The MPE IV Kernel : History, Structure and Strategies

John R. Busch
Member of the Technical Staff
Hewlett Packard Corporation
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California
95014

Abstract

The MPE IV kernel is the result of over three years of research and
development undertaken at Hewlett Packard’s HP 3000 R&D 1lab in
Cupertino. It provides a new high performance, integrated, extensible
foundation for the 3000 operating system, MPE. The project’s history
and the kernel’s characteristics are described. Project objectives,
investigation approach, implementation methodology, functional charac-
teristics, resource management objectives and strategies, and perform-
ance results are presented.

1. Introduction

The evolution of the HP 3000 family towards large main memories, fast
processors, and large and distributed configurations stressed the
original MPE kernel design and implementation. It became clear that
just supporting the evolution in terms of kernel data structure
extensibility would become a problem. Moreover, the original algorithms
could not be relied upon to exploit the performance potential offered by
the larger configurations.

Project objectives for a new kernel were established. Research into the
growth and performance limitations of the old kernel and into state of
the art approaches to resource management policies was undertaken.
Alternative designs were established, implemented and evaluated.

This process, culminating in the MPE IV C-Mit, 1is presented in the
following sections.

2. Kernel Project Objectives
The primary project objectives for the MPE IV kernel were to provide :
(1). support for the evolution of the HP 3000 family;

{(2). maximum performance across the family members;

Tuesday F-9 - 01

(3). high reliability and improved fault detection and recovery;

(4). increased functionality as required by the other system components
of MPE IV; and

(5). simple extensibility when unforeseen system requirements surface.

3. The Investigation

The 3000 architecture, workload, and evolution were to be matched by the
new kernel.

The investigation would procede by : identifying the characteristics of
the workload; determining the growth limitations and performance prob-
lems of the existing kermel; researching and consulting to determine
promising approaches to kernel design; and formulating alternative
designs.

Instrumentation was placed into the old kernel, and the system was
measured under reproducible, represeuntative enviromments.

Service requirements induced by the workload on the various system
servers were determined. Distributions of segment sizes, processing
requirements, and access requirements to secondary store were observed.

Resource utilization was measured. Disc, main memory and processor
queue lengths, request type distributions, and overall utilization were
determined.

Migration among the servers and service delays were characterized. Pro-
cess stop type (eg segment fault, disec 1/0, terminal 1/0, time sliced,
etc,) distributions and service delays for each stop type were measured.

These measurements were to be used mnot only in 1isolating iamvariant
workload characteristics and performance problems but would alsc be used
as the base for later comparisons. (The specific growth and performance
limitations of the old kermel are addressed in later sections).

The literature was researched and academicians consulted to ensure that
the lessons of the past and the academic investigations whose results
offered potential were taken into account. Although extensive litera-
ture was available on resource management policies, very limited litera-
ture was to be found which directly related to the segmented architec-
ture of the 3000 family. What was acquired from the research and con-
sulting was a set of principles, measures and ideas which could be
incorporated into the design and implementation.

The investigation phase resulted in an understanding of the problems
and limitations of the old kernel, and a set of alternative strategies
which eliminated the limitations and problems and offered potential in
gsatisfying the overall objectives. Rather than coming up with the

F-9 - 02

eventual design, the investigation came up with a commitment to try out
the alternatives and select the best strategies for the architecture and
enviroment based on measurement rather than intuition.

4. Performance Goals and Strategy

In this paper, a transaction is considered to be a step 1imn an intera-
ctive session which begins when carriage return or enter is hit and
terminates when the system is ready to accept further input form the
session.

The global performance indices for the intended application enviromment
are ¢

(l). transaction response time;
(2). transaction throughput;
(3). fairuness;
(4). batch throughput.
The desired system behavior is as follows :

- For a given workload and configuration, the system should provide
minimum transaction response time with maximum transaction through~
put. Batch performance should be "acceptable."

= Under increasing load, the system should be stable. Az the load
increases, transaction response time should degrade gradually and
fairly. System throughput should stay high even under very heavy
loads.

- The system should dynamically tune itself to optimize performance
for the current workload with the given configuration. However,
explicit control over the relative service between transactions
and between interactive and batch should be available to the
operator and system manager.

It must be kept 1n mind that the bottom line performance of the system
is measured by the global performance indices and not by the factors
which may influence them. This suggests that the performance strategy
should be directed towards optimizing the global indices and not towards
optimizing indices local to each system component.

The selected overall performance strategy was to achieve maximum system
performance by having the system components cooperate to optimlize the
global performance indices. This approach is fundamentally different
from having each system component attempt local optimization and hoping
the result will be good overall performance.

F-9 - 03

Measures and associated instrumentation were defined for the global and
local performance 1indices and supported by the measurement interface.
With these measures, the effects of alternative strategies could be
understood and evaluated. The measurement interface through perform-
ance tools would be made available in the field so that om-site trouble
shooting and tuning could be performed.

5. Implementation Methodology

In order to achieve the desired high reliability and natural extensi-
bility, the implementation would have to be highly structured.

Interfaces between system components would be explicit, general, and
adhered to. Access to kernel services and internal information would be
available only through the use of explicit messages or the invocation of
kernel interface intrinsics. An adequate set of interface intrinsics
and a general, efficient internal message system would be required to
support this structured interfacing.

Within the kermel, a structured implementation was absolutely necessary
so that alternative resource management policies could easily be incor-
porated, coexist, and eventually be deleted.

Performance considerations at the instruction level would be of secon-
dary concern 1in favor of a structured implementation. The sought after
high level of system performance would be achieved through integrated,
parallel policies rather than by relying on highly optimized code
sequences.

The algorithm selection process and the support of MPE IV performance
tools would require that complete instrumentation and an instrumentation
interface be carefully designed into the new kernel.

6. The Internal Message Facility

A high speed memory resident message facility was defined and imple-
mented. The facility is intended for the transmission of operating
system status and control messages. This facility eliminates the need
for supporting multiple ad hoc communication mechanisms.

The message facility associates a message harbor with each process.
Each message harbor contains 32 message ports. Each message port
contains a FIFOQ queue of messages, where a message is up to 5 words in
length (maximum length is configurable).

Message intrinsics are provided to send a message to any port of any
process, to determine the status of any or all message ports of a
process, and to receive in a destructive or non-destructive manner the
message at the head of a specified message port.

F-9 - 04

Use of the internal message facility is 1limited to operating system
code. User level inter-process communication is available through MPE
IV message files.

7. The Measurement Interface

In order to evaluate alternative strategles and to support the envi-
sioned and vyet to be envisioned MPE performance tools, an extensible
measurement interface was designed and implemented.

The existing MPE measurement tools were highly dependent on the kernel
implementation. They were knowledgeable of intermnal data structures and
called very low level kermnel routines or exerted direct control over
resource management. Modifying the tools to support the new kernel
would be an inadequate solution since the tools were inadequate for the
evaluation task at hand, and future changes would create the same
problem over again. The decision was made to attempt to centralize
support of measurement requirements within the kernel itself, and to
make the tools independent of the kernel’s implementation.

The basic requirements of the existing and envisioned tools were inves-
tigated. An interface was defined which would provide the mechanisms,
support structures, and the access and control intrinsics 80 that the
information needed would be obtainable through intrinsic calls without
knowledge of internal structures or policies.

The key objectives of the 1interface were : service (provide what’s
needed by the current tools); transparency (eliminate dependencies of
performance tools on system intermals); extensibility (meet future
requirements by natural extension of the initial specification); and low
overhead (so that use of the interface would minimally effect the per-
formance of the system under test).

The resulting measurement interface supports complete system global and
process local statistics gathering, selective measurement class
enabling/disabling intrinsics, statistics class delivery intrinsics, and
complete cleanup upon abnormal termination of a process which had
- enabled statistics gathering. Tools using the measurement interface
require no privileged code so that system reliability is Jmproved and
the gought after independency from the kernel implementation is
achieved.

8. MPE IV Kernel Resource Managers

Each resource manager operates independently through clean interfaces
so that strategy or data structure changes of another resource manager
will not effect him. Each resource manager is built from structured,
general pieces so that alternative strategies can be easily implemented.

F-9 - 05

The management of the disc, main memory, and processor resources has the
primary impact on system performance. The approacheq‘ taken towards
resource management for these key resources is sketched in the remainder
of this section.

8.1 Disc Management

Disc management policies have an extremely significant effect on system
performance due to the workload characteristics. Transaction processing
applications on the 3000 are characterized by several disc references
per transaction with short processing requirements between references.
In such an enviromment, good disc management is essential in achieving
good system performance.

The goal of disc management should be to provide maximum disc subsystem
throughput while minimizing the service time for the most important
requests. The selection of policies for the management of disc space
and the scheduling of accesses to secondary store should be based on
achieving this goal.

The disc management systemi nterfaces with the file system and the

memory management system when allocating disc space and servicing
requests to access secondary store.

The major problems identified with the old disc management policiles
revolved around virtual memory management, disc access scheduling,
and serial seeking.

Disc space for data segments was restricted to a single volume
(i.e. virtual memory limited to the system disc). This restriction has
serlous detrimental effects on system growth and performance. The effect
on system growth is the obvious limitation on the amount of disc space
available for data segments by the size of the system disc. The perform-
ance impact of this restriction is due to the long queue length created
at the system disc when the system is under memory pressure, and the
resultant service delays for access requests to that volume.

Disc access scheduling did not perform requests in the order of
their urgency. The scheduling policy for disc requests directed at a
device was preemptive for all memory management requests and FIFO for
all other requests.

The memory management replacement policy selected segments deemed not
likely to be needed in the near future. In the case of data segments, a
write to disc of the segment was requested, the motivation being that
the write may complete before the region occupied by the segment was
required so that the delay in fetching the new segment would be reduced.
These "anticipatory writes" were not urgent and often unnecessary,
yet the scheduling policy selected them for service before disc access
requests required for the completion of important transactions. Segment
fetches on behalf of batch jobs were also serviced before tramsaction

F-9 - 06

related service requests under the old scheduling policy.

The FIFO policy within process initiated disc access requests resulted
in the accesses of less urgent processes being performed before those of
more urgent processes. This increased the service time for the more
urgent processes requests and thereby increased the response time for
the related transactions.

Disc service was entirely serial for each disc sharing a common con-
troller (i.e. mno ovelapping.) Although the controller supports over-
lapped seeks, this feature was not exploited. This resulted in a disc
throughput 1limitation per controller to one access per (avg cylinder
positioning delay + avg rotational latency + avg transfer time).

MPE IV disc management solves these problems. Additionally, the general
approach to disc management gives broad flexibility in scheduling
policies.

In MPE IV, disc space for data segments can reside on each system
volume. This multi-spindle virtual memory eliminates the limitatiom on
total wvirtual disc space, and helps to balance the disc queue lengths.
(Balanced disc queues are required to take advantage of parallelism in
I1/0 offered by overlapped seeks or multiple controllers).

The MPE IV disc queues are priority ordered. The priority of a disc
request is determined by the priority of the process that requires the
transfer. This holds for segment transfer requests issued by the
memory management system on behalf of a process as well as for file
system initiated transfer requests. Antlcipatory writes are given the
worst prilority and sit at the back of the queue so that they are per-
formed as background activity when the device would be otherwise 1idle.
This priority queuve management integrates the disc management policies
with the goals of the rest of the kermel, since priority assigmments
reflect the global performance goal of the system.

The feature of the disc controller which allows a seek command to be
sent to a unit other than the unit owning the controller 1s exploited in
MPE IV. The seeks for units waiting for the controller are issued
during the execution of the channel program for the unit currently
owning the controller. This results in the heads being in position over
the proper cylinder when the next unit gets the controller. The net
result 1s a potential wmaximum disc throughput per controller of I access
per (avg rotational latency + avg transfer time). Since the disc 1
access time is dominated by the head positioning delay, this overlapping
approximately doubles the maximum throughput per controller. (The over-
lapping seek software will only be available for the Series II and III
on the C-MIT).

To achieve this maximum throughput, the disc queues for the units on the
controller must be kept non-empty and balanced. This requires a sus-
tained high level of multi-programming and a proper spreading of data
across the volumes. To make response times short, the more urgent disc

F-9 - 07

requests have to be performed first. It can be seen how the inter=
relations between memory management, processor management and disc
management impact system performance.

8.2 Memory Management

Memory management requirements for the 3000 architecture consist of free
space allocation, segment replacement, and garbage collection.

Free space allocation is required when a segmeat fetch is to be per-
formed. The free space allocation algorithm selects the hole into which
the segment should be read. Alternative strategies imnclude first fit,
best fit, and buddy schemes.

Segment replacement must be performed when a segment fetch is required
but a hole of adequate size is not available. Alternative strategies
include working set type policiles and least recently used type policies.

Garhage collection is required in a segmented system to combine holes
into larger holes. A variable sized allocation policy tends te produce
small, unusable holes scattered throughout memory. This 4is known as
external fragmentation. Garbage collection attempts to ninimize the
external fragmeuntation by combining the small holes into larger usable
holes.

The major problems identified with the o0ld memory manager were 1its
serial mnature, high fault rate caused by the per program working set
replacement policy, restricted garbage collection performed during cri-
tical periods, and an inefficieut free space allocation policy.

The old memory manager was entirely serial. Once the memory manager was
started on a process swap-in, he couldn’t begin on a second (or more
important) swap-in until all the disc transfers required to finish the
first swap—in completed. This serial memory management service forced
artificial 1limits on the multiprogramming level. For 1large main
memories this limitation restricts the system from achieving its poten-
tial performance.

The working set per program policy caused processes to release each
others localities resulting in a high fault and recovery rate.

Garbage collection could only be performed locally within a bank, and
performed during allocation time, so that memory management service time
was further increased.

MPE 1II free space allocation selected the first fit hole causing large
holes to be used up before they were needed. This resulted in excess

invocation of the replacement policy.

The memory maunagement policies were entwined with the rest of the system
so that minor strategy changes would require extensive development.

F-9 - 08

MPE IV memory management solves each of these problems and in addition
presents a general, structured implementation which allows major
strategy changes with minor development effort.

Free space allocation is implemented by a best fit policy using size
ordered free lists. This scheme is very fast, and saves the big holes
until they’re needed.

.The resulting external fragmentation is eliminated through background
garbage collection. Main memory garbage collection is performed as a
backg round activity using cpu cycles during which the processor would
have otherwise been idle. Garbage collection attempts to move small
assigned regions located between large holes into small fragmented
holes. The large holes are combined into even larger holes, and the
small holes are eliminated. This skews the distribution of hole sizes
towards the large holes and eliminates the external fragmentation there-
by reducing the frequency of application of the replacement policy. The
garbage collection code is responsive to the system state, and returns
to the dispatcher when more urgent activity becomes pending.

The memory replacement policy is a very low overhead implementation of a
global least recently used (LRU) policy. When a hole of the required
size 1s mnot available, segments not needed by the current multipro-
gramming set (as determined by a global LRU algorithm) are selected for
replacement on a memory ordered basis. In the segmented architecture of
the 3000 family, this replacement policy proved to be superior to the
working set policies. The memory scanned LRU approach tends to release
unneeded segments in adjacent regions of memory, thereby creating large
holes with few replacements. In contrast, the working set policiles were
found to require many more segment replacements to satisfy placement
requests since they freed up space randomly through memory when re-
leasing a working set of segments.

Segment fetching is an unblocked parallel operation in which memory
management code invoked directly by the dispatcher sets up the operation
and

the disc management code finishes it off as the required transfers com-
plete.

8.3 Processor Management

Processor management consists primarily of selecting the activity to
which the cpu should be devoted. The major cpu activities include run=-
ning system and user processes, swapping in processes, and garbage col-
lection.

Processor management is implemented by assigning priorities to the
pending activities and giving the cpu over to the activity with the most
urgent priority. This function is performed by the dispatcher.

Priority assigmment in the old kernel had a problem with batch jobs.

F-9 - 09

Batch jobs would migrate up in priority to compete equally with inter-
active processes during busy periods.

Activity selection was restricted in the old kernel due to the menmory
manager being serial. The consequence of this limitation was that even
if plenty of free space was available, memory management could not be
performed when needed for a process if a more urgent process was walting
for disc I1/0 to complete. It couldn’t be risked to swap-in a less urgent
process since the more urgent process might need memory management ser-
vice soon and the memory manager would be busy. The dispatcher was
forced to pause the cpu rather than to work on increasing the multi-
programming level.

The MPE IV processor management scheme 1s very flexible. Priority
assigments and activity selection are directed towards optimizing the
system performance and can be tuned by the operator.

Priority assigments are made to reflect the performance goals of the
system. Fach scheduling class (C,D,E) has a base priority and a limit
priority. When a transaction begins or a job 1is introduced into the
system, the related process gets its class’ best priority, the class
base priority. As the process uses more cpu time than that required for
an average member of the class, the process is considered to be less
urgent and its priority drifts towards the class’s limit priority. The
limit priority is the worst priority that a process in the class can get
assigned to it.

The priorities of processes placed in the A or B scheduling classes are
kept static over time. The filtering parameter which determines the
migration rate for a C, D or E scheduled process from its class base to
class limit is dynamically tuned for C scheduled processes only. Bounds
on the filtering parameters for C, D and E classes are set in the :TUNE
command.

This priority assigmment scheme enables the dispatcher to apply a
scheduling policy which approximates a "shortest processing time first"
algoritim. This gives maximum system throughput and best respomse time
for short transactions while slightly delaying the longer transactions.

The C, D, and E classes can be made to overlap so that the processes in
the wvarious classes compete with each other, or they can be made dis-
Joint. By making them disjoint, D and E processes will always be pre-
empted for C processes. This tuning causes batch work to be performed
as background activity between bursts of interactive transactions. This
13 the default tuning setting.

The operator or system manager can control the base and limit priorities
of each class, and the rate at which a process’ priority moves from the
base to the limit through the :TUNE command.

CPU activity selection procedes by inspecting the priority ordered queue
of processes requiring cpu service. When a process 1is encountered which

F-9 - 10

is ready to rum, the process is launched. If the process requires some
memory scheduling, the swap-in procedure is invoked directly by dis-
patcher. 1If there’s nothing better to do, main memory garbage col-
lection takes place.

In MPE IV, swapping-in of a process is performed by nested procedures on
the dispatcher’s stack. The fetching of a segment on behalf of a pro—
cess 1is a low overhead, unblocked operation which allows an unlimited
degree of parallelism in memory management. The swap-in code 1is
responsive to the system state, and returns to the dispatcher when a
process more urgent than the one that’s being worked-on becomes ready or
requires scheduling attention.

If the queue of ready processes is empty and there are no processes
requiring memory scheduling , or increasing the multi-programming level
has been determined to be dangerous at this time, the dispatcher invokes
the background garbage collection code which returns when more urgent
activity becomes pending.

9. Performance

The performance of MPE IV as measured by system transaction throughput
and mean transaction response time is published in the "HP 3000 Perform-
ance Guide for Imstalled Systems." Performance tests were conducted
using a standard application workload which represented a general-
purpose EDP enviromment with a mix of online data base and program
development sessions and background batch jobs.

The measurement results from these tests 1ndicated that under
light loads relative to system configuration, MPE IV showed slight per-
formance improvement over MPE III. This was anticipated, since the MPE
IV kernel seeks its performance improvements through the exploitation of
parallelism, and the potential for parallelism is small under 1light
loads. As the workloads were increased, MPE IV showed substantial
improvement in both transaction response time and tramsaction throughput
over MPE IIT. The performance improvements were realized actross the
family under the configurations and workloads measured.

The behavior of the system was exactly that which was sought. The Sys-
tem exhibited stability and good performance across the range of work-
loads, processor speeds, memory sizes and system configurations
examined.

10. Conclusions

The approach to kernel design and implementation undertaken by the MPE
IV kermel project resulted in an operating system foundation
which naturally fits the evolving 3000 computer family to the environ-
meats it supports. The structured approach permitted alternatives to be
easily implemented, and the measurement interface permitted them to be

F-9 - 11

thoroughly evaluated. The final implementation consists of integrated
resource managers who cooperate to provide the best performance with the
given system configuration under the current workload. The validity of

the approcach taken to kernel design is demonstrated by the resulting
kernel’s reliability and performance.

Acknowledgements

Special recognition Is due to those who significantly contributed to the
project’s success. Professor Wesley Chu of UCLA and Professor TForrest
Baskett of Stanford impacted the process through their valuable consul-
tations. Alan Hewer, Howard Morris, and Neil Wilhelm kept things on
course through their careful reviews. Ron Kolb, Ray Ventura and Bruce
Blinn, through their design and development help on seek-ahead, the
measurement iInterface, and multi-spindle virtual memory respectively,
helped to speed the kermel to completion. Chris Moeller with his tuning
help and Marcia McConnel and Carl Sassenrath with their debugging
assistence contributed to the system’s performance and reliability. Ken
Spalding, through his coordinating functiom in the late stages, helped
to get the system out the door.

F-9 - 12

