeALs to the number of external PeALs on a

percentage basis. In equation form it would be the fol­
lowing:

number of internal peALs in a segment .
number of external PeALs in the same segment

The word PCAL stands for procedure call. It is the
instruction generated by the language compiler when, in
your application program, a CALL is made to a library
routine in COBOL, a SECTION is PERFORMed or a
named procedure is executed in SPL. See Figure 4 for
visual assistance in understanding this concept.

Why is Locality Important?

I am sure that you have all heard the following com­
ment on segmentation: "Once in a segment stay there;
Once out stay out." This comment is very appropriate
to the HP3000 because of the significant difference in
execution time between an internal PeAL and an exter­
nal PCAL. Once you get into a segment, the program is
advised to stay there because internal PeALs are twice
as fast in execution compared with external PCALs. An
internal PeAL/EXIT pair takes about 13 micro-seconds
to execute on a Series IIIIII. An external PCAL/EXIT
pair takes approximately 27 micro-seconds to execute
on a Series II/III if the target code segment is in mem­
ory. If the code segment has to be read externally from
the disk, then a disk access has to be added which
brings the execution time up to 35-45 milli-seconds.
This is obviously a significant time difference.

It is now possible to appreciate that ill-advised seg­
mentation can have a. significant adverse effect on the
performance of the application program in question.
You should aim to program for a maximum number of
internal PCALs per segment. If you don't, you will
waste time. To optimize your system from the time
point of view, you must therefore segment your pro­
gram appropriately.

How Do You Identify If Your Program
Is Appropriately Segmented?

One can use four different methods to identify ifyour
program is properly segmented. The methods are as
follows:

3-2-1

4

generic application

flol~chart

Figure 1

3-2-2

linear -flow
diagram

Figure 2

increasing time

time graph

Figure 3

Seg # o. t
with respect to this segment~

internal peAls
----------------» 1
external peAls

internal PCAls
---------------- ~ 1
external PCAls

c
c-t.....
....J.....
N
~

c+.....
e
:3

c:
c-t.....
....J.....
N
~

c-t'.....
e
:::3

Seg # 0 ~

with respect to this segment

63

;nterna1 PCAls
---------------- <:<: 1
external PCAls

~

c
c-+.....
--'.....
N
g"
c-t'.....
e
::s

Seg # 0 t
with respect to this segment~

locality Diagrams

Figure 4

63

3-2-3

1. use PROGSTAT out of the contributed library
2. use your eye
3. use programmer placed counters in the code
4. use LOOK/3000

PROGSTAT is an interesting program designed to
provide a picture of how a program is segmented. It
produces a list of external system references that the
program under examination calls. It gives a separate
count of external segment references that are satisfied
within the program file itself. It also gives the segment
lengths both actual and in a graphic form so one can
balance the code lengths. PROGSTAT, unfortunately,
does not provide a count of internal calls per segment so
the designer may not calculate the locality profIle as
described earlier. PROGSTAT does not provide enough
information to properly resegment one application pro­
gram.

The oldest method available to the designer to seg­
ment hislher application code is to use the eye. This
technique is dependent upon the experience of the indi­
vidual using it. It is. prone to error. The technique is
time consuming. It is always biased. The designer might
not realize that the data flow occuring in real life is not
the way slbe imagines it to be. If the designer does not
correctly segment the program for the flow of data
emanating from the user, then the program might as well
not be segmented. But how does the designer determine
the character of the data flow? This brings us to the next
method.

Placing counters in the code is a way of· gathering
information to help in the determination of appropriate
segmentation. By judicious placement of the counters,
we may determine an execution profile to assist us in
proper segmentation. However, this technique is
fraught with problems as well. The counters need to be
initialized; they will need debugging; they will require
stack space, and they will interfere with execution. The
worst problem they introduce is that in a tight applica­
tion program, placing counters in the code might require
resegmentation just to get the program to run.

If we can use this method, we do gather some infor­
mation as to how the data flow is causing the program to
execute in a particular number of segments. The data
from the counters could be used to draw some locality
diagrams to assist in the resegmentation process.

The last method of determining if your program is
segmented correctly is to use a system called LOOK/
3000. This is a software tool provided by Wick Hill
Associates Limited. LOOK produces the locality dia­
grams as· shown on the next few pages. The biggest
advantage LOOK provides is to allow the designer to
watch the way the application is really being used with
real data in real time, so when s/he resegments the ap­
plication slbe has some assurance that the segmentation
corresponds to the way the program is really being
used. See Figures 5-9 regarding the displays LOOK
produces.

Figure 5 is the display which allows the user to pick
out the program/process that slhe wishes to examine in
depth. This display is called the "SPECIFY PRO­
GRAM SCREEN." The user identifies the process that
slbe wants to examine by noting the PIN of that pro­
cess. The PIN is known as the process identification
number and is the number by which MPE manages your
program. This PIN is entered and LOOK starts to ac-

. quire data regarding the process so identified. Every 10
seconds the display is updated. After the user enters the
PIN of the process to be examined, the next screen is
shown.

The next screen is called the "SEGMENT MAP SC­
REEN." This screen may. be seen in Figure 6. It is the
Locality Diagram of the program which was identified
,in the previous screen. This display helps the user to
gain an understanding of the interaction between seg­
ments that make up the program under examination.
This screen will be updated every 10 seconds. The user
is now required to choose which segment slbe wishes to
examine more closely. In this example segment number
5 was chosen.

The display shown next is Figure 7. It is called the
"UNIQUE SEGMENT SCREEN." It is an overall map
of CPU activity in this segment. In this example the
user was only able to get two data points in this seg­
ment. Had the user waited longer, s/he would have ac­
quired more data regarding segment number 5. The dis­
play shows that since the user chose to examine this
segment, the CPU has executed two instructions in this
segment. The first instruction is located between %1000
and %1377. The second instruction is located between
%2400 and %2777. The user may choose any location to

16 1 144
20 42 (I

~?- .. ~g ... _.g?~ -
24 (I 0
27 2 4643
30 4 413'·
32 (I 0··
33 . - '-f-" E.2

?TA.C~<. . ;·HJN CF'U
..g..J~?tt .?~?E P I.t·4.* s.~t;'iS TINE

USE~

HAME

SI HON ,CQ~~~ .. ~ ... S~S':' ...4924
SIMON .• GOLUB ~ S38~. 11036

. ...SII'10H ,GO'-l!~.. ...C.. S3~.~ _'_7r~4.__ ..
~. ~IMON ,GOLUB C ?4.07. ~o~~

... _..~ I ~Ot~i' GOL~~ _ .I?__ ~~ 1..?_ .;361?
MA~~AGER .' '''11~..... " .__.~" .. 54.06.. _g~684

) MANAGER ,SVS C 5380 2140
-- SIMON "-.~.. ~.~. ~9h.~~_~~ ... (: .$4'03" .- 4924'.SltS

.GOLUB
,1.dHA

FILE
.r~~~H~.~I_~II. .-_.------------------------
s: __ ._ENTR'r' ,PUB .' SYS .
•r-=- ..ORDRNTR'(. SKORDS ,GOLUB
'1--.-- .O.RDRUTRY, St\ORDS •GOLU~.
" c , I. ' (LISTF
1~ .. _._. $ARJ3~Q_ •PUB
'1 APLi3 • PUB
'i .._.. C.' I , (Rf=:PL Y J Q_,.7
'''! gt~TR'.· ,PUB

Figure 5

·:3 - ..2-4

PROGRAM NAME = uRORNTR'(. SKOf([JS •GOl.UB TOTAL HUMBER OF SEGMEHTS = 42
. .

... Lg~qT.~. ~.F .~~f!ti.~~i.I u= :~ ~ ~31 4~,I". ~eC;M;;iT HUHBER = :~05
'~~'~-'" " ~
'!_ uJiDt).R£.$$ • ~002400.,
)r' -.. -. - -. .t - ..IHl~ .. PRU\lRAI't WAS_. RUN Qt~. A ..sERIEs...~II_. " ..._..__u·· .-

:' .. HlG I •
'i. 95 I *
';. .n'.'. 90 I *

I.J! 85 I *
II ._ ..__ _. 8 0 i •
II: 75 I *
::~..~ _~_"H . 70 l.. .. •... . _..__ ._ .., _. ._ .. __.__ p _ __ ••• ",_" "'_' H_" .

t-.. 65 I * .
nf-'..:~-' TJ~,E ~Q I _~_ -..- _.__ '_.__ .' .._.. __. _.. .. .__.. _.__._ _
,,~_:?p.~!~r_. S5 I * _ _..__ _.__._._ _._u._ _. '" ".' .. _._._.
17~__AT__ SQ. J.. . _. _. __!. _.__. _. .. _ ~._ ._._ ._..__._._.__. ..
"r .AQQ.~~$.$ 45 I . . *.. _.._ _.._ -_. .__. . _. ._ _ _ _.._._.._.
"t----- _.. ~Q....l- ...- - ..-!.--....-._ _ _.- .------ -.._ - _ _.__._-.
":.. _ __ __ 35.. I.... ,.. .!. _.. _..' _ _.. _ _ .. ._~. __ ..__ __.. __ _ __ . " ._ _ .__
JI~_ ;J..Q. .• l .. _. ._... __......:!'_.. . __.__ . . . _____
n~- .. - -- -. 2~ J _. . .._*._- _.._. _~_ .. _ .._- __.. .__ __._._.. _ _ __._
JJ~ ••• ---2fLL__.. _ * _ . ._.__._. . -........_

:\.- ~~~==..::.. tl~.t~==~~ ~~~:--;--=~=_=.~~=--_..-.-.._--.~==---==-_=_= ..=_-=~~~~~-~~~.~~~~.====J6L _ _. _.' _.. _~ t _..... . _.~. _ u •._ _._ _ ••• __ ••• _ ••__._ •.• _ •.•••__ _ •••• -._••••__ ._ • ._ __•• •__••

JlL..-J:..Q_~.f!.IION JH+--:=~-_-:-.:-:":"::.::=_:.=.~:_:.~:.::.::=::=_-:.-:::_~:.::.:.:__===_=_:__=.:__=.:.::_-~-::.:_:..:.:::::=.=.:.::._:__=__:..:.. _
ul SEGMENT -> 000000001111111122222222333333334444444455555555666666667777777711;=··-C.-QiiQ~~·~~ ..jl_~_i~~ 7_Qi2.~~.~~-?j i 2~4-5e01~~456701·2·345·67·of2j4 ~6·~·of~34 56~7-01j3'i ~§j_~ .-=..~.~~=
»

":' -··Toi~~~~Ur1BEIt.OF.~_~~p~g.~.:.Js.·~.i.~=-·~.~~ ..~~=-~'~===~~~.-'-''''-''-~=~=~-==~~~~=~.~.-~ ..~=~~ _=~.-=

Figure 6

PROGR~M HAME = ORDRHTRV.SKORDS .GOLUB TOTAL HUMBER OF SEGMENTS = 42

'! .SEGrIEHT. .,iiUHEcER = :~ 05
%1 .

3! ._lie) [~Rf S.S .. = :~ " "24 0 0
~ ;
i· .

s. ._IHIS fROGRAr, .t.... AS RUN OH _A. SERIES.....llJ ..,.

---_._.-.-------_....-------_.__.

.. :
1 OU I
9S I
gO .I

I'" 95 I
II ao I
11 7S I .
lJ 70 J ..
u; .._.. . t$5 .. I
I) r-~-'! .lM.E... ~ 0 J. _ ... -- .----- -.-..-_._.. ------ -. -.__.._-- .._.. .---. - ...__.-_.-_..__.
1'~._.,;2pf;:trr__ .55 J ". .. - . _.. -. - _ -.--------. - ----.-- -.-.--.--- -.-- - -
"~T SQ.._.I -* ._-* ,-.... _ --_ - .---.-- ---------..----- -..---.---.----.---.-- --
,·~ .._AOQE~$~ .. ~~._l.-. * .* .. - .-._- - .. ,-.- ..-..--------.--- ..------------..... - -.- ..----- .,.-. --- --.----..- -....
"L_-_.. u_ ••• !t9_.J.... -~ - ! -..- -.._- .. - ..-----..---. ---- --..---- ..- ----- - --.. -
20~._. . . .35 -..1. .* * .. ,,__ .__ __.__.. .__ .~ .._._.__ __ -._._.-- - - - ._
1', ~Q._l._ ..* * _. .. __ .._.__ .._._._. ..._u .__. . .__.__ ._._ ..__
J2~. ., .•._ . __ .•?5. t *. * _ _ ._. ._._._ .__.__.__._._.. _.__ _.._.. __ " _..__ .
::r. }~-.l -:....-: .. -.-.-. ._- -. . -"--- .----.---------.- --------

.............. _.... __.I....-.--.----.-----...-.... -.--.---.--..---.--.--.....----... -_. -_.--_.-._ ... _ ..
15. .1_~.~,!-_--,! _. _ ••._.._.. .. . - ..__.__. _

a'L. ._._. __ ..~ _I. * *. __ ._ .._ _ - -._ _ - _ --... . -..-..-- _ -.- --_ - .
III +~~-~-~~--~~--~-~~-~-------~~-~~~-~~-~----~--~~---~------------~--~~,.iLac-AT fot~JH-'-'----' ..- -_.- ---'1' "'1 iilTffl-1w l"1-·,-fI222222·222222·2-2223·33333-333j·33333'3-'----'-,_... - _.._ . _.._ _. . .__._.._._._ _n . ._. _.- ..__-..__ __ .
n~ECt1~J:lT__-=~ oQ1 '.~.~.~~445_~~~~7 ~QJ t~2.:$1~~.~~~67l9~.! 12_~~:t.,_~~_~~.?!.9..QJJ.~~~.~~~_~~!~.?L _ _.. __
att._. __~ l.Q..9 . (1_4 (J Q.~ (14 04 94 Q~ 9~o~ c,~ ~~.rl.i~~ 9~.9_i.q!tqi9~.9~.94.2..4 o~ 9_~_Q...~~~gi9_~ 9..~S!~9.~.~.~.9. "'.'__ ._ __
SI •..---.... _. __...._-_....-._....... _.....__ . _ .
~~\ ..__IQ1B.L. tiIJt1.6EB..Qf._.$At1Pl.ES .IS..~ .. _ _ __..__._.._ . __.__. _.. __ . . _

Figure 7

PROGRAM NAME = ORORHTRV.SKOROS .GOLUB TOTAL NUI18£R OF SEGHEHTS = 42

:I~= J~E.{!Ijl;t:lT l"U\18~R .. Y. OS

:t=._.f.4P~R~S£l ~ Youu24uu

, TH IS F'icOGJ<AM WAS RUN.. OH .A _$_~R.I~$ t' I J~ __ ~_~..'.:'_~' _.. ~ "
'I~'- .-.- ... ~_..... .-...... -- .
J 1__ " , U~I 1 . *.__.".._._. __ .
" 95 I *
tj 90 I * _. _ .If' .. _.... 8S' 1 III

Hi'. __ . 80 I *
u: 75 I *
I;, •.70. J.. *._ _ _.. . _ __ _ _.._.._ _. _ _ _ .
14:... .6~ .. 1 * _ _ _ _.. __ __ __'_'." __ ..
::\:-~pl~~~···~~··.l : _.... "':-".: ..~.~.~ ~=-~ ..~:~:-.=~_.~._~_~~~::-~~.~~=~~~_~_~~::::-.~.-.---~~~~_ -.. ~.~~ .
"r;-~T-.. . ~o. .1 -n· ••- • - ••- ~_.--•.• -.-.- --••• - .--••------ ••_.-.-._- ••__••.•••_-

" ~Q..P.~E~_~. ~5 .1 _. .. " ._~. __ _ . . ._.._ _._ _ _ ._..: __ __ __.

::! --.-'=.-::~..':;;' ~ t. _.... .. -.:~.~: .~:.::. _.:- ~:.=~:=.~.'.-= .~.~~:=~~~~==~:= ..~~= .~---:~:~~~: ..-~ _~.~." _:=~.~

.UI--CcjcA·fioH·-iH- .. ·..· --~--OOi-..22·Jj4455667-7·----·----·Ci·o_(f223·j·4455667·7--i"H-----···-- ---··-·
2iI: '-SE'CMEt~T-' .~> .002000+ 04'0-404 04'04 0'404'04 .0'(1300 0+-04 ij40·4·0·40~fo40·4 (j·4- ..--..0CTAC--·..·..···· _.-- .---

I· .-.--.---- .. __.•..•..... --.-----.--.--.•--------------••- ...•-----------.---- _-
~i. _. '" ...-~·9 QQQ9~.Q. ~_oQ_9.~o 09 .._.._00 •• __90 ~.~~_o~..Q.Q~ 0 0 0~o_.__ _..._._.

:1':-.!9fA..L"-i~.~H~~E~if.:QF-·s.~l'!PIl;fJ:§_.(~~ ..·=====~-:.=--=-~-==~~:-==='=-.=-==:
.-'

Figure 8

.~

.....

PROGRAM HAME = O~ORHTRV.SKORDS .GOLUB TOTAL HUMBER OF SEGMEHTS = 42

f. SEq~lgtn .. Hu'1'l6ER .. Y.05 .. ~L..!;~CiTK..OF.. S~.qME~(·.';''' .1tO.~.3(~0

:I..~.~ ..B~~R~.$.$.= ~uCl24QO • '''_'H'•. H'"

:1~_~~H.1S...PI<QG.QAi'1 .WAS. RUt~ OH ~ .$.~.J.~~._.ll L ~ ~~:~~~.:~_ :.. ~':~':'.'.".

:I~' ._- '..~ ~ (II '" . . --.-_._... :'. . -'.' .~~- :.'- -. ~~~~ ~ ~ .:~ '..' .:'
t ..__ ._._._ _ 'Q~ I _ . _ .__ _. __ __ .n.. .
,. 85 .1 .. . _ _..
II _. u_ 8Q .. 1 __ __ _ _ __ .
II. .?~. 1 . . ." _ _ _..
\St.-._ .. __ _ 70 1 ._.__ .__ ._. .. .__._.. __ ._._._._ _ .
'~'l" '. .. 6.~. I. . .. '~I-- .-_ _.. .. - -..~ .
u ~.. r..~ ,.,S-..__~.~ j _ _ .__ ._ _ _.. . _ __ . _ . ._ _ _ _._.._.__._. .
"1_ .. ~f'.gt~T .. 5.~ I. . _._. ._ _ __ _._._ _.. . .__. .._.. _._ .
::~~.~CMEI~.T ..;~.J .. -.--.-._.. . - ---.. -. ------.- -.-.---.--.--------..
~:i~~=~~·jrt~~··· .-~.-- - --_.. _: -=~.~:~~:.==~~~~=~~~~~_-~.~~~- ..~ .~~ .. -~..~-_=.~=.~~~_~~~~.- ~.~

t=~I~~~~~~~l~~
2. __ •... __• _.__.§..__J._._ _ ~ ~ ~ ~ _. _.__ _ _ .. __._~!..__. __.. .. ._.. __ _ _ _ __._.

11 +------~---2. 'sifcMEHTi - -·---··i- ..----2·--··-j·· . 4 5 --6--' 7 ---
n --·FROM·-PMAP=·~·· 0 1'2'~56~~~~~~~1!~~'456?"ci f ~fJ'4S'6'71ii ~f345670i2J45-~7 O·1-2·3~r5·6·70f:ij·4-56----.=

II --····TOTA·L H~MBER' OF~~~~.Pb.~~.~.I s__!~..~: ._'_':~.'=~ .._-_..__.....-----.----.-.......-.-----.-- --.-..--..._..... _-....­
. Figure 9

3-2-6

~;",
' - ~

look at but in this example slbe chose to examine the
octal location 2400. This value is input and the user is
now shown a more detailed display located_ ar~und the
location %2400.

This more detailed screen is called the "KILO­
WORD WINDOW ON SEGMENT." Figure 8 shows
this display very clearly. This display allows the user to
determine if slbe wishes to continue examining this 10- ­
cation in greater detail or whether s/he wants to move to
another. The next screen shows this location at an ex­
panded scale.

The new display is called the "CENTI-WORD WIN­
DOW ON SEGMENT" screen. It gives such a detailed
view of what is happening in the segment that the user
may read off the actual address of where LOOK caught
your-application program. This is shown graphically in
Figure 9. The address of the data point is %2415. This is
where LOOK found the application program. If one ex­
amined the program over a longer period of time, then
one could obviously get a much better picture of where
the program under examination is spending its time.

By judicious use of LOOK/3000, one may locate
down to the instruction address, where the application
program is spending its time. Once this fact has been
discovered what can be done about it?

ACTION PLAN

Three things can be done in order to improve the
locality characteristics of an application program.
These are as follows:

1. recode parts of the application code more effi­
ciently

2. duplicate code modes by making them internal
PCALs with judicious use of INCLUDES or
COPYLIBS

3. resegment your application code
Where do we direct our attention to begin with? This

is where the proprietary software tool called LOOKI
3000 is invaluable. LOOK displays clearly where the
application program is spending a large percentage of its
execution time. As other authors have noted, programs
spend 900/0 of their time executing 10% of the code. The
trick is to identify which portion of the code you are
spending your time in.

Once the offending part of the code is identified you
could recode that part of your application. You might
find your code executing a particular· DBGET in the
application program. Closer examination reveals the
DBGET is acting on a data with a sorted chain that you

thought had been removed months ago. You modify the
schema to remove the sorted chain and the program
now has a different profile because the application is not
waiting for IMAGE to read down the chain.
Alternatively one could fmd the application code con­
stantly calling another segment in your application.
Closer examination would possibly· indicate that the
routine in constant use is a small one. The decision
could be made to put this routine iQ a COPYLIB or
INCLUDE fde that could be inserted at compile time by
the language translation. ·This action would make the
code segment slightly larger but would remove an ex­
ternal PeAL.

LOOK/3000 can also help in the process of resegmen­
tation of an existing program with an outdated design,
Le., where the application usage has changed.

CONCLUSION

As this paper has shown, poor segmentation on the
HP3000 is an important contributor to poor application
performance. We have seen various techniques to iden­
tify where a program is spending its time. We have seen
the transformation between locality diagrams and seg­
mentation. Various techniques have been offered re­
garding the evaluation of segmentation of a given appli­
cation program. The most straightforward way of de­
termining where you are spending your execution time
is to use LOOK/3000. This is a proprietary software
tool available from Wick Hill Associates, Ltd.

REFERENCES
1. Author unknown, "Segmentation for Maximum Efficiency of Sys­

tem Tape Programs," Communicator Number 5.
2. Author unknown, "Segmentation in COBOL," Communicator

Number 12.
3. Author unknown, "Software Optimization Through Segmenta­

tion," Proceedings of lUG, February 1975.
4. Robert Green, "Principals for Optimizing Penormance ofOn-Line

Programs," HPGSUG Vol. II, No.2, 1978.
S. Jim Squires and Ed Splinter, "System Penormance Measurement

and Optimization," Proceedings of lUG, November 1978.
6. Gerry Wade, "Programming for Survival," Proceedings of lUG,

November 1978.
7. Rodney V. Smith, "Application Design for the HP3000," Proceed­

ings of SCRUG, September 1980.
8. Robert Green, ·'HP3000/0ptimizing Batch Jobs," Proceedings of

lUG, April 1981.
9. Author unknown, U Application Design Course," HP Part #

22808A, November 1980.
10. Author unknown, "Application Design and Optimization for the

HP3000," SE reference document, June 1978.
11. Jon W. Henderson, "Design and Segmentation Techniques for

Large SPL Programs," Proceedings of lUG, February 1980.

3-2-7

~..... -- ~

	Section 3—Utilities
	LOOK/3000: A New Real-Time System Performance Monitoring Tool

