REX/3000 AS A PROGRAMMER PRODUCTIVITY TODOL
Lance Carnes
Consultant
Mill Valley, CA

March 1981

ABSTRACT.

Programmer productivity is an important issue today: programming
effort is the single largest factor in the design, implementation and
maintenance of software systems. This paper surveys the major aspects
of productivity: reducing programming effort, increasing progranm
reliability, providing run—time efficiency, and reducing the cost of
software production, Each of these aspects and its relationship to the
others is explored. A unique high-level languager, REX/3000 is
recommended as a solution to boosting programmer productivity.
REX/3000 programs are used to illustrate points made.

I. INTRODUCTION.

As the costs of labor and money increaser so do the pressures to
control and reduce operating costs. In data processing departments
programming personnal costs are the single largest cost factor,
Organizations which have dezalt with this problem attribute much of
their success to the use of productivity tools [1].

Productivity tools are designed to reduce the time and cost required
to produce software. The project manager can implement software more
economically and with more efficient use of personnel through
appropriate use of these tools. Equally as important is the user
satisfaction with the scoftware product developed using the
productivity tool.

Tha interest in increasing programmer productivity is evident from thae
number of articles in trade journals and conference proceedings
dealing witnh the subject. Most software departments nave a larger
backlog of programming reguests than they have staff to do the work,
Of the time spent in programming, typically 60% to 70X is involved
with maintaining existing systems, while only 33% to 40% is wutilized
in new development. The cost of a person-month of programming effort
is high and will continue to increase. New hardware is being developed
faster than the software it will run.

Wednesday J-3 - 01

Typically, productivity tools meet the traditional productivity
requirement: decrease the amount of code required to implement the
system and, therefore, reduce the programming effort. This is an
obvious path to take and has proven successful. However, the result is
often that with the reduced effort comes & reduction in the quality of
the software. These tools are frequently specialized for certain
applications and have limited scopes; once the limits are exceeded,
the application must be redone using a different, usually less
reliable and less productive, method. The system produced with the
productivity tool is often less efficient than the same product
implemented Using standard methods.

REX/3000 is a high=+level language and compiling system designed to
meet the requirements of increased productivity. It has specialized
constructs for report writing which result in a S0% to 904 reduction
of effort over using general-purpose languages. The language was
designed to encourage structured programming and thereby increase
program reliability and correctness. 4s a compiling system it
generates efficient program modules. There is sufficient scope in the
range of applications which can be implemented so that it is rare that
programs must be redone using more general=purpose languages.

In Section II the concept of productivity is defined and expanded.
Section 11l is a brief introduction to the REX/3000 language. Section
IV examines productivity guantitatively, i.e. reducing the 2ffort to
produce software. Section V deals with productivity qualitatively.,
i.e. maintaining reliability and efficiency. Section VI summarizes the
co3t savings realized with reduced quantity and improved quality.
Section VII is a summary cf the points made.

II. WHAT IS PRODUCTIVITY?

Traditionally, programmer productivity is the rate of software
productions i.e.

lines of codea

-k mh am Am ey ki wm als om dn —

person=months

This ratio is derived by taking the total number of lines of code
required to produce a software systam and dividing by the total
personnel time used. The total lines of cocde may refer to the final
code put into production or it may be all code written, e.g. for
documentation, test programs, discarded modules, etc. The total
personnel time may refer only to actual coding time or may include all
time spent in design, training, travel etc. This ratio ¢an be used for
predicting the effort which will be required to produce future similar
systoms.

tnis ratio has limited usefulness because it indicates only the rate
of code production and tells us nothing of the total time or cost of

J-3 - 02

developing a system. For exampler a system which could be developed in
24 months using 20,000 lines cf assembler code has the same
productivity rate as if it were developed in 12 months using 10,000
lines of (COBOL code. Wwhile the rates are the same, the total time and
costs are doubled.

In recent literature, less importance is being given to the gquantity
of software produced and more consideration is being given to the
quality of software [2,3]. The aspects of software reliability,
correctness and efficiency are being explored. These aspects are as
important as reducing programming effort, and in fact play an
important part in reducing the maintenance effort. Quality can also he
measured for the purpose of modelling or estimating as

bugs found actual efficiency
lines of code expected efficiency

The first ratic measures software reliability, which may be required
to fall within a certain tolerance to be considered usable softuware.
The second ratio measures machine resources used versus the allowable
or avaliable resources, and 2 minimum tolerance may he specified to
indicate whether the software has heen successfully implemented. For
example, the daily production must run within 5 24-hour period.

It has become apparent that too much energy has been spent on
increasing productivity rates and not enough on maintaining or
improving program quality. One of the main reasons for this is the
dramatic cost reduction in the development phase as a result of
increased productivity. However, the savings are often cancelled when
the cost of maintaining the error-prone code is considered. Therefore,
productivity tools must treat the issue of quality with equal
importance as quantity.

In the following discussions, we will be concerned with the 1ssue of
quality as well as quantity. The relationship between increased
gquality and reduced effort will be covered.

I11I. WHAT IS REXx/3000?

REX/3000 is a high=lavel language and compiling system useful for
report writing and general data processing. It wss designed to hoost
productivity significantly through use of a comhination of
special=purpose and general purpose language constructs,
Special-purpose constructs, also called non-procedural constructs, are
the heart of the language, allowing programs to be written gquickly.
The general-purpose constructs, also called procedural constructsy
build onto the special-purpose program and increase the flexibility of
the language.

In the following discussion, we will show how the nature of the
languaga promotes productivity. For a more detailed trzatment of the

J-3 - 03

language, see [4,5].

REX can be us2d to develop useful programs quickly. These.same
programs can be expanded as requirements grow. The following example

illustrates this point.

<< WAREHQUSE PARTS SUMMARY >>
DATABASE parts PASSWORD "ANY" ACCESS 5
CATASET part=stock
REPORT
GET parts.part=stock
LIST whse AS "WAREHCUSE",
partd AS "PARTH",
gty AS "QUANTITY"
SCRTEZ0 B5Y whse, parts
SUMMARIZIING gty CN whse, parts
LOOP << end of GET ... LOOP >>
END.

[R Vo 73]

This is a complete REX program, which when compiled and run will
produce the report shoun in the Appendix.

The sections of the program are as follouws:

1) DATABASE declaration. This special-purpose construct
perferms the following functions:

a) it specifies the database name, password and access
mode to be used.

b) at compile time, all attributes of the database.,
the datasets indicated, and the items within each of
the datasets are known = the programmer need not
redeclare the database layout, provide buffers, etcae

c) at execution time, the datavase is opened using the
parzameters from (a).

d) access to the database is available through the
GEYT construct.

€) at the end of the program the database is closed.

This 1s a non-procedural construct, that is, it performs
all of the logic necessary to access the database.

The programmer is insulated from all meachanics of database
UsS@a.

J-3 - 04

2) The REPORY block. This special=purpose construct performs
all of the steps required to produce a2 sorted, formatted report:

a) The items indicated in the LIST statement are read
from the database and written to an extract file.
The extract file is formatted and maintained by REX.

b) At the end of the input phase, the extract file is
sorted in the given sequence {(SORTED BY ...).

¢) The report is now printed with the column headers
(AS "u.e") and control breaks (ON ... } indicated.

This is a non-procedural construct, since the mechanics of
formatting the extract file, sorting it, setting up column
headers, testing for control breaks, etc. are part of the
REX system.

3) The GET statement. This is a special~purpose construct
which reads data from the dataset and performs the following
function:
a) The dataset mentioned is read entry by entry (serially
in this case, although chained access mode is also
available).
b) As each entry is read, the statements between the GET...
and LODP are executed (in this caser, the LIST statement).
¢c) After the last entry is read, transfer is passed to the
statement following the LOGP.

GET is a non=-procedural construct in the sense that the
mechanics of access are hidden from the programmer.

The programmer does have 1o place the LOOP in the right place:s
if the LOOP is omitted, the compiler assumes the loop

includes all statements up to the END.

This code could be written and running correctly in a matter of
minutes. The user would be pleased with the results for at most two
days, and then, of course, would want to expand the function to
include the following:

1) Print the unit price and total value in stock for each
part:

2) Place an asterisk in the column next te part #°s for which
the quantity is zero,

Typically, this is beyond the scope of a non-procedural report writer,
To perform the first requirement, the price will have to be extracted

from a second dataset (PART~MSTR) and multiplied by the quantity. 3Some
logic will have to be implemented to allow the quantity to be checked

for zero and an asterisk inserted.

These reguirements are not beyond the scope of REX, and in fact the
original program may be modified to include the enhancements. The
following is the REX program which will satisfy the above
reqQquirements.

J-3 - 05

<< WAREHOUSE PARTS SUMMARY >>
<< enhanced to print price and value >>
<< will print an asterisk if gty = 0 >>
DATABASE parts PASSWORD "ANY" ACCESS S
DATASET part-stock
PROGVAR star A1
value P5.2
REPORT
GET parts.part-stock
IF gty = 0 THEN star = "%" ELSE star = " "
GET parts.part-master &
WITH part# = parts.part=-stock.part#
LIST whse AS "WAREHOUSE"™., 8
star,
part# AS "PART#",
gty AS "QUANTITY".,
price AS "“PRICE".,
value = pricte * gty
AS "VALUE"
SCRTED BY whse, part#
SUMMARIZING gty ON part#,whse
LOOP << end of GET ... LOOP 2>

Q0 WO 20 20 Q0 Q0 Q0

END .

The following parts were added to the program:

1) PRDGVAR daclaration. A4 program controlled variabler
stars, was declared which can contain one alphaumeric
character (A1). The variable value is a five-digit
packed-decimal number.

2) IF THEN ELSE statement. This statement checks the
qaty for zero and sets the variable star accordingly.

3) GET parts.part-master WITH... « This statement accesses
the master sat (PART-MSTR) keyed by part# to locate the
price.

4) value = price * qty. This calculation is performed
to compute the total value of parts in stock.

The PROGVAR declaration, the IF THEN ELSE and the calculation are
procedural constructs, that is, the programmer has to specify the
mechanics of the function,

Notice that the enhancement was made by adding procedural
{(general~purpose) constructs into the original non-procedural
(special-purpose) program. With most non=procedural report writers,
the enhancement could not be made, and the application would have to
be recoded using a fully procedural language (e.g. COBOL).

In summary, REX allows the creation of non-procedural programs which
can be coded quickly and by less experienced staff members. In
addition, enhancements and more complex programs can usg the rich set
of procedural constructs. The special-purpose {(non=procedural)

J-3 - 06

constructs and the general-purpose (procedural) constructs can be
comhined in the same application.

IV, REDUCING THE PROGRAMMING EFFQORT,

The major emphasis of any productivity tool is to reduce the effort to
produce scftwares. That is, reduce the number of lines of coder and
therefore the time, which would have bzen required to implement the
system using a general-purpose programming languyage.

The use of prodyctivity tools has proven effective [1]. The time and
costs for software development have been significantly reduced using
sych toels, by as much as 50%Z to 90%.

In practicer productivity tools generally are not versatile enough to
De used exclusivelys. This is the chief drawback to such tcols making a
significant impact on the software development process. Typically they
are designed for & limited scope of applications and work well within
these limits. Too oftens the limits of the tool have the following
negative effects:
1) Enhancement reguests which exceed the limits of the tool
are not donesr denying the user timely access to useful ¢
information,
2) The corresponding general-purpose program which includes
the enhancements costs so much to develop that the user
wil]l rationalize that the data is not important enough
to Jjustify the cost.

For example, consider the following application written
in QUERY, a useful but limited tool:

DATA-BASE = PARTS

PASSWORD =>> ANY

MODE =>> §

FIND ALL PART-STOCK.PART#
REPORT

H1,"WAREHOUSE PARTS REPORT",3C
HZ2,"WAREHOUSE PART#¥ QUANTITY".3?2
DsWHSE,15

0,PARTH,22

0,Q7Y,30

S1,PARTSH

S2,WHSE

END

This code could be put into production in a short time and would
provide useful information. However any enhancement reguests must be
looked at with the limitations of QUERY in mind.

For example, if the regquests were the same as those in the example in
the previogus section, QUERY could not he used:
1) Print the unit price and total value in stock for each
part (QUERY can access only one dataset at a time and

J-3 - 07

cannot perform multiplications):

2) Place an asterisk in the column next to part #°s for which
the quantity is zero (QUERY does not have alphanumeric
variables or conditional statements).

The application would have to be coded in a general-purpose language.

The COBOL program which includes the enhancements is given in the
Appendix; it is in excess of 230 source lines.

The main point here is the great disparity in the sizes of the
programs. QUERY has 13 lines where the same application with two minor
gnhancements takes nearly twenty times the number of source lines in
COB0L. The cost of enhancements in this case is much greater than
would be imagined, especially by the user.

REXs, however, provides a reasonable solution. The enhancements
mentioned require only seven additional lines of code and a few
minutes of time. Furthermore, the same source code may be built upons,
avoiding a rewrite in a more general-purpose language.

In summary, REX combines the featurses of QUERY and COBOL. The
programmer can produce simple programs in a short time, and simple or
complex enhancemants can be made by building onto the original source.

Two additional benefits result from using productivity tools to reduce
programming effort:

1} Throw-away programs beccme feasible.

Code can be written for a "what if" inguiry
and then discarded. This would not be possible
with high development costs.

2) Maintenance effort is reduced. The effort, and
therefore the costs of correcting bugs and making
enhancements is reduced. The maintenance duties
can be performed by a less experienced programmer.
The savings are dramatic when considering the cost of
supporting several systems over an extended period
of time.

Vo QUALITY - MAINTAINING OR IMPROVING IT.

In the previous section we noted that a frequent problem with using
productivity tools is their lack of flexibility. Two other problems
are often identified:

J-3 - 08

1) While it is easy to write code, it is difficult
to use structured programming disciplines or octher
techniques which encourage error-free, reliable code.
2) The run-time modules are inefficient, consuming far
more machine resources than the eguivalent program
written in a general-purpose language.

These issues arise when dealing with general-purpose languages as
well. The first point concerns the reliability of programs, i.e. houw
bug=freze the programs are. The second point concerns the efficiency of
the programs, i.e., the amount of machine required to execute the
program.

Specialized productivity tools are generally reliable. They do .not
have the capability of performing complicated seqguences, making it
difficult to introduce bugs. The reliability will be lower, howevers
when the tool is pressed to its limits - programmers oftenm code
‘clever® but difficult to understand programs, or use side~effects of
the system to circumvent the limitations of the language. Where the
language does have some procedural constructs, they are often prone to
the usual logic errors found whan using non-structured languages.

Reliability can be increased by 1) training the programming staff in
one of the structured programming techniques and/or 2) using a
programming language which encourages error-free code. The first is a
common technique when a software department {(_is committed to using
FORTRAN or COBOL; it is usually necessary to set up careful coding
guidelines and review all code produced. The second ‘is less commons
though increasing with the availability of structured languages, e.g.
Pascal, JOVIAL, Ada;, thes2 languagess, however, are not suited for
commercial applications or report writing.

REX was designed to encourage reliable coding. The non—=procedural
constructs perform reliably due to the fact that their function is
well-defined and not alterable by the programmer (e.g. REPORT ...
LIST). The procedural constructs in REX arz borrowed from PASCAL, a
structured, high=~level language [6]. Coding is done using constructs
such as PROCEDURE and REPORT blocks, IF THEN ELSS, WHILE DO, REPEAT
UNTIL and GET LUOP, etc. REX has no GOTC. In short, the programmer
must work with constructs which encourage reliable coding; those
constructs known to be error-prone {e.g. GOTE) are not available.

Efficiency is an important issue, since all programs must eventually
run in production and produc2 their results in an acceptable amount of
time. A program which is inefficient will not be used and must be
designed and implemented again. A program which is marginally
efficient, i.e. runs slowly but within an acceptable range, will be
subject to many costly attempts to speead it up. A program which was
easy to develop but must be tuned constantly once in production has
produced no real savings.

J-3 - 09

While many specialized tools are inefficient at run-time, REX 1is

actually as efficient or more efficient than general-purpose language
systems., The main difference is that most tools are interpretive, T,
whereas REX is a compiling system. An interpreter is a general=purpose
system which has heavy demands on the machine: it is a large program

which has many code segmenits and uses large data areas. In contrast, a
compiler produces an efficient runtime module: the program and data

area requirements are only a fraction of those needed by an

interpretive system. Reducing code and data memory reguirements can
greatly improve performance [7].

REX produces efficient run=—time modules, similar to those resulting
from a general=-purpose compiling system. Segmentation is done
automatically to speed the operation of REPIORT blocks - the input
phase code is in one sagment while the print phase code is in another.
Segment switching is minimized by generating as much code inline and
avoiding PCALs whenever possible. Data segment usage is kept to a
minimum through efficient code generation and the uyse of local
variables, i.2. avoid glebal variables [7]. Since the programs run
efficiently, there is seldem a need to optimize, saving maintenance
effort.

Using REX allows high quality code to be generated with little
additional =2ffort or expense., The resulting programs are easier and
less costly to maintain. The benefits are efficient production
programs without the effort of extensive tuning. Jverall, user and
programmer satisfaction will be high.

VI. HOW ARE CO3STS CUT?

Whenever there is a reducticon of effort, increased program reliability
and dependable machine efficiencysr there is a cerresponding cost
savings. These savings may be immediately noticable, e.g. when
reducing development costs. Or they may occur over an extsnded period
of time, e.g¢. in the maintenance phase ot the software life cycle. In
addition to the savings from reducing effort, costs can bhe cut through
use of less experienced parsonnel.

These are some of the ways costs are cut using productivity teols such
as REX/300C which not only reduce programming effort but encourage
high quality:

1) Higher ceoding productivity results in fzwer person-menths
of effort with a direct cost savings.
2) Higher reliability and efficiency reduce the number of
person=-hours reguired for maintenance over the life of the
software systuom. .
3) Less experienced and therefore lower cost personnel
can implement and maintain scftware systems. The more experienced
staff members can devote mere time to designing current =

J-3 - 10

and future software systems without worrying about
whether there will be time enough for implementation.

VII. SUMMARY AND CONCLUSIONS.

Productivity tcols do exactly what they claim - reduce the time and
cost to produce software. Those tools which also increase the quality
of produced code have the additional benefits of reducing maintenance
time and effort. Jverall, using a procuctivity tool allows more
careful design and planning and better personnel allocatiom, since the
pressure of the great amount of programming effort is relieved.

The quantity of code 1s reduced through the use of special-purpose
constructs. Where these constructs typically reduce the scope and
flexibility of the language, REX/3000 has met this shortcoming by
allowing general=purpose constructs to be built onto the
special-purpose core of the program.

The quality of code produced by productivity toels typically is not so
high as that produced by general-purpose languages. R£X/3000 allows
high-quality cocding through the use of structured programming
techniques and efficiently compiled program modules.

The features of these tocls are attractive and the wise programming
manager will use them to produce economical, timely systems. However
those projects implemented using tools in any capacity are few in
nunber. The overwhelming majority of software systems produced use
general-purpose languages, and overall show low productivity.

The reasons for not using tools are varied: some are legitimate, e.g.
machine portability requirements; most, however, are the result of the
fear of using something "new", or something which appears simplistic.
There is a streak of the old=time wizard in every programmer, and the
fact that the non-data processing user cannot comprehend the nature of
the business is comforting and even protective. Some see the use of
productivity tools as a threat to this mystique. Another common reason
for not using tools is the reluctance to try something other than the
standard methods, unproductive as these are. With the cost of
person—pouwer increasing, the obvious move is towards increased
productivity.

One observer noting the lack of use of productivity tools drew the
following analogy:

ETheyl are so busy digging ditches with pick and

shovel that they haven’t the time to go watch

the bulldozer demonstration [&1.
With the cost of manpouwer increasing, it is imperative that tools be
used in the near future., Those managers who cannot control costs and
time schedules because of low programmer productivity will have to
compete with managers who can make a difference. Productivity tools.,
like REX/3000, will play a major role in making that difference.

J-3 - 1]

ACKNDWLEDGEMENTS.

Many thanks to Grace Gentry and Jean Danver for taking the time to
read this paper and make useful suggestions.

REFERENCES.

1. Government Accounting Office report on data processing costsy,
GAD report #FGMSD-80-35, Washington, D.C., 1930.

2. DACS, A Bibliography of Software Engineering Terms.,
IIT Research Institute, October 1979.

3. DACS, Quantitative Software Models, IIT Research
Instituter, March 19%79.

4. REX/3000 USERS MANUAL, Gentry Inc., 1980.

5. Carnes, Lance, "Design and implementation of REX/3000".,
HPGSUG Meeting Proceedings, Lyon 1979.

6. Jensen and Wirth, Pascal User Manual and Report.,
Springer=Verlag, 1974.

7. Greens, Robert, "HP3000 / Optimizing On-line Programs'.,
HPGSUG, Denver, 1978.

£+ McClures, Bob in 2 speech to the Software Underground.,

San Francisco,r CA, April 1730.

J-3 - 12

APPENDIX.

This section contains the database schema and program
source code and ocutput mentioned in the paper:

Listing of the schema for the PARTS databaser, and the
contents of each dataset.

REX example report.
GQUERY example report.

C0BOL example report.

J-3 - 13

HP32216A.04.01 QUERY/3000 MON, JUL 28, 1980, 3:59 PM
QUERY/3000 READY

B=PARTS
PASSHORD =
ANY
MODE =
1
FORM
DATA BASE: PARTS MON, JUL 28, 1980, 4:00 PM
SET NAME:
PART-MSTR , MANUAL
ITEMS:
PART#, Z4 <<KEY ITEM>>
PART-NAME, Tls
PRICE, P8
CAPACITY: 101 ENTRIES: 3
SET NAME:
PART-STOCK,DETAIL
ITEMS:
PARTZ#, 24 <<SEARCH ITEM>>
WHSE, #]<]
qQTY, Z4
CAPACITY: 414 ENTRIES: 7

LIST PART-MSTR

PART# PART-NAME PRICE
3122 MANUAL #177 275
2142 BRACKET 75
1785 BOLT 1 X 1/4 5

LIST PART-STOCK

PART# WHSE QTY
1785 101 2000
2142 100 730
3122 100 100
2142 102 250
2142 101 100
1785 100 1000
3122 102 0

Listing of the schema for the PARTS database, and the
contents of each dataset.

J-3 - 14

OO~ W~

REPORT

Loop

NRMMNMNRR NN -
MMNWWWLWWLWEWLWRNR

END.

WAREHOUSE PART# QUANTITY

100
100
100

101
101

102
102

1785 1000
2142 750
3122 100

1850
1785 2000
2142 100

2100
2142 250
3122 0

250

REX example raport

REX/3000 VERSION A.1.0623
(C) GENWTRY, INC. 1980

<< WAREHOUSE PARTS SUMMARY >>
DATABASE PARTS PASSWORD 'READER" ACCESS 5
DATASET PART-STOCK

GET PARTS.PART-STOCK
LIST WHSE AS "WAREHOUSE",
PART# AS "PART#",
QTY AS "QUANTITY"
SORTED BY WHSE, PART#
SUMMARIZING QTY ON WHSE

END << REPORT BLOCK >>

J-3 - 15

o L

REX/3000 VERSION A.1.0623
(C) GENTRY, INC. 1980

1 1 1 DATABASE PARTS PASSWORD "READER" ACCESS §
2 1 1 DATASET PART-MSTR
3 1 2 PRICE P6.2
4 1 3 DATASET PART-STOCK
5 1 2
6 1 2 PROGVAR VALUE P7.2
7 1 1 STAR Al
8 1 1
9 1 1 REPORT
10 2 2 GET PARTS.PART-STOCK
11 2 3 IF QTY = O THEN STAR = "#" ELSE STAR = " "
12 2 3 GET PARTS.PART-MSTR WITH PART# =-PARTS.PART-STOCK.PART#
13 2 3 LIST WHSE AS "WAREHOUSE", &
14 2 3 STAR, &
15 2 3 PART# AS "PART#", &
16 2 3 QTY AS "QUANTITY", &
17 2 3 PARTS.PART-MSTR.PRICE AS " PRICE", &
18 2 3 VALUE = QTY * PARTS.PART-MSTR.PRICE &
19 2 3 AS " VALUE" &
20 2 3 SORTED BY WHSE, PART# &
21 2 3 SUMMARIZING "SUMMARY ",QTY,VALUE &
22 2 4 ON WESE &
23 2 4 TOTALING "GRAND TOTAL",QTY,VALUE
26 2 3 LOOP
25 2 2 END << REPORT BLOCK >>
26 2 2 END.
WAREEQUSE PART# QUANTITY PRICE VALUE
100 1785 1000 0.05 50.00
100 2142 750 0.75 562.50
100 3122 100 2.75 275.00
SU:MARY 1850 887.50
101 1785 2000 0.05 100.00
101 2142 100 0.75 75.00
STMMARY 2100 175.00
102 2142 250 0.75 187.50
102 * 3122 0 2.75 0.00
SUIRMARY 250 187.50
GRAND TOTAL 4200 1250.00

REX example report.

J-3 - 16

HP32216A.04.01 QUERY/3000 TUE, JUL 29, 1980,
QUERY/3000 READY
DATA-BASE = PARTS
PASSWORD =
ANY
MODE =
5
FIND ALL PART-STOCK.PART#
7 ENTRIES QUALIFIED
REPORT
H1,"WAREHOUSE PARTS REPORT",30
H2,"WAREHOUSE PART# QUANTITY",32
D,WESE, 15
D, PART#, 22
b, qQTY,30
$1,PART#
$2,WHSE
END

WAREHOUSE PARTS REPORT
WAREBOUSE PART# QUANTITY

100 1785 1000
100 2142 750
100 3122 100
101 1785 2000
101 2142 100
102 2142 250
102 3122 0

exit

QUERY example report.

J-3 - 17

2:10 PM

N

PAGE 0001 HEWLETT-PACKARD 32213C.02.03 COBOL/3000 MON, JUL 28, 1980, 3:57 PM (C

001000$CONTROL USLINIT
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. PARTCOB.
001300 DATE-COMPILED.
MON, JUL 28, 1980, 3:57 PM.
001400 REMARKS.

001500 THIS PROGRAM READS THE “PARTS’ DATA BASE
001600 LOOPS THRU MASTERS, GETS ASSOCIATED DETAILS
001700 AND SORTS THEM; IT THEN READS THE SORT FILE,
o800 OUTPUTING THE SORTED RECORDS, GIVING A SUMMARY
001900 OF TOTAL QUANTITY & COST AT EACH CHANGE IN
002000 ‘WAREHOUSE®

002100 *

002200 PRIMARY SORT KEY - WAREHOUSE

002300 SECONDARY SORT KEY = PART

002400 *

002500 NO PAGE CONTROL PRESENT

002600 *

002700 SET FILE EQUATION :FILE LP=$STDLIST;CCTL
002800 BEFORE EXECUTING

002900 *

003000 ENVIRONMENT DIVISION.
003100 CONFIGURATION SECTION.

003200 SOURCE-COMPUTER. HP3000.

003300 OBJECT-COMFUTER. HP3000.

003400 INPUT~OUTPUT SECTION.

003500 FILE~CONTROL.

003600 SELECT REPORT-FILE ASSIGN TO "LP .
003700 SELECT SORT-FILE ASSIGN TO "SORT,DA".
003800 DATA DIVISION.

003900 FILE SECTION.

004000 FD REPORT-FILE

004100 RECORD CONTAINS 72 CHARACTERS

004200 LABEL RECORD IS OMMITTED.

004300 01 REPORT-FILE~REC.

004400 05 REPORT~FILE-REC-LINE PIC X(72).
004500 SD SORT-FILE

004600 RECORD CONTAINS 24 CHARACTERS.

004700 01 SORT-FILE-REC.

004800 05 SORT-FILE-REC~-KEY.

004500 10 SORT-FILE-REC-WHSE PIC X(08).
005000 10 SORT-FILE-REC-PART PIC 9(04).
005100 10 FILLER PIC X(12).

005200 WORKING=-STORAGE SECTION.
005300 01 SORT~-RCD.

005400 05 SORT-KEY.

005500 10 SR-WHSE PIC X(08) VALUE SPACE.
005600 10 SR-PART PIC 9(04) VALUE ZERO.
005700 05 SORT-DATA.

005800 10 SR-QTY PIC 9(04) VALUE ZERO.
005900 10 SR-PRICE PIC S9(05)Vv9(02)
006000 VALUE ZERO.
006100

006200 01 CONTROLS-AND=-SUMS.

006300 05 SUM=-QTY PIC S9(09) VALUE ZERO.
006400 05 suM=COST PIC S9(12)Vv9(02) COMP-3
006500 VALUE ZERO.

J-3 - 18

PAGE 0002 PARTCOB
006600 05 TOTAL-QTY PIC S9(09) VALUE ZERO.
006700 05 TOTAL-COST PIC S9(12)V9(02) COMP-3
006800 VALUE ZERO.
006900 01 HDR-LINE.
007000 05 EL-CC PIC X(0l) VALUE SPACE.
007100 05 FILLER PIC X(52) VALUE
007200 "WAREHOUSE PART# QUANTITY PRICE VALUE
007300 01 DTL-LINE.
007400 05 DL=CC PIC X(01) VALUE SPACE.
007500 05 DL-WHSE PIC X(08) VALUE SPACE.
007600 05 DL-FILLER PIC X VALOE SPACE.
007700 05 DL-STAR PIC X(02) VALUE SPACE.
007800 05 DL-PART PIC Z(06) VALUE ZERO.
007900 05 DL-QIY PIC Z(09) VALUE ZERO.
008000 05 DL-PRICE PIC Z(07).9(02) VALUE 0.0.
008100 05 DL-COST PIC Z(12).9(02) VALUE 0.0.
008200 01 SUM~LINE.
008300 05 sL=-CC PIC X(01) VALUE SPACE.
008400 05 TEXT-LINE PIC X(17) VALUE "STMMARY
008500 05 SL-QTY PIC 2(09) VALUE ZERO.
008600 05 FILLER PIC X(10) VALUE SPACE.
008700 05 SL-COST PIC Z(12).9(02) VALDE 0.0.
008800 01 BLANK-LINE PIC X(72) VALUE SPACE.
008900 Q1 MISC.
009000 05 COsT PIC S9(09)v9(02) CoMP-3
009100 VALUE ZERO.
009200 05 LINE-COUNT PIC S89(04) USAGE COMP SYNC
009300 VALUE ZERO.
009400 05 AT-END-PILE PIC 59(04) USAGE COMP SYNC.
009500 05 IMAGE-MODE PIC S9(04) USAGE COMP STYNC.
009600 01 IMAGE-DATASET~MAMES.
009700 05 IDN-PART-MSIR PIC X(16) VALUE "PART-MSTR ".
009800 05 IDN~-PART-STOCK PIC X(16) VALUE "PART-STOCK ".
009900 01 IMAGE~STATUS=-AREA.
¢iooc0 05 ISA-COND-WORD PIC S9(04) USAGE COMP SYNC.
¢l0100 05 ISA-DATA-LENGTH PIC $9(04).
010200 05 1ISA-RECORD PIC S9(09) USAGE COMP SYNC.
010300 05 ISA-CRAIN-LENGTH PIC 59(09).
010400 05 ISA-ADDRESS-BACK PIC 59(09).
010500 05 1IS5A~ADDRESS-FORWARD PIC §9(09).
010600 01 IMAGE~CONTROL-WORDS.
010700 05 ICW-TEMP PIC S9(04) USAGE COMP S¥NC.
010800 05 ICW-DBNAME PIC X(16) VALUE " PARTS; ".
010900 05 ICW-DATASET PIC X(16) VALUE SPACES.
011000 05 ICW=-PASSWORD PIC X(08) VALUE “READER ".
011100 05 TICW-MODE PIC S9(04) USAGE COMP SINC.
011200 05 ICW=-DATALIST PIC X(04) VALUE "@ ".
011300 05 ICW-SEARCH-ARG PIC X(16) VALUE SPACES.
011400 0l TDB~PART-MSTR.
01150Q 05 IDB-FPM-PART PIC 9(04) VALUE ZERO.
011600 05 IDB-~-PM-NAME PIC X(16}.
011700 05 IDB~FM-PRICE PIC §9(05)V9(02) COMP=-3.
011800 01 IDB~-PART-STHCK.
G11900 05 IDB-PS-PART PIC 9(04) VALUE ZERO.
012000 05 IDB-PS-WHSE PIC X(06) VALUE SPACES.
012100 05 1IDB~PS-QTY PIC 9{(04) VALUE ZERO.
012200 01 IMAGE-FIND-ITEM PIC X(08) VALUE "PART# ".

J-3 - 19

PAGE 0003 PARTCOB
012300 PROCEDURE DIVISION.
012400 MAIN-PROCESS~CONTROL SECTION.
012500 PaR-~1.

012600 PERFORM OPEN-DB-E.

012700 PERFORM DO-THE-REPORT.

012800 STOP RUN.

012900 DO~-THE-REPORT.

013000 SORT SORT~FILE ON ASCENDING KEY SORT-FILE-REC-WHSE,
013100 SORT-FILE-REC=PART
013200 INPUT PROCEDURE IS GET-ENTRIES-LOOP

013300 OUTPUT PROCEDURE IS REPORT-ENTRIES.

013400 GET~-ENTRIES-~LOOP SECTION 6&0.
013500 PAR-~A.

013600 MOVE "PART-MSTR" TO ICW-DATASET.
013700 MOVE 2 TO ICW-MODE.
013800 CALL "DBGET" USING ICW-DBNAME,

013900 ICW~DATASET,
014000 ICW-MODE,

014100 IMAGE~STATUS-AREA,
014200 ICW-DATALIST,
014300 IDB-PART-MSIR,
014400 ICW~SEARCH-ARG.
014500 IF ISA-COND=-WORD = ZERO

014600 PERFORM GET-NEXI~-MASTER UNTIL ATI-END~FILE = +11.
014700 GO TO END-OF-INPUT.

014800

014900 GET-NEXT-MASTER.

015000 PERFORM GET-THE-DETAILS.

Q15100 MOVE "PART-MSTR" TO ICW-DATASET.
¢15200 MOVE 2 TO ICW-MODE.
015300 CALL "DBGET" USING ICW-DBNAME,

015400 ICW=-DATASET,
015500 ICW-MODE,

015600 IMAGE-STATUS-AREA,
015700 ICW-DATALIST,
015800 IDB~PART-MSTR,
015900 ICW-SEARCE~ARG.
016000 IF ISA-COND-WORD NOT = ZERO

016100 MOVE +11 T0 AT-END-FILE.

016200

016300 GET-THE-DETAILS.

016400 MOVE "PART-STOCK" TO ICW-DATASET.
016500 MOVE 1 TO ICW-MCDE.
016600 MOVE IDB~PM-PART TO ICW-SEARCH-ARG.
016700 CALL "DBFIND" USING ICW-DBNAME,
016800 ICW-DATASET,
016900 ICW-MODE,

017000 IMAGE-STATUS-AREA,
Gl7100 IMAGE-FIND-ITEY,
017200 ICW=-SEARCH=-ARG.
017300 IF ISA-COND-WORD = ZERO

017400 MOVE +5 TO ICW=-MODE

017500 PERFORM PART-STOCK~-LOQP

017600 UNTIL ISA-COND~WORD NOT = ZERQ.
017700 PART-STOCK-LOOP.

017800 CALL "DBGET" USING ICW-DBNAME,

017900 ICW-DATASET,

J-3 - 20

PAGE 0004

PARTCOB
018000 ICW-MODE,
018100 IMAGE-STATUS~AREA,
018200 ICW-DATALIST,
018300 IDB-PART-STOCK,
018400 ICW-SEARCH-ARG.
018500 IF ISA-COND-WORD = ZERO THEN
018600 MOVE IDB-PS-WHSE TO SR~WHSE
018700 MOVE IDB=PM-PART TO SR-PART
018800 MOVE IDB-PS-QTY TO SR—QTY
018900 MOVE IDB-PM-PRICE TO SR-PRICE
019000 RELEASE SORT-FILE-REC FROM SORT-RCD.
019100 END-OF-INPUT. EXIT.
019200 REPORT-ENTRIES SECTION 70.
019300 PAR~C.
019400 PERFORM CLOSE-DB-E.
019500 OPEN OUTPUT REPORT-FILE.
019600 MOVE ZERO TO AT-END-FILE.
019700 RETURN SORT-FILE INTO SORT-RCD
019800 AT END DISPLAY " NO SORT RECORDS"
019900 STOP RUN.
020000 WRITE REPORT-FILE-REC FROM HDR-LINE
020100 AFTER ADVANCING 1 LINES.
020200 WRITE REPORT-FILE-REC FROM BLANK-LINE
020300 AFTER ADVANCING 1 LINES.
020400 MOVE SR-WHSE TO DL-WHSE.
020500 PERFORM WRITE-THE~REPORT UNTIL AT-END-FILE = +99.
020600 MOVE SUM-QTY TO SL-QTY.
020700 MOVE SUM-COST TO SL-COST.
020800 WRITE REPORT-FILE-REC FROM SUM-LINE
020900 AFTER ADVANCING 2 LINES.
021000 WRITE REPORT-FILE-REC FROM BLANK-LINE
021100 AFTER ADVANCING 1 LINES.
021200 ADD SUM-QTY TO TOTAL-QTY.
021300 ADD SUM-COST TO TOTAL-COST.
021400 MOVE "GRAND TOTAL" TO TEXT-LINE.
021500 MOVE TOTAL-QTY TO SL-QTY.
021600 MOVE TOTAL-COST TO SL-COST.
021700 WRITE REPORT-FILE-REC FROM SUM~LINE
021800 AFTER ADVANCING 2 LINES.
021900 WRITE REPORT-FILE-REC FROM BLANK~LINE
022000 AFTER ADVANCING 2 LINES.
022100 GO TO END—OF-REPORT.
022200
022300 WRITE~THE-REPORT.
022400 IF SR-WHSE NOT = DL-WHSE
022500 THEN MOVE SUM-QTY TO SL-QTY
022600 MOVE SUM=COST TO SL-COST
022700 WRITE REPORT-FILE-REC FROM SUM-LINE
022800 AFTER ADVANCING 2 LINES
022900 WRITE REPORT=-FILE-REC FROM BLANK-LINE
023000 AFTER ADVANCING ! LINES
023100 ADD STM-QTY TO TOTAL-QTY
023200 ADD SUM~COST TO TOTAL-COST
023300 MOVE ZERO TO SUM-QTY, SUM-COST
023400 ADD 3 TO LINE-COUNT.
023500 IF SR—QTY = ZERO
023600 THEN MOVE "* " TO DL-STAR

J-3 - 2]

PAGE 0005
023700
023800
023900
024000
024100
024200
024300
024400
024500
024600
024700
024800
024900
025000
025100
025200

025300 END-QF-REPORT.

025400

PARTCOB

ELSE MOVE " "
MOVE SR-WHSE TO
MOVE SR-PART TO
MOVE SR-QTY TO
MOVE SR-~-PRICE TO
MULTIPLY SR~PRICE

GIVING
MOVE COST TO
ADD COST TO

ADD SR-QTY TO

TO DL-STAR.
DL-WHSE.
DL~PART.
DL-QTY.
DL~PRICE.
BY SR-QTY
COST.
DL-COST.
SUM-COST.
SUM-QTY.

WRITE REPORT-FILE~REC FROM DTL-LINE
AFTER ADVANCING 1 LINES.

ADD 1 TO LINE~COUNT.

RETURN SORT-FILE INTO SORT-RCD
AT END MOVE +99 TO AT~END-FILE..

EXIT.

025500 SUPPORT-ROUTINES SECTION 80.
025600 OPEN-DB-E.

CALL "DBOPEN" USING ICW-DBNAME,

ICW-PASSWORD,
ICW-MODE,
IMAGE-STATUS—-AREA.

THEN DISPLAY "ERROR IN DBOPEN",
ISA-COND-WORD

CALL "DBCLOSE" USING ICW-DBNAME,

ICW-DATASET,
ICW-MODE,
IMAGE-STATUS-AREA.

TREN DISPLAY "ERROR IN DBCLOSE",
ISA-COND-WORD.

VALUE

50.00
562.50

275.00
887.50

100.00
75.00

175.00

187.50
.00
187.50

025700 MOVE 5 TO ICW-MODE.

025800

025900

026000

026100

026200 IF ISA-COND-WORD NOT = ZERO

026300

026400

026500 STOP RUN.

026600 CLOSE-DB-E.

026700 MOVE 1 TO ICW-MODE.

026800

026900

027000

027100

027200 IF ISA-COND-WORD NOT = ZERO

027300

027400
WAREHOUSE PART# QUANTITY PRICE
100 1785 1000 .05
100 2142 750 «75
100 3122 100 2.75
SUMMARY 1850
101 1785 2000 «05
101 2142 100 «75
SUMMARY 2100
102 2142 250 «75
102 * 3122 2.75
SUMMARY 250
GRAND TOTAL 4200

1250.00

COBOL example report.

J-3 - 22

