ROBELLE CONSULTING LTD.
#130-5421 10th Avenue
Delta, B.C. Vi4M 3T9
CANADA

(604) 943-8021

Telex 0U-352848

Experiences With Pascal

Technical Report, February 1981, By
DAVID J. GREER

Robelle Consulting Ltd.

Summary
This paper reviews the history and possible future of the
Pascal programming language on the HP 3000 computer system. It
reviews some of the currently available compilers, and discusses
the features that are likely to be included 1in an HP-supported
Pascal compiler. The presentation will cover practical problenms
encountered while using Pascal, including problems that arise in
transporting Pascal programs from other machines to¢ the HP 3000.
Contents
1. Introduction

2. Pascal-V

Proposed HP Pascal

Pascal inVApplications

Performance of Pascal Programs

Appendix I - Making Pascal Portable - Three Examples
Appendix II - Implementation Notes on Pascal-V

Appendix III -~ Sample Data From the Sequential Read Test

O o =N oy W W

Bibliography

Tuesday E-3 - 01

Experiences With Pascal

Introduction

This paper concentrates on one person's experience using and
implementing the Pascal language on the HP 3000. The information
presented was accumulated during approximately two years of work
with Pascal on the HP 3000 and on an AMDAHL/V6 at the University
of British Columbia. The major points covered by this paper
are: 1) a brief history of Pascal, including implementation on
the HP 3000; 2) the state of the contributed Pascal compilers; 3)
an approximation of what the HP-supported Pascal may look like; 4)
a look at Pascal in applications; what to avoid and what to be
prepared for; and, 5) a preliminary evaluation of Pascal's
performance.

History

Pascal was developed by Niklaus Wirth in Zurich. The
principal aims of Pascal were to provide: 1) a language in which
structured concepts could be taught easily; and, 2) a language
that would be relatively easy to implement on many machines
(18,15,1].

These original aims have direct application to business and
scientific programming. The language provides constructs which
emphasize structured coding concepts. Programs written in Pascal
tend to be structured, which in turn makes them easier to maintain
and understand. Because Standard Pascal has been implemented on
many different machines, including the HP 3000, it is a good
vehicle for writing portable software.

Another reason for the current interest in Pascal 1is that
many secondary institutions, wuniversities and colleges are now
using Pascal as their principal programming language. As this
trend continues, there will be increasingly more incentive to
write software in Pascal, since the new work force will already be
trained in the language.

Portable Pascal-P4

In order to make Pascal available on many machines, Urs
Ammann, K. Nori, Ch. Jacobi, K. Jensen and H. Nageli wrote the
portable Pascal-P4 compiler, which 1is itself written in Pascal
[15]. Approximately 80% of the Pascal compilers in the world are
based on this compiler.

The P4 compiler takes Pascal source code and compiles it into
symbolic code for a hypothetical stack machine called a
"P-machine". The 1individual implementer of Pascal writes an
assembler or interpreter for the "pcode". Later, the source
program of the original compiler is changed to generate the host
machine's object code directly. The following 1is a schematic
description of how pcode works.

£E-3 - 02

Experiences With Pascal

Pascal --=--- > PCODE ~ew-- > Object
Source i i Code
| 1
| |
Compiler Assembler or
Interpreter

HP 3000 Pascal-P4

In the HP 3000 contributed library, there is a version of
Pascal developed by Grant Munsey, Jeff Eastman and Bob Fraley.
This compiler is a modified version of the Pascal-P4 compiler; it
fixes several bugs in the original P4 compiler, and provides
extensions to Standard Pascal. Some of the important extensions
are: builft-in procedures to do direct access to MPE files, an
"otherwise" label in the case statement, <calls to Pascal
procedures which were compiled externally, and calls to procedures
written in other languages.

The process of compiling Pascal programs on the HP 3000 is
slightly different from +the one described above. Instead of
assembling pcode into object code, the assembler of the
contributed version assembles pcode 1into SPL, which 1is then
compiled into USL files.

Pascal eew-- > PCODE -=---- > SPL -==-- > USL
Source ' | 1
1 3 1
1) |
Compiler Assembler SPL
Compiler

While much of the work of implementing Pascal was simplified
because of the P4 compiler, the early work done to transport
Pascal to the HP 3000 was still difficult. Each of the P4 "pcode"
instructions had to be translated into one or more SPL
instructions. Also, the basic Pascal-PY4 compiler only allowed for
character constants of ten characters or 1less - a sSevere
restriction [5). See Appendix II for more details.

E-3 - 03

Experiences With Pascal
Fasecal-V
History

Pascal-V is another version of Pascal for the HP 3000,
developed 1in Vancouver as a project in compiler design at the
University of British Columbia. This compiler 1is a modified
Eerﬁio? of the one that is available in the contributed library

3,4,51.

Major Problems

Two of the problems in using the contributed library's Pascal
are: 1t 1s somewhat difficult to specify all of the command
sequences for invoking the compiler (although this has been fixed
with UDCs), and, the compiler is very slow. Both of these
problems stem from the long process required to get from Pascal
source code to¢ USL files.

Pascal-V does away with the assembly stage of the compilation
process. Instead, Pascal source code is translated directly into
SPL code. The Pascal compiler then invokes the SPL compiler to
produce the USL file. '

Pascal ----- > SPL ~==--- > USL
Source | i
| 1

Compiler SPL
Compiler

By eliminating the pcode stage of the process, a 20-40%
savings in elapsed compilation time was realized. Also, by having
all of the compilation stage in the compiler, it was easier to use
the compiler. The SPL stage of the compilation process was not
eliminated, because it was too difficult to work with USL files
directly.

Minor Problems

The original contributed compiler did not print error
messages. The compiler now prints a summary of all of the error
numbers which occurred during compilation, along with their
associated error messages. In addition, a compiler option has
been provided which causes all Pascal reserved words to be
underlined. This greatly -enhances the readability of Pascal
programs.

Athena Compatibility

With the Athena WMIT release of MPE (2011), all Pascal
programs on the HP 3000 ceased to work, including all of the
contributed versions of Pascal. The cause of this was that, as of
the Athena release of MPE, Qinitial (the initial setting of the
Q-register in the program's data stack) was two words higher in
the stack. Since Pascal made certain assumptions about where
Qinitial would be in the stack, Pascal programs stopped working.

E-3 - 04

Experiences With Pascal

Pascal-V fixes this bug by making no assumption about where
Qinitial should be.

Standard Pascal

There 1is a world-wide effort to provide a comprehensive
standard for Pascal. Any compiler which claims to compile
Standard Pascal must compile all parts of the defined standard
correctly. In order to help implementers and users of Pascal find
out whether their particular compiler meets the standard, A. Sale
and R. Freak have written a suite of Pascal programs to test
Pascal compilers.

The suite consists of approximately 300 Pascal programs.
Each program 1s compiled and executed by the Pascal compiler. The
results of each program are analyzed for errors. If a compiler
meets Standard Pascal completely, there will be no errors from any
program in the suite.

Pascal 2.4-V was tested wusing this suite. It had as many
errors as other compilers based on the original P4 compiler (that
is, the compiler was average). Several of these errors were fixed
in Pascal 2.5-V and later versions.

Usage

The Vancouver version of Pascal is currently used in about
forty installations around the world. Many installations are also
using Pascal-3 (see Appendix I) for teaching Pascal. Two
installations are wusing Pascal to convert software from other
machines to the HP 3000,

Availability

Because we need a Pascal compiler now to develop programs at
Robelle Consulting, I have been and will be maintaining this
Pascal compiler. It is not a supported Robelle product; but, for
$200 U.3. (to defray costs), we will send a magnetic tape copy of
the latest version to interested users ($100 if you send payment
with your order and do not ask for 800 BPI). As of January 1981,
the latest release was Version 2.8-V, A bug was fixed that did
not allow compiles while logged on as MANAGER.SYS. Enhancements
were made in error messages on file opens, in the use of Control-Y
and in the run-time support (so that all Pascal programs can read
QEDIT-format files). Inquiries can be directed to me at Robelle
Consulting Ltd., #130-5421 10th Ave., Delta, B.C., ViM 3T9,
Canada. Phone: (604) 943-8021., Telex: OU-352848,

Future Enhancements

Three major problems (as well as many minor ones) remain to
be fixed 1in the compiler, if it is to be used in a commercial
environment. The first is that character strings are storasd as
one character per word, rather than one character per byte. This
needs to be fixed, so that variables will use less memory space,
and so that Pascal programs can communicate directly with HP

E-3 - 05

Experiences With Pascal
subsystems such as IMAGE.

The second problem has to do with Pascal's definition of
parameters to procedures and S3SPL's definition of parameters to
procedures. SPL is known as a programming language with weak type
checking. This gives the programmer more flexibility, but
provides more opportunity for making mistakes. It also allows
IMAGE parameters to be defined very loosely. For exsmple, a data
set can be defined by a character-string containing the name of
the data set, or by an integer variable with the set number.
Since Pascal does not allow such flexibility in parameter passing,
some mechanism must be established to allow procedure calls to
subsystems such as IMAGE.

The third problem is that Pascal integers are implemented as
single-word integers. Many subsystems such as IMAGE require that
double~word integers be passed as parameters. At the same time,
there must be a way of declaring single~word integers, since other
subsystems require both single- and double~word integers to be
passed as procedure parameters.

E-3 - 06

Experiences With Pascal

Proposed HP Pascal

Recently, there have been several rumors that HP would
provide a supported Pascal compiler for the HP 3000 some time in
the future. The following is an educated guess as to what this
compiler may look like when, and if, it arrives.

The HP compiler is to be based on an internal HP standard for
Pascal. The HP 1000 Pascal compiler, which was recently
introduced, 1is also supposed toc follow the internal HP Pascal
standard. Any comments I make about Pascal for the HP 3000 are
based on how things are done on the HP 1000 [9].

If Pascal/3000 looks very similar to Pascal/1000, we can look
forward to an excellent implementation of the language.
Pascal/1000 provides features which take advantage of the HP 1000
operating system, yet still retain the "spwirit® of Pascal. of
special importance is the inclusion of a compiler option which
permits the compilation of S3tandard Pascal only. By turning this
option on, only Pascal source that followed the standard would
compile.

Storage allocation in Pascal/1000 is done in a very flexible
manner. wo restrictions of the contributed versions of Pascal
are that neither double word-integers, nor sets with greater than
62 elements are allowed. Pascal/ 1000 permits sets with up to
32767 elements, and only allocates as much storage as is
necessary. Similarly, both single- and double-word integers may
be declared in a way that is natural for the Pascal language.

Pascal/1000 also allows character strings to be stored as one
character per byte, instead of just one character per word.
Procedure calls are allowed to external procedures written 1in
either Pascal or HP 1000 assembler.

Assuming Pascal/3000 will follow the lead of Pascal/1000, it
should be a very successful compiler. The only problem to which
I've no solution is how Pascal/3000 will permit calls to HP
subsystems like IMAGE, while working within the confines of Pascal
type checking.

E-3 - 07

Experiences With Pascal

Pascal in Applications

This section attempts to describe some of the common pitfalls
to watch for when wusing Pascal. It also does a step by step
examination of each of the Pascal types, in the context of their
use 1in future versions of Pascal and with other subsystems. For
those Jjust learning Pascal, [18,8,17] may be useful. In
particular, [8] gives a complete and readable treatment of Pascal.

Pascal Types

The concept of types in Pascal is one of the most powerful
features of the language. Because so much of Pascal operates from
the concept of types, it is one of the main areas where problems
can oceur, especially when dealing with different Pascal
compilers.
Integer

The integer type is one of the simplest and most common types
in Pascal. The defintion of integer is as follows:

type

integer = -maxint .. +maxint;

The notation '-maxint .. +maxint' 1is called a subrange; it
defines integer to be a type that can take on values from a lower
bound (-maxint) to a higher bound{(+maxint). The Ffirst question
that one usually asks is just how large is maxint? The answer is
that it varies from compiler to compiler. In Pascal-V it is
+32767, but in the future it will likely be +21U47483647. In the
first «case, storage will be allocated as a single- word integer,
and in the second case, storage will be allocated as a double-word
integer.

Suppose that the compiler used the second value for maxint.

How could you declare a type that only used single-word storage?
It could be done as follows:

type

int = -32767 .. 32767T;

If the compiler is "smart" in storage allocation, int would only
use single-word storage. The int declaration also has the
advantage of telling the reader exactly what range any variables
of type int should have.

Real

The problem of a value range for real numbers (and the amount
of storage to allocate) is similar to the problem of single and
double integers. The main difference is that reals cannot be used
in subrange notation. The storage allocation and size attributes
of reals are left totally up to the implementer of each Pascal

E-3 - 08

Experiences With Pascal

compiler.

Since there are many instances where different size reals are
needed, there is a general solution. But, this solution is not
part of Standard Pascal. The predefined type "Real" is usually
taken to mean single precision fleocating-point numbers, where the
size of single precision flocating-point numbers is defined for
each host machine. On the HP 3000, it is a 32-bit number with
approximately seven decimal positions. For larger real numbers,
the predefined type "Longreal™ is provided, which is usually taken
to mean double precision flocating-point numbers. On the HP 3000,
these would be represented by 64-bit long-real quantities.
Currently, all of the HP 3000 Pascal compilers supply only the
type Real. Since future compilers will probably allow for 1larger
real numbers, the following declaration could be used to localize
the changes at a later date:

type
Longreal = Real;

Whenever "Longreal" became available, this type declaration could
be deleted, and the program would just need to be recompiled.

Boolean

Logical wvalues in Pascal are represented by True(1) and
False(0). On the HP 3000, Boolean is implemented as a single-word
integer. The Pascal-V compiler checks for False = 0 (True = not
0) when examining the value of a boolean expression; but, this may
change, and shouldn't be counted on.

Characters

One of the main reasons more people are not using Pascal on
the HP 3000 is that characters are packed one per word, instead of
the regular one per byte. This means that a Pascal arrayl1..n] of

char cannot be passed to procedures in other 1languages, without
first packing the character array.

The Pascal type packed arrayll1..n] of char will someday have
characters packed one per byte. For this reason, packed should be
used wherever possible. It also requires less storage. One word
of caution: it is very likely that packed types will not be able
to be passed as var parameters to a procedure or function. To
change a packed array to an unpacked array, the built-in procedure
unpack should be used, and the built-in procedure pack should be
used to convert in the other direction.

Set

Sets are one of the more unique concepts available in Pascal.
By wusing sets, it is possible to have a single variable take on
more than one value at the same time. This could be very useful
in certain application areas (for example, on a customer status
field, where a customer could be in two different status classes

E-3 - 09

Experiences With Pascal
simultaneously).

Again, there are few guidelines regarding the implementation
of sets. The limiting factor in declaring sets is the number of
distinet elements that can be in one set type. With Pascal-V,
there can be up to 62 elements in a set. Unfortunately, this
rules out the following useful type:

type

charset = set of char;

With Pascal-V, set types occupy four words of storage, where
each bit in the four words represents one of the values 1in the
base type. Other versions of Pascal are more likely to allocate
as many words as necessary to represent the base type. This means
that writing out set types to files, or calling procedures in
other languages with parameters of type set is very unwise., At
the very least, such calls should be isolated so that they can be
changed easily.

Many implementations of Pascal allow only 48 distinet
elements 1in set types. This should concern anyone who intends to
write Pascal software for other machines. For portable software,
you should use sets with a small number of elements. While this
is unfortunate, it is likely to be the case for many years.

Record

Record structures allow similar things to be grouped together
and optionally given a name. This feature is similar to the COBOL
level structure. With COBOL, a level structure is allocated space
in the order that the various levels are allocated. If we were to
map the following record structure into COBOL it would 1look like
this:

e e et el e L i ——

i integer A | string B | integer C | integer D)

01 RECORD.
05 A PIC 39(4) COMP,
05 B PIC X(10).
05 C PIC 39(4) COMP.
05 D PIC S9(4) COMP.

And the equivalent structure in Pascal-V would be:

type

int z ~32767 .. +32767;
string = packed array[1..10] of char;

cobol record = record
d : int;
¢ : int;

E-3 - 10

Experiences With Pascal

b : string;
a : int;
end;

Note that the Pascal record structure is exactly opposite to
what you would expect. This is because Pascal-V allocates storage
elements in reverse order to their declaration. This is
implementation-defined; other Pascal compilers may do exactly the
opposite, or even something in-between. For this reason, all of
your record structures should be declared in one place, using type
and $include filee (this facilitates changes, when necessary).

IMAGE/COBOL/Pascal Table

The following table gives equivalences among IMAGE, COBOL and

Pascal types. [10] The table assumes the following Pascal types
are available:

type

int = =32767 .. 32767;

integer = 2147483647 .. 2147483647;

real = real; (¥ single precision floating-point ¥}
longreal= longreal; (* double precision floating-point ¥)
IMAGE COBOL Pascal

J 1 PIC S9(4) COMP int

J2 PIC S9(9) COMP integer

I1 PIC S9{4) COMP#* int

12 FIC S9(9) COMP*¥ integer

K1 PIC 9(4) coMP* boolean¥

K2 PIC 9(9) COMP* integer¥®

P4 PIC 59(3) COMP-3 packed array[1..2] of char¥
P8 PIC 39(7) COMP-3 packed array(1..4]1 of char¥
R2 PIC X(4)* real

R4 PIC X(8)% longreal

Z N PIC S9(N) packed array[1..N] of char¥
X N PIC X(N) packed array[i1..N] of char

|

* - 3torage is allocated correctly, but the types do not really
correspond to the IMAGE types.

Note that the concept of packed decimal does not exist in Pascal.
The only way to handle packed type data is to have a set of 3PL
procedures which do the conversion from packed decimal to some
internal format, and the reverse, as well as providing for the
actual arithmetiec. The most 1likely data type to hold packed

decimal numbers would be a packed array[1..N] of char to hold the
packed decimal numbers.

The COBOL zoned-decimal type is not supported directly in
Pascal. While the numbers can be read in as a packed array, they
will have to be converted to integer by hand. The 1last byte of
the =zoned-decimal array will contain the digit value, as well as
the sign. For some sample solutions to these problems see [6,7].

E-3 - 11

Experiences With Pascal

Files

In general, the only type of file that is compatible between
Pascal and other HP 3000 languages is:

type

filetype = file of arrayl1..n] of char;

A1l other file-types are likely to be incompatible, or at best,
difficult to interpret. While it is certainly possible to declare
a file of the type cobol record above, the results are not what
one expects. In the first place, all of the elements of the
record will be reversed, so0 that the COBOL and Pascal record
layouts for the file must be reversed. Further, the string that
is part of the record will be packed one character per word with
Pascal-V. (Pascal does not currently pack strings, even if packed
is included in the declaration.) In order to reduce difficulties
with program maintenance, it is recommended that there be one
common input and output interface to an external file from Pascal
programs. These routines should be included in any program that
is to use the file.

IMAGE

A1l of the problems mentioned above apply even more to IMAGE
and Pascal. The layout of a data set and the layout of the Pascal
record must be reversed with Pascal-V. In addition, there are
currently no double-word integers or packed arrays, so calling
IMAGE procedures would be difficult.

As mentioned above, the definition of IMAGE procedures does
not agree with that of Pascal procedures. Until a Pascal compiler
on the HP 3000 recognizes all of the HP intrinsies, it will be
necessary to code calls to IMAGE in some other way. The suggested
soclution is to provide one SPL procedure for each data set that is
to be used in Pascal.

Each SPL procedure would have a mode parameter (read,
chainread, write, update, etc.), as well as the other IMAGE

parameters (the base name, the status area and a buffer). It
would make sense for the SPL interface to use the "@" list in all
DBGET calls (as well as assuming the set name). Each 1interface

routine would transform the IMAGE record structure intc the
equivalent Pascal structure (i.e., unpack character arrays,
reverse the order of records, ete.). This is a general solution
which should work for different versions and implementations of
Pascal on the HP 3000.

E-3 - 12

Experiences With Pascal

Performance of Pascal Programs

Introduction

One of the most frequently-asked questions about the
implementation of a programming language is: how fast are the
programs it generates? On a machine like the HP 3000, where many
factors contribute to the performance of a program, it is a
difficult question to answer.

Programs written in the host programming language are
generally the fastest, because the host programming language was
custom-designed for +the particular machine. Most of the
constructs in the language translate directly into hardware
instructions. This 1is true of SPL on the HP 3000. Other
languages (like Pascal or COBOL, designed for wuse on many
different machines), must translate the language constructs into a
combination of hardware instructions and procedure calls to a
run-time library. Since the procedures in the run-time 1library
are generally slower than hardware instructions, there are certain
language constructs to watech out for.

What to Wateh Out For

Not all high-level language constructs are slow. Many of the
language features will be as fast as a lower-level language like
SPL. On any particular machine there are certain things to watch
out for and avoid, because they are unusually slow. Pascal is no
exception to this rule.

One of the most common operations is to open a file and read
it sequentially from beginning to end. In Pascal, this is often
accomplished by using the built-in procedures reset and read. The
reset procedure opens the file, and the read procedure reads the
file as if it were one long string of characters. Since files are
normally organized into records, it seems obvious that reading the
file one character at a time will be inefficient.

An Example

Pascal provides another built-in procedure, get, which will
read a file one record at a time, if the file is declared
correctly in the Pascal program. In order to test the time
necessary to do a sequential read, the following Pascal
declaration was made:

type

filetype = file of array[1..80] of char;

The file input was declared to be of this type, and get was used
to read the file sequentially. Figure I and II give a graphic
demonstration of the elapsed and CPU time of four programs which
read a sequential file.

E-3 - 13

Experiences With Pascal

Elasped Time vs, Number of Records Read

10000 |-

4
9000)
8000 |
7000 f

6000

" . i 1 L Il A L 1

20 40 60 &0 100 120 140 160 180

Figure 1

CPU Time vs. Number of Records Read

10000 |
S000 |
8000
7000 [

6000 [

b1 1 i i L 1 A [L

20 40 60 80 100 120 140 160 180
Figure 11

Experiences With Pascal

One program was coded 1in SPL, using the FREAD intrinsic.
Another was coded using the COBOL read statement. One Pascal
program was coded using get, and another was coded using read. As
expected, the SPL program was the fastest, followed by the COBOL
program. The Pascal program using get was slower than the COBROL
program, but substantially faster than the Pascal program using
read.

Explanation of the Results

SPL was the fastest, because it communicates with the
operating system directly, doing a FREAD of 80 bytes and checking
the condition code for end-of-file.

The COBOL program interfaces to FREAD through the COBCL
run-time support. The run-time support is general-purpose; it
must handle all different file types and file sizes and it also
does more error checking. The extra time consumed in the run-time

support routines makes the COBOL program slightly slower than the
SPL program.

The Pascal program suffers all of the same problems as the
COBOL program. The Pascal run-time support must be prepared for
all situations. 1In addition, the buffer that is read for each
record must be unpacked, since the current version of Pascal does
not support packed files. The extra time to do the unpacking
shows up dramatically in Figure II, where there 1is a large
difference in CPU time between the COBOL program and the Pascal
program using get.

Finally, the Pascal program using read was much slower than
any of the other programs. The reason for this is that an extra
procedure call 1is made for every single character in the file.
All of this extra overhead results in a Pascal read being much
slower than a Pascal get. (The only thing that could be slower is
the FORTRAN formatter with a format of 80A&1, which calls the
formatter for each character).

The Moral

Each implementation of a high-level programming language has
certain constructs which are inefficient. For example, COBOL
programmers use COMP variables when the value to be represented is
less than ten digits long, and they avoid the use of the COMPUTE
verb, since it is very slow in COBOL68. Pascal programmers should
be aware of certain Pascal constructs that are slow on the HP
3000. 1In particular, this example shows that Pascal get should be
preferred over Pascal read, when sequentailly reading a file. See
Appendix II.

-3 - 15

Experiences With Pascal
Appendix I

Making Pascal Portable - Three Examples

I. Pascal-3

Pascal-S 1is a subset of standard Pascal. [18,19] The
compiler itself is a complete system which compiles the Pascal
program, and, 1if there are no errors, executes the program
{(interpretively). Pascal-S was written in Pascal by Wirth.

The major problem in getting Pascal-S running on the HP 3000
was the difference between the character set on the CDC series of
machines and the character set of the HP 3000 (ASCII). In the CDC
character set, blanks collate after letters; but, in the ASCII
character set, blanks collate before letters. Also, the internal
numeric representation of characters differs between the CDC and
the HP 3000, and this caused further errors in the compiler.

The lesson to learn from this is that writing portable
programs, even in Pascal, takes some thought and effort. Even
when using Standard Pascal, problems can arise. One tip: make no
assumptions about character sets, as they vary widely from machine
to machine.

IT. PROSE

PROSE is a text formatter published in Pascal News No. 15
[16]. It is written entirely in Standard Pascal and pays
particular attenticon to the character sets of different machines.
PROSE stores all text internally using the ASCII conventions, and
each implementation (of PROSE) must have routines to convert from
the external character set to the internal one.

PROSE is approximately 3500 lines long, and is Jjust now being
completed on the HP 3000. The main problems encountered in
implementing PROSE were finding and eliminating typing mistakes,
and understanding the conversion from the external character sets
to the internal set. Even though the external and internal
character sets are the same on the HP 3000, it took some time ¢to
find and change the conversion routines accurately. The coding of
these routines assumed an understanding of how the CDC character
sets work, since the version of PROSE written in Pascal News
No. 15 was for a CDC computer.

Another problem encountered with PROSE was the definition of
carriage control on output files. Many implementations of Pascal
take the first character written to each line of an output file as
the carriage control character. For example, to write a page
eject, the following Pascal code would be written:

writeln; writeln('1');
The "1" in the second writeln would be interpreted as a carriage

control character, which, on most line printers, causes a page
eject. Pascal 2.8-V uses standard built-in procedures to do

£-3 - 16

3

Experiences With Pascal

carriage control. The procedure page(output) causes a page eject
on the file output. Because PROSE was implemented using the first
method, it was necessary to change each carriage-control write
statement to a similar or equivalent Pascal 2.8-V statement.
While this 1is relatively straightforward with page ejects, it is
much more difficult with overprint and underlining.

The lesson to learn from this is that the meaning of carriage
control on output files is implementation-defined. In order to
make a Pascal program portable, all carriage control should be
done by a few, easy-to-modify procedures, rather then by any
implementation features. These procedures can then be modified
for each Pascal installation.

ITI. LISP

LISP is a small implementation of the interpretive language
LISP., It was written at the University of British Columbia using
Pascal/UBC, an extended version of Pascal. There were only two
major problems in getting LISP to work on the HP 3000.

The first was that Pascal/UBC runs on an AMDAHL/V6, using the
EBCDIC character code. On most IBM terminals that use EBCDIC,
there are no "]", "]" or """ oharacters. Because of this,
Pascal/UBC accepts "(.™ as "["™, ")" g5 n]n gnd m@" s "~“n,_ Each
of these character sequences had to be converted to their ASCII
counterparts.

The second problem centered around the use of the Pascal

forward declaration. Since LISP 1is essentially recursive in
nature, all of the procedures of LISP were declared forward to
avoid the mutually recursive problem. The use of forward in

Pascal 1s not clearly defined; but most implementations of Pascal
require that the parameter list to a forward procedure or function
be declared when the procedure or function is delcared forward,
and that the actual parameter list be left off when the procedure
or function is actually declared.

Pascal/UBC permits an extension whereby the parameter list
may be declared both when the procedure or function 1is declared
forward and when the actual procedure or function body is
declared. Pascal 2.8-V does not allow this extension, so each
actual declaration of a procedure or function had to have the
parameter list deleted.

The lesson to learn from this is that non-standard Pascal
features must be avoided, if a Pascal program is to be made
portable. Most Pascal compilers have a compiler option which
permits only standard Pascal to be compiled. Before declaring a
Pascal program portable, be certain to turn the standard compiler
option on, recompile and rerun the program, to ensure that it is
free from any non-standard Pascal features.

E-3 - 17

Experiences With Pascal
Appendix II

Implementation Notes on Pascal-V

Introduction

This appendix is intended for the 1interested reader who
wishes to know more about the actual implementation of Pascal. It
assumes that the reader is already familar with Pascal, the HP
3000 operating system, SPL/3000, and the HP 3000 instruction set
(18,15,5,1,11,12,13].For those interested in compiler design 1in
general, [20] gives a readable introduction to recursive-descent
compiling, and [2] covers the general +topic of compiler design
thoroughly.

Basic Compiler Design

The compiler itself is written in Pascal. It wuses
recursive-descent compiling techniques. The original compiler
compiled code for a hypothetical stack machine [15]. The
principal modules and their functions are as follows:

nextsym - reads the input text and returns the next lexical token.
This module 1is also responsible for output, 1including error
messages, and all input, as well as $INCLUDE files. If an
identifier 1is encountered, it also looks up the identifier to see
if it is a reserved word, but it does not <check to see if the
identifier was already defined by the user.

table management - these routines store all user-defined
identifiers into the various compiler tables, and provide lookup
of identifiers from the same tables. Table storage is organized
as an unbalanced binary tree for each program level [20,14].

block - this is the syntax recognizer of the compiler. It also
generates the "pcode" pseudo~instructions, and handles all parsing
and semantic definition. The structure of bloek is broken down as
follows:

label label-declaration-part
const constant-declaration-part
Lype type-declaration-part

var varilable-declaration-part

procedure-and-function-declaration-part
statement-part

The statement-part handles all of the various statements available
in Pascal. The structure of bloeck follows the syntax diagrams 1in
the User Manual and Report [18].

initialization - this module handles all static and dynamic
initialization. This includes the reserved words, input/output
and nextsym variables, as well as the predeclared types and
procedures. Predefined procedures and types are stored just like
regular user identifiers, so that they may be overridden by the
Pascal programmer.

E-3 - 18

Experiences With Pascal

SPL code generation - these procedures translate the "pcode"
statements 1into valid SPL statements. A combination of regular
SPL, ASSEMBLE and TOS is used in the translation to SPL. Note
that the basic code generation 1is still based on the "pcode"
machine. However, in Pascal-V the "pcode" translation stage,
which generated an external file and ran the program ASSM, has
been eliminated. The code that is generated still has some of the
basic deficiencies of the "pcode" machine.

Stack Frames

Usually, when implementing Pascal, a major problem is the
provision of the procedure call and return mechanism,
Fortunately, most of the tools required are already available on
the HP 3000, in the form of the PCAL and RETURN statements of the
HP 3000 instruction set.

When a procedure 1is called using PCAL, a four-word stack
marker 1s loaded onto the top of the stack before control 1is
transferred to the new procedure. In SPL, this stack marker is
sufficient to save and restore the entire SPL environment.
However, SPL provides only single-level addressing, while Pascal
provides multiple-level addressing. To implement "up-level"®
addressing, each Pascal procedure call loads a five-word "stack
frame" onto the top of the stack, instead of a four-word stack
marker. The stack frame is structured as follows:

| o e e !

Q-4 E Address of previous level E
-3 | Index Register
-2 Return Address
-1 i Status Register
-0 f Delta @ |

This 1is the Pascal stack frame. Words Q-3 through Q-0 are loaded
automatically by the PCAL instruction. The DB-relative address of
Q-0 of the previous level is placed onto the top of the stack by
the Pascal compiler, before the PCAL is executed.

Since all procedure levels are established at compile time,
it is possible to compute the address of a variable that is
neither local nor global. The Pascal program walks back through
the «correct number of stack frames to reach the beginning of the
level where the variable to be used is located. Then the Pascal
program works forward from the computed address to obtain the
actual address of the variable in question.

Parameter Passing

Most parameters are passed to Pascal preocedures in the same

E-3 - 19

Experiences With Pascal

way that parameters are passed in SPL. For reference parameters,
the word address of the parameter is loaded onto the top of the
stack before the procedure is called. Once the procedure is
called, it uses Q-indirect addressing to obtain the value of the
reference parameter.

Simple scalar value parameters are also passed as in SPL.
The actual value of the parameter is loaded onto the top of the
stack before the procedure is called. Set, record and array value
parameters are permitted in Pascal, but not in SPL. The principle
remains the same: space is reserved on top of the stack for the
value parameter, then the actual value of the set, record or
array 1is copied into the reserved space. Once the procedure is
called, it uses Q-negative addressing to obtain the value of any
one of the variables,

Each Pascal procedure must Kknow exactly how many words of
storage are taken by both 1its value and reference parameters.
When the Pascal procedure returns to the invoking routine, it
deletes all of its parameters from the stack.

Funection Return

The last problem involved in calling Pascal procedures or
functions 1is where to 1leave the result of a function when it
returns. The calling routine reserves enough space for the result
on top of the stack, before loading the parameters or the stack
frame.

Since only scalar, subrange or pointer types may be returned
as functions, the compiler reserves either one or two words on top
of the stack for the functicn result. Two words in the case of
reals, and a single word in all other cases. Once the function is
called, it wuses Q-negative addressing to store the function
result. Upon return, the space for the result is the only space
not deleted from the stack. Therefore, the result is always on
top of the stack after a function call.

Addressing

In general, Pascal uses DB+ addressing for global variables,
Q+ addressing for variables declared at the current level, and
Q-negative addressing for procedure or function parameters. When
a variable from another level, other than global, is needed, the X
register is used.

One problem encountered in Pascal that is not present in SPL
is that Q-relative addressing is only allowed from Q-63 to Q+127.
Since value parameters of unlimited size can be passed in Pascal,
and it is easy to declare a record structure that is more than 128
words 1long, provision had to be made for larger Q-relative
addresses. In order to work around this problem, Pascal uses a
combination of the Q register and the X register.

Whenever a reference 1is made to a local variable whose
address is larger than Q+127, the following algorithm 1is wused.

E-3 - 20

Experiences With Pascal

The nearest multiple of 128 is stored in the X register. The
difference between the address of the variable and the value in
the X register is then wused as the Q-relative address. Any
reference instruction then uses combined Q-relative and indexed
addressing. Q-negative addressing is similar, except that the
value stored in the X register is a multiple of 64, because
Q-negative addressing only allows for addresses up to Q-63.

For example, take a variable whose address would be Q+130,
and assume that a single-word load to the top of the stack was to
be done. The following SPL code would do the actual load:

X 1= 128; {<CLOSEST MULTIPLE OF 128>>
ASSEMBLE(LOAD Q+2,X); <<130-128 = 2>>

A similar situation exists with DB-relative addressing, but
the limit is DB+255. The same solution is used as in Q-relative
addressing, except that the closest multiple of 256 is loaded into
the X register, and the difference between the desired 1location
and the X register is wused as the DB-relative address. A
combination of DB-relative and indexed addressing is then used to

reference the global variable.

Why Didn't Pascal Work Under Athena?

The <contributed Pascal compilers would not run with the
Athena (2011) release of MPE, because Qinitial was two words
higher in the stack. If the Pascal compiler used DB-relative

addressing for all of its global variables, why would it matter
where Qinitial was?

The answer to this question is that IF Pascal always used
DB-relative addressing for global variables, it would not matter.
Unfortunately, over time, and through various changes to the
compiler, some references to global variables became Q-relative.
Since the structure of the 1initial Pascal stack was precisely
defined, it did not matter whether DB-relative or Q-relative
addressing were used for global variables, so 1long as the
addresses were computed properly at compile time. As 1long as
Qinitial was always exactly four words higher in the stack than
secondary DB, there was no problem.

With the Athena MIT of MPE, Qinitial was six words above
secondary DB (or more, if INFO= was used in the :RUN command).
But Pascal continued to use Q-relative addressing on some global
variables, and, under Athena, these were not the correct
variables. The fix to the compiler consisted of tracking down
every global reference and ensuring that it used DB-relative
addressing. Once this was done, Pascal was no longer concerned
with the position of Qinitial, and all Pascal programs could run
on any release of MPE.

Dynamic Memory-Allocation

One of the most powerful Pascal features, for both
applications and teaching, is the concept of pointer-variables and

E-3 - 2]

Experiences With Pascal

dynamic memory-allocation. Whenever the built-in Pascal procedure
new 1is used, storage must be allocated for the new variable. The
amount of storage allocated is determined by the type of the
object passed as a parameter to new.

Pascal maintains an area called the heap. The heap is an
area of memory, logically separate from the "stack", which can be
used for dynamic memory-allocation. On the HP 3000, the heap is
implemented as the DL area. A dynamic counter of the current size
of the heap 1is maintained in every Pascal program. When the
procedure new 1is wused, the counter 1is incremented, and the
resulting address is stored in the variable passed to new. If the
counter has passed the current limits of the DL area, the DL area
is expanded by 1024 words (using the DLSIZE intrinsic).

In order to give the Pascal programmer some control over the
size of the heap, two built-in procedures, mark and release, are
provided. Mark stores the current size of the DL area in the
variable passed to mark. This same variable is ©passed to the
procedure release, which shrinks the DL area back to that original
size. If the value of the variable used to mark the heap 1is
changed before the call to release, the DL area will be shrunk by
an unpredictable amount.

Run-Time Libarary

The run-time library gives Pascal significant power to deal
with files, and other features of the HP 3000 which are external
to the Pascal program. From a Pascal program, it is a simple task
to write out an integer, real or character value, especially when
compared with the effort needed to do the same thing in SPL. The
run-time support allows Pascal this "friendly" type of
communication with files.

The run-time library consists of approximately 1800 lines of
SPL code. The main entry points to the run-time library, and
their functions, are listed below:

PASCAL'FERR Writes out Pascal file error messages.
PASCAL'ERROR Writes out general Pascal run-time errors.
PASCAL'CLOSE Closes an open Pascal file.

PASCAL'CLOIOQ Closes the standard files INPUT and OUTPUT.
PASCAL'OPEN Opens a Pascal file for either read or write.
PASCAL'GET Gets the next record from the file. This

procedure 1is called when the built-in
procedure get is used.
PASCAL'GCH Returns the next character in a file buffer.
PASCAL'PUT Writes out the current file record to the
file. This procedure 1is called when the
built-in procedure put is used.

PASCAL'PCH Adds a character to the output file buffer.
PASCAL'POS Positions a file to a particular position.
PASCAL'FILE'POS Returns the current file position.
PASCAL'RESET Equivalent to the built-in procedure reset.
PASCAL'REWRITE Equivalent to the built-in procedure rewrite.
PASCAL'CY Pascal Control-Y trap.

E-3 - 22

Experiences With Pascal

PASCAL'GETHEAP Expands the DL area by 1024 words.

PASCAL'INIT Initializes the Pascal environment and opens
the files INPUT and QUTPUT.

PASCAL'RDI Reads an integer from a text file.

PASCAL 'RDR Reads a real from a text file.

PASCAL "WRI Writes an integer to a text file.

PASCAL 'WRR Writes a real to a text file.

PASCAL'WRS Writes out a string to a text file.

PASCAL'WRB Writes out a boolean value to a text file.

PASCAL 'DATE Obtains and formats today's date.

PASCAL'TIME Obtains and formats today's time.

These functions are stored in the RL file and are copied into
the Pascal program by means of the RL=z parameter of the :PREP
command.

File Buffers

Each of +the file-handling procedures above 1is passed a
pointer to an array which acts as the Pascal file~control block.
The structure of the file-control block is as follows:

Word Use

= e e |
1 i MPE File Number i
2 | Current Record Lemgth of the Buffer |
3 | Meximum Record Length of the File |
4 | Control Bits | Carriage Control |
51 Length of the Buffer @
6 | Current Character Position in the Buffer |
7 | Current Character If TEXT File E
s 1 Next QEDIT Block |
s 1 Next QEDIT Index |
oL QEDIT File Flags |
11| QEDIT Linenumber of Current Line §
2 Variable Length Buffer '

)
1
i
Size depends on the type of i
1
|
buffer is 128 words long. |

]

|

I
I
1
i
:
: file. For TEXT files, this
I
1
|
i
|
|

O ————— . A ————— e ————————— W S m W e ==

E-3 - 23

Experiences With Pascal

When a Pascal program uses a read statement, characters are
not obtained one at a time. Instead, a buffer containing the the
line most recently read from the file 1is used, along with =a
character position in the buffer. If all of the characters in the
buffer are read, the next line of the file is read automatically.
Since only 256 bytes are reserved for the file buffer of a text
file, this 1is the 1largest record size that the actual MPE file
attached to the text file may have.

When a file is declared in a Pascal program, the 1local
storage for the file-control block is allocated at the point where
the file is declared. This method doesn't work for the standard
files input and output, since they are predefined automatically in
every Pascal program. To get around this problem, the
file-control ©blocks for the standard files input and output are
declared in the DL area. When the Pascal program is first run,
these file-control blocks are allocated and initialized. One of
the reasons that a Pascal procedure cannot be called from another
language 1is that this allocation and initialization of the input
and output files would not be done properly. If the Pascal
program does any reading from input or any writing to output, then
it would fail, due to the lack of the correct file-control blocks.

Summary

The only software more complicated than compilers are
operating systems; yet compilers are vital to our continued use of
computers. Pascal-V is approximately 7500 lines of Pascal, and it
has been modified by at least three different people. Despite
this, many wuseful programs have been developed using Pascal-V.
The Pascal-V compiler is a reasonably solid and reliable system,
which provides a good base for ineremental enhancements in the
future.

E-3 - 24

Experiences With Pascal
Appendix III

Sample Data From the Sequential Read Test

I. Elasped Times

No. Records SPL COBOL Pascal/Get Pascal/Read
6000 26.34 34,41 39.77 109.44
7000 30.69 40.13 46.31 127 .55
8000 35.01 45,78 52.87 145.79
3000 39.36 £51.50 59.44 164.03

10000 43.70 57.20 65.99 182.15
y-int -70.97 ~42,82 -68.36 -14.9y4
slope 230.47 175.59 152.60 54.97
Corr. 0.9999 0.9999 0.9999 0.9999
Coeff.

II. CPU Times

No. Records SPL COBOL Pascal/Get Pascal/Read
6000 25.34 28.03 38.62 108.03
7000 29.56 32.69 45.01 125.98
8000 33.78 37.35 51.48 144,03
9000 38.00 42.01 57.93 162.11
10000 42,21 46.66 64.35 180.04
y-int -8.06 -18.03 4.06 4.56
slope 237.08 214.68 155.33 55.50
Corr. 0.9999 0.9999 0.9999 0.9999
Coeff.
All of the data was compared using a least squares fit of a
linear 1line. The resulting slopes and y-intercepts are listed.
Notice +that all programs had a near perfect correlation

coefficient; this indicates that the file system has a linear
increase in time as the number of records sequentially read
increases.

E-3 - 25

Experiences With Pascal

Bibliography

(1] Addyman, A. M.
"A Draft Proposal for Pascal™
SIGPLAN Notices Vol. 15 No. 4, April 1980
Association for Computing Machinery,
1133 Avenue of the Americas, New York, NY 10036

[2] Aho, Alfred; Ullman, Jeffrey
Principles of Compiler Design
Addison-Wesley, Don Mills, Canada, 1977

[31 Earls, John
"Pascal for the HP 3000"
HPGSUG Journal, Vol. 1, No. &

[4] Fraley, Robert
"Pascal~P on the HP 3000"
HPGSUG 1980, San Jose Proceeedings

(51 Fraley, Robert
"The Pascal Programming Language™
HPGSUG 1980, San Jose Proceeedings

(6] Green, Robert M.
SPL Aids, Sofware Package
Robelle Consulting Ltd.

[7] Green, Robert M.
SPL/3000 in a Commercial Installation
Robelle Consulting Ltd.

[8] Grogono, Peter
Programming in Pascal
Addison-Wesley, Don Mills Canda, 1979

(9] Pascal/1000 Programmer's Reference Manual
[10] IMAGE Data Base Management System Reference Manual
[(11] SPL/3000 Reference Manual
[12] HP 3000 Machine Instruction Set Reference Manual
[13] MPE Intrinsics Reference Manual
[14] Knuth, D. E.

The Art of Computer Programming, Vol. IIT

Sorting and Searching
Addison-Wesley, Reading, Mass, 1973

[15] Nori et. al.
The Pascal(P) Compiler: Implementation Notes,
Revised Edition
Order from William Waite
Software Engineering Group

E-3 - 26

Experiences With Pascal

Electrical Engineering Department
University of Coleorado
Boulder, Colorado 80309

[16] Pascal News
c¢/0 Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342
Subsrciption rates are $6.00 per year

(17])] Pollack, Bary and Greer, David
A Programmer's Introduction to Pascal
Available from Robelle Consulting Ltd.

[18] Wirth, Niklaus; Jensen, Kathleen
Pascal User Manual and Report Second Edition
Springer-~Verlag, New York, 1974

(18] Wirth, Niklaus
Pascal-S: A Subset and its Implementation
See order information above

[19] Wirth, Niklaus
Systematic Programming: An Introduction
Prentice-Hall, Englewood Cliffs, New Jersey, 1973

(20] Wirth, Niklaus
Algorithms + Data Structures = Programs
Prentice-Hall, Englewood Cliffs, New Jersey, 1976

E-3 - 27

