DATA BASE DESIGN

Polishing Your IMAGE

Presented to:

HP General Systems Users Group
1981 International Meeting
Orlando, Florida

Anril 27 - Mav 1

By:
Karl H. Kiefer

Systems Engineer
HP - Englewood, Colorado

Tuesday D-3 - 01

Data Base Design - Polishing Your Image

I. Introduction: Context for Data Base Design
The motivation for this essay stems from a perceived lack of understanding
among professional programmers and analysts, including Image/3000 users, con-
cerning strategies to adopt, and consequences of choices made, designing
and implementing data base systems. From a theoretical view, data base tech-
nology is intended to overcome inherent limitations and unnecessary
costs associated with the use of historically prior file structures and
access methods. Namely, the use of indexed files and flat files resulted
in systems characterized by physical redundancy of stored data,
dependence between programs and data, update and integrity problems,
security problems, and inaccessibility to data for unanmticipated requirements.
Data Base technology promised to overcome these maladies by providing
a means by which users would be able to pool their organizations'
information into a centralized, independent structure. Applications
would be implemented through a common interface to this structure:
the data base management system (DBMS). Actual implementation of
data base systems in many, if not most, production shops has fallen far
short of the promise of the technology. There are two generally
related reasons for these developpments.

Systems designers have not yet appreciated the proposition that an
institution’s management of it's information often determines its

ability to react to changes in its environment. Biological evolution

can, in one important aspect, be understood as a progression from simple

to complex forms, and the complexity of these forms can be explained

by the notion of information processing. More complex organisms are
typically characterized by more sophisticated mechanisms involved in the
processing of information. The sophistication of these processes is
typically implemented via complex brains and sense organs. The survival
success of- these organisms is, in large part, made possible by an

efficient means of sensing environmental changes and acting accordingly; of
processing information. Similarly, the evolution of social organizations,
business enterprises and governmental institutions can be understood in
terms of these organizations. ability to process information. Simply stated,
businesses which fail to manage information efficiently and wisely will,

D-3 - 02

at best, be less profitable or, at worst, become extinct. Governmental organ-
izations will be needlessly wasteful and, perhaps, fail to provide the service
which justifies their reasons for being. This is necessarily so because they
Tack the capability to act readily according to pertinent changes in

their respective environments.

An appreciation of the potential of data base technology to help provide
this capability is a necessary, but not sufficient, cause for the success of
the technology in realizing its promise. The second reason for its
perceived failure is the costly lack of information and guidanece from
academia and, especially, vendors, with respect to criteria for good data
base design and factual information with which designers might more ably
evaluate conseauences of their choices.

As a result of this lack of appreciation and/or information, implementors

of data base systems have historically viewed their DBMS as just another file
structure and access method. Typically, an.implementor is charged with the
responsiblity of getting an application up and running and, perhaps, a choice
is made for IMAGE over, say, KSAM acrording to some vague notion of

"fitness" or performance, but from that point on, the DBMS is just another
tool in the application implementation.

With respect to IMAGE/3000, some information regarding design and programming
choices affecting systems. throughout performance has begun to be disseminated
to most users. Very little information however, exists elucidating either the
criteria for design strategies or the impacts of design decisions when made.
This essay, then, is an attempt to provide an outline of design considerations
without claiming to know or state all of the costs or impacts of IMAGE/3000
design decisions. Indeed, it is hoped that if users know first what

questions to ask, more complete answers may be obtained from actual
implementation experiences which, through forums such as this, can supply
valuable, shared information. Moreover, it is hoped that the impact of this
essay will be applicable not just to IMAGE, but to data base design gener-
jcally. This, it seems, is particularly desirable since, as we all know,

full comprehension of any single product or aspect of our profession is

almost certainly an indication of its obsolescence. By the time any of us
knows all that can be usefully known about IMAGE data bases, we will surely

be rewarded with a completely new DBMS about which we will know next to

D-3 - 03

nothing, and we can start all over again.
I1. Data Design and Relationships

Recent Titerature on desirable analysis techniques (read: structured
analysis) invariably teaches that the first step is a global statement of
the functions or objectives of the system. The same holds true for data
base design. No technical methodology or checklist of analysis considerations-
can compensate for less than a thorough conceptual understanding of the
functions which are to be implemented using the projected data base. Once
these functions are stated and understood, the designer can proceed with the
initial phases of design. These consist of the identification of the data
items required to process the functions, and an analysis of the relationships
which adhere between them.

Systematically assoctating data items with their functions can be accomplished
using a function matrix (see the Data Base Design Kit for the HP 9845C,
Hewlett-Packard part #09845-91057) and is a relatively straight-forward task.

Next, it is useful to characterize each item according to two important attr-
ibutes. An item's VOLATILITY depends on the relative rate at which its
contents change value. A part number in an inventory system is not volatile
while its on-hand-quantity might be highly volatile. This characterization
will impact decisions on performance, integrity of data and storage considera-
tion. An items STRUCTURAL STABILITY refers to the physical way in which it

is stored in the data base; i.e., its data type, and length. Ignoring or
understating the possibility of structural change can have costly consequences.

The next design decision is fundamental to the success of the data base system.

Grouping of items into entries or records obtains a definite relationship

between the jtems which physically binds them together for storage and

transfer. Ideally, IMAGE entries should reflect naturally some component

of the function with which the related items are associated. An entry

describing a part in an inventory system, for example, might naturally relate

the following items: part no., description, bin no., quantity on hand, and

quantity on order If we define well-organized data as easily accessed, storage =
space efficient, and easily restructured, then further evaluations are required

when grouping items into entries.

D-3 - 04

S0 - ¢-0

0z
1 6L
/ 8l
\\\ \\ L1
4 \\\\ \\ 9
XN 5t
L AN v
AL XA el
\\ _\.\\ \\ ¢t
A \.\ Y XAA 1
AN X YA A o1
AN Y XA 6
s\ \\\ \.\ \\\\\\ \\ L
A XA N Y XA A s
AL AXAA L YA s
i Y XA A XA v
AN Y YNANNV Y XA A :
C XA \\\f\\w\ X IXAA g
AN 494 YA AN ,

g|st |l |aula|st njejaa|unfo]le|e|lzles]ls|{v|e]|z] _Bﬁwﬂ wa) eleg

" XIH1VW NOILY13Y

FUNCTION MATRIX

Function Number:

Function
Description:

Data ltem

ltem
Number

DATA ITEM FUNCTIONS

O lm|~Njo |]|hA W]

-
o

-
—h

s
N

—
[5]

—_
F-Y

—
n

-
(3]

—
-J

-
24

—_
0w

N
o

gigure ‘.

D-3 - 06

The following grouping criteria are not necessarily harmonious; that is, increa-
sing the priority of one may decrease the priority of others. Evaluating the
grouping choices made according to these criteria will, however, minimize the
possibility of costly surprises later on.

1. Group naturally. As indicated above, a natural grouping will
simplify the implementation of the associated function.

2. Minimize redundancy. Saves space but may result in more difficult
access, complex programming, and lower performance.

3. Group according to volatility. Usually a boon to performance.

4, Group according to entry size. Large entries may require less system
I/0 but more memory for buffers. Larger entries may obscure the
functions to be performed with them. Large entries may obtain more
on-1ine contention for shared data bases and, hence, Tower
performance.

5. Group for variable iterations. A table or other iterated values
such as transactions are perfectly suited to chains. A table might
be grouped into an entry; the trade-off is disc storage and memory
space requirements versus I/0's.

6. Group according to structural stability. If items which have a good
chance of changing structurally are segregated, the impact of change
tends to be less severe.

7. Group for security. Security checks by IMAGE at the set level are
less costly for performance than item-level checks.

8. Group for multiple views of same data: this may add to redundancy
but is usually consistent with natural grouping.

At this point in the design phase, the designer has a preliminary schcme with
entries defined and manual and detail sets related as to functional requirements.
He may also have discovered that, since IMAGE obtains a network structure, he
may need to implement a three or more level hierarchy through implicit progr- .

ammatic relationships. For example, suppose that a typical manufacturing

D-3 - 07

application needs to keep track of a final product's subassemblies, which could
themselves have subassemblies and so on for several hierarchial levels. This
can quite readily be represented in IMAGE through a recursive structure
implemented programmatically. The master set contains entries for each
assembly. The unique assembly number gontains each related subassembly in

a single detail set. The detail entry contains, besides the search item, only
one other item, namely, the assembly number for that subassembly the entry for
which is to be found back in the same parent master! (See figure 3)

Implementing multilevel hierarchical structures not recursive in nature
consists of redundantly adding (typically) an automatic master as the
intermediate 1ink. In a retail accounting system, for example, several stores
can be represented in a master chaining to each department for that store.

The concatenation of the store and department numbers then obtain an implicit,
symbolic pointer to an intermediate, automatic master which holds the

chain heads for individual item entries for that particular department in that
particular store. (See figure 4)

IMAGE is no different from any other DBMS in the sense that it is limited in
the variety of structural relationships which it ¢~n faithfully represent
through its own internal pointer mechanisms. And since we can, if we are
clever enough, represent virtually any desired relationship if we implicitly
design and implement such relationships in our application programs,

the designer must ask and evaluate the response to the question, what

are the trade offs associated with implicit relationships?

It 1s useful to formally distinguish between explicit relationships and
implicit relationships, the former being those available through the

DBMS while the Tatter are those maintained solely by application programs.
Further, it is useful to distinguish between implicit relationships which use
symbolic pointers (as in both figures 3 and 4) and implicit relationships
which make use of direct pointers. The status array is used by IMAGE to comm-
unicate with the user, data descriptive of, among other things, structural
information. Through this mechanism, the user can not only access IMAGE
entries directly, but also use this data in implementing his own implicit
relationships.

The trade-offs associated with IMAGE supported, explicit relationships

D-3 - 08

\ASSEM LY pNo,

ExefuctT

] THPLIIT

ReLATiONEMHI P RELATIONSHIP

l
ASSEMBLY Wb, SUb-AfSEMALY N,

fiqure 3

Stoee/0gPT NE.

| - |

$T°II-&(DS?T No.
SToRE No. DEPT wNe.
TTEM N6,

qigurg 4

D-3 - 09

include:

1. Limited design flexibility, Faithfully representing all of the
organizations' functional relationships may be difficult, if not
impossible.

2. IMAGE overhead. Any software tool designed to be general in scope
and function has to be intelligent to provide that generality.
This translates into overhead and may impact performance (E.G. sorted
chains).

3. Low knowledge requirements. IMAGE users are not required to have
in-depth structural knowledge. Knowledae is costly.

e

Support utilities. Maintenance of IMAGE data bases is provided by
utilities which act consistently with internal structures.

5. Protection from changes. If IMAGE is modified, the DBMS calls are
modified accordingly.

The trade-offs associated with implicit relationships include:
1. Unlimited flexibility in representing relationships.
2. Performance may be optimized (Or minimized!)

3. A1l affected users need to know the structure. High level of
knowledge may be required.

4. Structural change to IMAGE may cause unexpected problems.

5. Modifications to and maintenance of user programs tends to be more
complex.

6. User-written utilities may be required.

These, then, are some of the general considerations entailed in the first phase
of design: identifying the items and their relationships. The second phase

D-3 - 10

of design investigates the trade-offs associated with optimization for specific
characteristics.

IIT. Data Base Design for Optimization

Many IMAGE data bases are intended to be central to on-line
applications for which performance, specifically, response time to human
interaction, becomes a primary concern. Since particular IMAGE performance
considerations have been discussed elsewhere, we will not attempt to do more
than relate general performance issues here. By doing so, we do not wish
to minimize the priority of performance as a criterion in data base design.
Indeed, that is not our choice to make. We do, however, wish to emphasize
other areas of optimization, which, if neglected, can be even more damaging
to the success of a data base system.

The pressure of production in the real world obtain, by default if not
consciously, the decision to design a data base in order to optimize

application development time. The benefits derived from such optimization

are, at best, a product to show the end user in a relatively short amount of

time. This benefit is almost invariably short term. If design for rapid develop-
ment is obtained at the cost of other optimizing criteria, it is not Tong

before catastrophes, constant reprogramming, and general dissatisfaction

ensue. This is not recommended since effective design does not necessarily
preclude quick development. Indeed, the opposite may be a truer consequence.

The relative inexpense of hardware has lessened the demands for optimization
of storage space. It is typically cheaper to buy another disc drive than to
re-design, or require herculean programming efforts in the interests of mass
storage. The disadvantages of optimizing for space usually entail a mini-
mization of redundancy. Even though this is a generally recognized goal

of data bases, the realistic anplication gains increased performance due to
more flexible access in the form of, say, redundant search keys in automatic
masters. Decreased redundancy also typically entails larger data entries which
imply grouping of unrelated items and grouping of volatile with static items.
This generally results in larger impacts on application programs if structural
changes are required. One benefit which accrues to smaller data bases is

by no means negligible, however: the loading and unioading of data bases to
magnetic tape for archival or for recovery is a time-consuming task which

D-3 - 11

js directly related to the size and, in the case of structural reloading
(DBLOAD), the organizational complexity of the data base.

Designing a data base with a view towards optimizing performance can be <tated
as one general rule: Reduce the total amount of work required by the system
to process along the primary paths. For IMAGE/3000 data bases this
translates typically into minimizing I/0's required to process along the
critical paths. Complying with this rule requires, first, that the designer
identify the critical paths. This is accomplished by understanding the flows
of the applications contending for data base and system resources concurrently.
Minimizing Iy0 activity becomes, first a matter of deciding who can, in fact
contend. Can an application be batched if it contends with necessary on-line
activity? Setting programming standards may obtain performance gains:
locking strategies and standards; item-Tist processing; inefficient or
unnecessary DBMS calls use of internal record numbers for directed access;

use of implicit relationships. Image or HP3000 peculiarities can impact
performance: security settings, synonym chains; sorted paths; multiple paths
into volatile data sét disc drive placement; primary: pathacontiguity on disc;
the number of buffers; the sizes of buffers. The costs of performance
consists primarily in: knowledge level; redundancy of data and, hence
increased storage space requirement; complexity of programs; decreased
flexibility in structure resulting in costlier impacts if changes are made;
implicit reTationships; possible data integrity and update problems due to
redundancy and batching of applications not essential to on-line activity.

An appreciation of flexibility as a data base design criterion is, unfortunately,
almost non-existent. It is unfortunate because the penalties meted out for
failures in this aspect of design are rarely anticipated and often expensive.
While performance of data base systems is a highly visible attribute, an
inflexible data base structure typically displays its weaknesses suddenly and
dramatically. It is usually triggered by an external change in the
environment, perhaps as simple as an account number format (zip codes?)

or as subtly complex as a slight modification to a standard corporate
procedure. The solution may entail a simple organizational unload,
modification of the schema, and reload to accomodate the structural change,

or it.may require many man-days and man-nights of reprogramming, or it may
even force an admission that the change cannot be implemented without a

total redesign.

D-3 - 12

A data base is said to be flexible if it is characterized by elastic data
structures and elastic data relationships as opposed to inelastic structures

and relationships. Elasticity is measured in terms of the ability to withstand
change with a minimum of impact.

Redesign for flexiblity, for elasticity, can have significant effects even in
trivial cases. Suppose, as is common, that an IMAGE data set is modified

by adding a rew item to the end of the entry. This is perhaps the simplest
of changes to impiement. The item is to be used only by a new application so
its effects should be minimized. The data base is unloaded. modified, and
reloaded. That's it! But wait! Suppose twenty or thirty or forty other
programs access that set and, as is likely, for no more reason than programming
ease, each program coded each call to DBPUT and DBGET with an item list

of "@". Send out for beer and pizza; it will be a late night at the
terminal! chances are fairly good, as well, that one or two bugs will creep
into the system as a result.

Attaining flexibility in data base design is dependent on an understanding of
data bonding and its implications. Bonding of data refers to the relating
of data base components through either explicit or implicit relationships.
Image data base components can be bonded as follows:

1. Items can.bé bound by grouping into entries.

2. Sets can be bound by paths.

3. Implicit relationships can form virtually any number of bonds,
including those between distinct data bases.

Bonding can be described as tight or Toose generally in the order indicated.
The greater the number of items bound into an entry, the higher the probability
that entry will be impacted by external, environmental change. The designer's
first step in incorporating flexibility is minimizing the number of items in

an entry. This choice is generally consistent with the functional definition
of an entry which obtains an abstraction of some particular object of organiza-
tional relevance which an occurence of the abstraction describes, such as a
bank account, a product, an oil well, or a transaction. Each item in the

entry typically has a specific relationship to all other items in the entry,
or, more commonly, to a key item in the entry. If an environmental change
impacts the entry, all items in the entry are necessarily impacted na*turally,

D-3 - 13

and programs which process the entry will tend to be impacted naturally by the

change in function. If unrelated items are bound into the same entry, environ-

mental changes will unnecessarily impact these items as well as the programs)
which process perhaps totally unrelated functions.

Data is by definition inelastic in direct proportion to its redundancy.

Every occurence of the items is impacted by relevant environmental change.

If an item is both redundant and grouped with unrelated items, the impact

of change multiplies even more. If a data functionally belongs in more than

one entry, the designer needs to consider the reasonableness of combining

the entries. Designing for flexibiiity commands that an item appear in

only one data set and that items which serve to implement logically different
functions should reside in logically different entries. (It should be clear

that while key items are a necessary exception to these rules, the

exceptions should be kept to a minimum).

For IMAGE this means that, if flexiblity is the design goal, a master/detail
relationship in which the detail contains unrelated data items ought

to be resolved into a master related to two or more details. Stated

differently, each search item in the respective details should be an 2.
abstraction of a different functional object.

In practice these guidelines are not always so straight forward. Supnose,

as in figure 5, a data base is used to maintain cost analyses by product.

A master is related to three details, each containing cost figures for
materials, labor, and transportation, respectively. Since each detail
contains items functionally related to historical costs, a designer might
reasonably combine the cost items jinto a separate detail set if he knows that
these items are subject to frequent structural change these cost items are
uniform and remain uniform through changes. The cost of doing so is an
additional path and some implicit structures relating the material, labor,
and transportation activity in the new set.

Designing flexibility at the data base level for IMAGE necessarily requires

implicit, non-maintained relationships. The same objectives still apply,

however. Separate data bases are warranted when the items and sets which

comprise them are functionally dissimilar. If subsets of a data base are highly -
complex in terms of relationships and tightly bound, there is incentive :

D-3 - 14

PART No.
Desc.

MATERLALS LAGoR TLANS FORTATN
CosT HisTolY f CoSY HisTaLy CosT MisTorY ‘,J\7
TAN —_— TAS TAN -
Fed . fes => e
: } N N
\
L
'gwic‘) ure §

D-3 - 15

to consider breaking up the subsets into multiple, loosely bound data bases
in order to minimize the impact of change.

In general, naturally structured data bases tend to be more flexihle than

data bases structured to easily implement strict user requirements. That is,
natural structures tend to faithfully represent processes abstracted from

the user's environment and changes to the user's environment will tend to follow
naturally, whereas structures created to facilitate particular objectives

will tend to be brittle and of narrow scope. The cnsts for flexibility

are.not always compatible with performance requirements or desires for

ease of development and the proper balance must always be in the

designer's mind.

IV. Design Review

As in any thoughtful systems work, design and analysis ought to be an
interactive process. In data base design, periodic review with end users,
development personnel, and management is the best method for reaching
the goal of surprise-free implementation.

The reviews ought constantly to reaffirm the design priorities by evaluating
both the reasonableness of the exceptions and, as clearly as can be Jjudged,
the costs in terms of other design criteria. End users should be encouraged
to distinguish what they want from what they need and to understand, again,
the costs associated with sundry features of the system. Analysts and
programmers need to understand the requirements for standards in implementation
as well as the relative weight of choices to be made during coding and
testing. A detailed analysis may require a measure or count of system
resource usage demanded by contending processes. Management must be
persuaded to consult with DP when considering the adviseability of changes
which impact the system. After implementation, periodic monitoring of

system usage, performance, and standards enforcement is essential to securing
on-going success.

We hope these remarks prove useful both in encouraging discussion of these
matters and in proving or disproving their utility in practice. These matters
would be far easier to engage if we Tived in a world of perfect information
with which to make informed, intelligent analysis. The fact is that we do not
have anything near to such perfect information and so our tasks are charac-
terized by artistry as much as by technical competence. We will always be

D-3 - 16

artists to some extent, and so we need to appreciate that the success of the
6@\ masters depended on skills and knowledge of tools as well as creativity.

0-3 - 17

References

1. Hewlett-Packard Co., Data Base Design Kit for the 9845B, C, 1980
part no. 09845-91057.

2. Callinane Corp., IDMS Mata Base Design and Definition Guide, 1979.

3. Ortand J. Larson, IMAGE Data Base Design and Performance Measurement,
Abstracts and Proceedings of the HPGSUG, 1978.

4. Alfredo Rego, Design and Maintenance Criteria for IMAGE/3000. Journal
of the HPGSUG, Vol III, No. 4, 1980.

5. Berni Reiter, Performance Optimization for IMAGE, Abstracts and
Proceedings of the HPGSUG, 1980.

D-3 - 18

