ROBELLE CONSULTING LTD.

——— L ket T T e T e e

#130=5421 10th Avenue
Delta, B.C. VUM 3T9
CANADA

(604) 9Qu3-8021

Telex OU4-352848

Technical Report, February 1981, By

RCBERT M. GREEN

Robelle Consulting Ltd.

Summary

The elapsed time of high-volume, stand-alone tasks can
sometimes be reduced dramatically. This report is a follow=-up to

my 1978 paper on optimizing on-line programs.
techniques for batch optimizing are explained,

A large number of
evaluated by

empirical testing, and, finally, ranked according to their relative
"power". The tests show than some highly-recommended techniques

are of little benefit, while other techniques,

often overlooked,

will make some tasks execute 4 to 12 times faster.

Centents

I. Why Bother With Batch?

IT. What is "Batch" and How Fast Should it be?

IITI. How to Verify Proposals for Improving Batch

IV. Possible Techniques for Batch Optimizing

A, Changes to Data Storage
B. Simple Coding Changes
C. Changes to Application Logic

V. Results: What "Actually" Makes Batch Faster?

VI. Consequences for Different People

Appendix: References (Sorted by Author)

Tuesday D-2 ~ 01

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

R R A i s G A R R A i e i T S W M MR SR Sk mm e N W N R MR M M M e e T W T N WS A S A e i

In December of 1978, when I gave my paper in Denver on
optimizing on-line programs [15], the techniques that I presented
were not common knowledge among users of the HP 3000 (or even among
Hewlett-Packard Systems Engineers). The ideas discussed at the
meeting ("30 disc I/0s a second" [41]), have spread throughout the
user community as a result of numerous papers and articles [39]
(48] [09) [19]. With hundreds of intelligent professionals pushing
the HP 3000 to support the maximum number of terminals, is it any
surprise that many have succeeded?

In less than ten years, the HP 3000 has grown from 128,000
bytes of main memory to four megabytes, and the power of the
central processor has increased several times. Software has been
rewritten and refined (by Hewlett-Packard and independent vendors)
to incorporate the principles for optimizing on-line programs.
Today, HP 3000 users develop systems which support 20 to 40
terminals without serious difficulty. In 1973, users had trouble
supporting 8 terminals on an HP 3000. The speed of batch jobs,
however, is not much better than it was in 1973.

But what about batch processing? One of the most widely
recommended techniques for improving on-line response time has been
to "dump" big tasks into the batch queue [15] [45]. This is a
natural and useful idea; the batch queue is where "batch-type"
operations belong. Unfortunately, as applications mature,
databases grow in size, batch jobs take longer to complete, and new
batch programs are put into production. Eventually, the batch
queue is clogged. For many HP 3000 sites, completion of month-end
and year-end batch jobs is a major irritant.

Slow batch jobs can be very costly. Operator overtime may be
required for a graveyard shift. Extra computers may be needed to
handle the batch load. The batch capability of the HP 23000 is not
an infinite sink into which "problem" tasks can always be dumped.
It is a finite resource that can easily be exhausted.

This report attempts to discover how to complete those
high-volume, stand-alone, batch jobs in less time (i.e., 8§ hours
instead of 16). Although I will note the impact on other users of
each optimizing technique, interference with concurrent users will
not be a conclusive argument against any proposal. In addition, my
focus will be on empirical verification of gains in throughput,
with a goal of ranking all optimizing techniques by their relative
"power",

This report is very specialized. You will not learn what to

de about a flood of small batch jobs that are swamping your HP
3000. (The techniques needed to solve that problem are the same

D-2 - 02

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

ones that you would apply to on-line sessions: reduce number of
logons, eliminate UDCs for batch logons, :ALLOCATE program files,
etc.) You will not learn how many batch jobs you should run
concurrently. (The answer to that question may change drastically
when MPE IV is released.) Nor will you discover how to reduce the
impact of batch jobs upon on-line response time. (MPE IV should
give you the tools you need to solve that problem, if you are
willing to degrade your batch throughput [48].) What you will
receive are practical suggestions for improving batch throughput.

This document is the result of an investigation into reducing
elapsed time. Many of the conclusions that you will read here were
surprises to me, only uncovered when theory was put to the test
under controlled conditions. The first three sections of this
document are introductory: purpose, theory and method. The fourth
section contains the bulk of the investigative results and
explanation: thirty proposals for optimizinng. Every technigque is
given a thorough treatment (although some techniques were found to
be much more effective than others). Negative knowledge is as
important as positive, if is saves you from wasting time on methods
with little chance of success. The last two sections summarize the
results: ranking the techniques and showing the implications of
the investigation for different readers. Finally, in an appendix,
I have listed alphabetically all of the sources that I referenced,
plus a suggested reading program for those who would like to become
proficient in this subject. The reading list starts with general
survey papers and progresses to the most technical reports.

D-2 - 03

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

e e ——————— . S) Oh w m E E E E E E E E m m E E mm am E

! | t
! | 1
| Section II | WHAT IS "BATCH" AND HOW FAST SHOULD IT BE? :
1 | I
i i [

The distinguishing characteristic of a batch job is that it
has an extremely "stupid" controlling terminal. An interactive
session is controlled by a terminal with a human operator; the
controlling terminal can tell the session what to do if an unusual
situation arises. Given the primitive job control language of MPE,
a batch job cannot handle many unusual events. Also, the
particular batch jobs that this report addresses are the ones that
process a high volume of transactions.

BATCH VERSUS ON-LINE

How does high-volume, stand-alone processing differ from
on-line, interactive processing? One big difference is that a
batch job does not have a user watching its "response time",
waiting, hitting the RETURN key, losing patience, and telephone the
DP department. If a batch job is slow, no one is likely to
complain, and no one is likely to improve it.

We should be able to use the same general strategy to make all
programs run faster (batch and on-line), but we may have to vary
the specific techniques we use and the areas where we focus our
attention. As a start, I would like to review the five "prinicples
for optimizing on-line programs" from my previous paper [15]:

"Make each disc access count"™ is important to both batch and
on-line. Efficiency of disc usage may be the determining factor in
the speed of batch jobs.

"Maximize the value of each terminal read" is obviously
irrelevant; it was designed to "spread out the load" of many
independent, unpredictable, terminal users. A batch job is one,
continuously heavy demand for resources. All we can do is make
certain that we do not run many batch jobs at the same time.

"Minimize the run-time program size" sounds like a good idea;
but, if a job is run stand-alone, the program size is not likely to
slow it down. In fact, the "tricks" used to reduce the size of a
program may actually increase clock time by a small amount (a loss
that cannct be measured in an on-line program may be quite
noticeable in a batch program).

"Avoid constant demands for execution" is clearly impossible;
that is the definition of a batch job. On-line programs, on the
other hand, should consist of "short" bursts of activity, divided
by long periods of inactivity. If all of the ¢n-line users
demanded the resources of the HP 3000 at the same time, and did not
let them go, the system would be swamped.

n-2 - 04

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

"Optimize for the common events" should apply even more to
bateh jobs than it does to on-line programs. The events that are
repeated thousands or millions of times offer the most potential
for reducing overall elapsed time, even if the improvement per
"event" is only a small reduction in CPU time.

GENERAL STRATEGY

In theory, there are four strategies that "should" reduce the
elapsed time of batch jobs [48] [47]:

Eliminate some disc transfers completely.

Do the same work with fewer disc transfers.
Use less CPU time.

Overlap a disc transfer with useful CPU work.

F=a W AN I

One strategy deliberately missing from this list is:
"™inimize the amount of main memory used". Most documents on
performance place a high priority on reducing code/data segment
size [15] [41]1 [39] [26] [47] [18]1. It is implicitly assumed that
you are memory-bound. However, a Series III or Series 44 model of
the HP 3000 with full memory is a very large computer. Without
using "extra data segments" or other advanced programming
techniques, a single program can use only 64,000 bytes of the main
memory for data (that may be a small fraction of the main memory
that is actually available). Techniques will be examined that

trade-off increased code and/or data space for decreased disc
transfers or CPU time.

THEORETICAL SPEED LIMIT

The theoretical limits on the speed of a batch job are the
physical speed of the disc drives [41] and the power of the CPU.
If zero CPU time were needed to process the data (or, if processing
could be exactly overlapped with disc transfers), a batch job could
progress at pure disc speed.

Hewlett-Packard disc drives have the following speed
characteristics [48] [26]:

1. 400 microseconds to transfer a sector of information (256
bytes); 22.2 milliseconds to transfer a full track on the
7925 (16.6 ms. on 7920, 7906, 7905).

2. 11.1 milliseconds average latency on the 7925 (8.3 ms. on
the 7920, 7906, T7905); latency is the time it takes for
the disc to revolve so that the "head™ will be located
over the sector where you want to start the next transfer.

3. 5 ms. track-to-track seek time on all drives (25 ms.
average seek, 45 ms. maximum seek from edge to edge).

4. 64 sectors per track on 7925 drive (48 sectors on 7920,
7906, 7905).

D-2 - 05

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

Since batch processing often involves large sequential scans,
we need a target "best" rate for transferring large chunks of
contiguous disc data. Assuming a 7925 disc drive and an average
latency of 11.1 ms, what is the time needed to transfer 1024
sectors (16 tracks)? The answer depends upon the size of each
individual transfer. To understand this point, you need to
calculate the effective data rates, using three different transfer
sizes: 256 bytes (one sector), 8,192 bytes (1/2 track) or 16,384
bytes (a full track). In all three cases, overall seek time will
be about 80 ms., if the data is located in adjacent tracks (5 ms.
times 16 tracks).

The time-per-transfer equals the latency time (spin to proper
sector), plus the actual transfer time (.4 ms. per sector). The
total time to transfer the 1024 sectors of data equals the
time-per-transfer multiplied by the number of transfers, plus the
seek time (calculated above to be 80 ms.).

Size-of-Transfer Time-per-Transfer Time-for-1024-Sectors
256 bytes 11.5 ms. (x1024+80=) 11.856 seconds
8,192 bytes 22.2 ms. (x32+80=) 0.790 seconds
16,384 bytes 33.3 ms. (x16+480=) 0.613 seconds

Why do larger transfers improve the overall data rate by so
much (15 to 19 times faster)? Because the disc revolves at a
constant rate! If you read one sector at a time, you must still
wait for a full revolution of the disc (22.2 ms.) before you can
read the next sector.

In practice, full-track transfers are not quite as efficient
as they appear above. An application program cannot make use of
every disc revolution; it wastes some of them. After reading the
first track, your program cannot generate a new read request for
the next track before the disc itself has revolved past the
starting sector of the next track. Therefore, the best possible
data rate is closer to that for half-track transfers than
full-track transfers (i.e., .79 seconds per 1024 sectors, not .61
seconds). To this time must be added the unavoidable CPU overhead
of MPE (about 8 ms. per request).

CONCLUSION: A rough estimate of the fastest possible speed
for batch processing is ONE SECOND PER 1000
SECTORS (see :LISTF,2 for the number of sectors
in a file).

D-2 - 06

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

MPE and the HP 3000 constitute a very complicated mechanism.
Sometimes, so many factors are at work that an "obvious"™ truth
turns out to be totally false (or so hedged with qualifications as
to be useless). Wherever possible, I have tested each optimizing
proposal by performing a reproducible experiment, rather than
depending upon intuition, common sense or theoretical "proofs".
Fortunately, stand-alone batch jobs are the easiest computer tasks
to measure.

The key to a good experiment in optimizing is to vary only one
factor each time a test run is made. For example, to test the
effect of different blocking factors, I have attempted to run
exactly the same program on exactly the same data, changing only
the blocking factor. This sometimes conflicts with another goal,
that of using "real" programs in tests. Real programs may perform
other operations that vary from run to run and are not exactly
reproducible (i.e., spooled output may go to different positions on
different disecs).

I have focused on reducing the elapsed time of fixed batch
jobs. Normally, the CPU time increases or decreases in tandem with
the elapsed time; so I have only shown the CPU time when it is
exceptional. Unless otherwise noted, all tests were run on a
Series III, under MPE release 2011 ("Athena"), using 7925 dises.

D-2 - 07

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

e ———— i — T A . S M T M M M A S T N W R M R T e W M e G e mE M A M W R e e A e

i ——— - — - ———— A —— e e e = T T W v M e T W TR M M W e e e e e ey e —

In order to compile a list of suggestions for optimizing batch
jobs, I searched through past literature on the HP 3000. Although
there are no papers on this exact tepic, many papers described
specific techniques that can be applied to batch jobs. I reviewed
all of the HPG3SUG publications (journals, newsletters, conference
proceeedings), a large body of Hewlett-Packard documentation (S.E.
notes, support newsletters, manuals, etec.), and many private
reports that I have accumulated in ten years of working on the HP
3000. I reduced the results to a list of about 30 different ideas.

The optimizing techniques were then grouped into three
classes, based upon the degree to which existing applications must
be modified:

A) CHANGES TO DATA STORAGE (easiest),
B) SIMPLE CODING CHANGES, and
C) CHANGES TO APPLICATION DESIGN (hardest).

For each proposed optimizing technique, I attempted to perform
a verifying experiment. When that was not possible, I reported
experiments done by other users. In a few cases, I mention ideas
that have not been verified to my satisfaction. These ideas are /ﬂ%
carefully noted; you, the reader, are invited to send me the)
results of any tests you may do to prove (or disprove) these
suggestions.

A. CHANGES TO DATA STORAGE

If throughput can be increased by changes in the way the data
is stored, this will often be the most economical optimizing
alternative. Since a data storage change does not usually require
any program changes, expensive programmer time 1s not needed.

A1. INCREASE BUFFERS FOR MPE FILES

MPE disc and tape files are "buffered"; several logical
records are packed into each physical record ("block"). The file
system reads these blocks into buffers that are kept in extra data
segments, then passes individual logical records to/from the
program as requested. When you access a file sequentially, the
file system "pre~-reads" the next physical block. Theoretically,
buffering should increase batch throughput, allowing overlap of
useful CPU work with disc transfers. However, tests have shown
that this is not the case.

b-2 - 08

ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

In a test of file-copies with FORTRAN [09], two buffers (the
default) was 1.08 to 1.16 times faster than one buffer, but only if
you called FREAD/FWRITE directly (instead of using the FORTRAN I/0
statements). Increasing the buffers beyond two did not improve the
speed at all (:FILE XXX;BUF=4).

The time to copy 1000 records (333 sectors) varied from 10 to
28 seconds. This works out to an effective "data rate" of 15 to 42
seconds per 1000 sectors (666 sectors must be processed in total,
since each sector must be read in and written out). The "ideal"
speed for file copies, as deduced in Section II from the speed of
of the disc hardware, is less than 2 seconds per 1000 sectors.
(Many times faster; certainly room for improvement!)

In another test [38], sort times were 1.04 to 1.07 times
faster with two buffers, instead of one, but only if the blocking
factor was small (the test was done using the pre-1918 sort,
without the benefit of NOBUF). More than two buffers did not
improve sort times. In fact, it sometimes caused a slight increase
in times. I ran my own tests with FCOPY, and verified these
results (BUF=2 is 1.085 times faster than BUF=1, but BUF=4 is not
faster than BUF=2). :

Why doesn't buffering work? Another paper [48] explains it
very well. MPE III uses 2.9 milliseconds of CPU time for each
logical transfer (buffer to stack), plus another 8 ms. for each
physical transfer (disc to buffer). For an 80-byte record, blocked
16, the CPU time to read a bloeck is 52.5 ms., but a disc access
only takes 33 ms. MPE III IS CPU-BOUND! The author of [48]
suggests that buffering can help random access files by creating a
"cache™ of active logical records! But, the only time I tried this
technique, the program ran slower. These conclusions may change on
the Series 44 (MPE IV), as tests indicate that FCOPY is 2.25 times
faster than on a Series III with MPE III [36]. MPE IV may not be
CPU-bound.

A2. INCREASE KSAM KEY BLOCK BUFFERS

KSAM, an acronym for Keyed Sequential Access Method, is the
Hewlett-Packard equivalent of ISAM. KSAM uses buffers located in
an extra data segment, but differently from the file system. KSAM
always allocates one buffer for the data block and a number of
buffers for the key blocks. It appears that KSAM now allocates
enough key block buffers (in most cases) by taking into account the
number of levels in the B-Trees. However, if the KSAM file is
empty, KSAM may not allocate enough buffers. In one experiment
[10], the user improved the time to load an empty KSAM file by 2 to
10 times through an increase in buffers. (The key block buffers

are controlled by the 'numcopies' field; :FILE XXX; DEV=,,13 for 13
buffers.)

D-2 - 09

ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

A3. INCREASE IMAGE BUFFERS IN DBCB

The IMAGE/3000 database system also uses buffers external to
the user data stack to provide blocking of logical entries into
physical disc blocks. There is a major complication with IMAGE.
Unlike KSAM and the file system, IMAGE uses a shared, "global"
buffer pool for each database, with the users of the database
competing for the available buffers. IMAGE allocates an extra data
segment called a DBCB, large enough to hold the number of buffers
that IMAGE thinks will be needed. This number is based upon the
highest number of paths into a detail dataset, and the number of
users who have the base open (i.e., the number of buffers may vary
dynamically during the day). This default number of buffers can be
overridden with the BUFFSPECS command of DBUTIL. What a
tantalizing prospect!

One published test varied the number of buffers while doing a
DBLOAD [49]. When DBLOAD reloads a database from tape, it is
acting like a long batech program that does many DBPUT operations.
The reload time was reduced 1.26 to 2.53 times by progressively
increasing the buffers for one accessor from the default (9) to the
maximum (255). The fastest time occurred between 30 and 100
buffers. That is not surprising, since the actual number of
buffers that can be allocated is limited by the size of the largest
extra data segment (32,000 words). With a blocksize of 512 words,
the maximum is about 50 buffers (100 buffers for 256 words, 25 for
1024 and only 12 for 2048 words). DBUTIL does NOT give you a
warning if you request more buffers than is possible [07]. I have
contributed a program called LISTDBCB that shows the current size
of the DBCB of any database (some versions of S00C show the DBCB
also).

The one experiment that I did to verify this technique gave
disappointing results. By doubling the number of buffers, I only
improved the elapsed time (to do 2551 DBPUTs) by 1.03 times.
Perhaps my DBPUT operation was not complex enough to require the
extra buffers that were available; or, doubling the buffers may not
have been enough.

During on-line access to the database, I recommend the default
BUFFSPECS. Due to the algorithm that IMAGE uses to allocate
buffers to users, it is very easy for the entire buffer pool to be
"flushed" [07]. Thus, an increase in the total number of buffers
can actually make your on-line response time worse by increasing
the size of the DBCB that must be swapped. For stand-alone batch
access, it is worth experimenting with increased buffers,
especially if you are doing complex transactions involving puts,
deletes and updates to several datasets, or to datasets with many
paths. I suggest that, for one database accessor, you ask for the
maximum buffers (i.e., set BUFFSPECS to 255 and let IMAGE allocate
as many buffers as it can); there is no point in choosing a
compromise number. Also, both of the tests reported above were run
in "output-deferred”" mode (see technique B4 below); the results may
not be as good with the default "output-complete" mode.

nD-2 - 10

ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

A4, INCREASE BLOCK SIZE OF MPE FILES

The most well-known maxim of optimizing is: TMincrease the
block size for batch (serial) access and decrease the block size
for on-line (random) access" [33]. How well does this maxim
actually work on the HP 30007 The block size is determined by the
blocking factor, which is the number of logical records stored in a
single physical block of disc space. A& block always starts on a
sector boundary and is the smallest unit that can be transferred
between disc and memory. Since lack of disc transfers is a primary
limitation on throughput, increasing the number of records
retrieved in each physical transfer should increase the speed of
batch programs.

For MPE files, the blocking factor is determined when the file
is created (:BUILD XXX;REC=-80,16,F,ASCII specifies a blocking
factor of 16 and a block size of 1280 bytes). If you do not
specify the blocking factor explicitly, MPE selects a default value
by dividing the record size into 128 words (a sector). If the
record size is over 128 words, MPE uses a value of one. Thus, MPE
chooses the smallest possible block size. Several programs are
available in the contributed library that select an alternate
blocking factor to minimize the disc space allocated. Another way
to choose the blocking factor is to minimize processing time (but,
what block size does optimize for speed?).

A number of published tests have measured the effect of
varying the blocking factor. A test of file copies with FORTRAN
[09] found that increasing the bloeck size above the default
improved speed by 1.25 to 1.53 times, with benefits diminishing
when the block size exceeded 512 words. The improvement was more
marked when I/0 was done using the FORTRAN read/write statements
than when FREAD/FWRITE were called directly (perhaps because the
base time was much slower). The test was for 80 byte records,
blocked from 3 (default) to 32. The test also showed that the
default blocking (3 r/b) was 1.8 to 2.22 times faster than one
record per block. I reproduced this test using FCOPY instead of
FORTRAN and obtained similar results, except that the improvement
was not as great.

A test of sorts on disc files (before the 1918 release of
NOBUF sorts) showed speed increases of 1.26 to 1.42 times, with no
improvement above a block size of 1000 words [38]. In order to
investigate the impact of actual bloek size (as opposed to blocking
factor) on performance, I ran some FCOPY comparisons with 150-word
records. I varied the blocking factor from 1 (default) to 10 and
recorded speed increases of 1.17 times (blocked 2) to 1.28 times
(blocked 10), with only a small improvement above 600 words. In no
case did I find a significant inecrease in buffered access speeds by
increasing the block size from 512 to 1024 words.

I conclude that there is so much CPU overhead in the file

system (and the other general interfaces that sit on top of the
file system), that the best you can expect is an improvement of

D-2 - 11

ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

1.25 times (if your blocks are small currently). Since very large
blocks can have a detrimental impact on terminal users and show no
performance benefit, you should pick the block size between 512 and
1024 words that minimizes disc space. However, it is also possible
to access files in a non-buffered mode (see ideas B2 and B3) for
better performance. I will show that it is possible, with NOBUF
access, to have "the best of both worlds" (big block for batch and
small block for on-line), if you choose your block size correctly.

A5. INCREASE BLOCK SIZES FOR KSAM

In KSAM, there is both a data file blocking factor and a key
file blocking factor [10]. The blocking factor of the data file
should be chosen using the same guidelines as for an MPE file. The
blocking factor for the key file "should" impact performance
(according to the KSAM manual). I haven't used KSAM enough to
deduce a better method for selecting this number than that used by
KSAM itself.

Each KSAM user has a separate, extra data segment for each
KSAM file opened. Increasing the block size (or the number of key
block buffers) will also increase the size of these extra data
segments, and may have a dramatically bad effeect on terminal
response time. (The same thing is true of regular MPE files as
well, but not of IMAGE.)

A6. INCREASE BLOCK SIZE OF IMAGE DATABASE

The dataset blocking factor of an IMAGE dataset is comparable
to the blocking factor for MPE files and KSAM data files [48] [33]
(07]. The largest block size allowed in a database is determined by
the $CONTROL BLOCKMAX command in the schema file, with the default
value being 512 words. Given a "target", IMAGE chooses the
smallest block size within the target that mimimizes the amount of
disc space for the dataset. Some datasets may be assigned a block
size just below 512 words and others a block size just below 384 or
256 words. The buffers that are allocated in the DBCB, however,
are all the size of the largest block in the database. Therefore,
if you have a single dataset with a block size of 2048 words, you
are limited to 12 or 13 DBCB buffers, even if your other blocks are
only 1024 words long. This will not only decimate your terminal
users, but may even degrade batch Jjobs which perform complex
database transactions.

I did a large number of sequential extract tests on a dataset
with 105,000 records, using a block size of 256 words, 512 words
and 640 words (I wanted 1024, but IMAGE chose 640 instead). The
512-word blocks could be scanned 1.05 to 1.24 times faster than the
256-word blocks. Blocks of 640 words were slightly faster than
512. Given the problems for on-line users, it appears that the
IMAGE default BLOCKMAX is optimum.

In these database extract tests, the "data rate" varied from a
low of 56 seconds per 1000 sectors (using QUERY on 256-word blocks)

D-2 - 12

ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

to a high of 29 seconds per 1000 sectors (using ¥ field 1list,
dataset number and 512 word blocks). For a database extract task,
the ideal data rate is 1 second per 1000 sectors. Why was our rate
at least 29 times slower? There are two reasons: IMAGE needs CPU
time to check and execute each intrinsic call, and IMAGE reads only
one data block per revolution of the disc. See topic B2 below for
a method of bypassing the CPU time of IMAGE, and topic B3 for a
method of retrieving several IMAGE disc blocks per disc read (up to
a full track of information).

A7. IMPROVE HASHING OF IMAGE MASTER DATASETS

The topic of "hashing" in IMAGE master datasets is well
covered in other documents [15] [45]1 [07] [30] [b10) [34] [331. I
suggest that you run the contributed program DBLOADNG [07] at least
once a month. Look for a high percentage of "inefficient pointers"
in your master datasets (over 20% means you are often using more
than one disc read to locate a record), and a high "elongation"
(over 1.5 indicates a problem). Any improvement in the hashing of
master datasets will benefit both batch jobs and on-line programs.

What can you do to improve hashing? Either increase the block
size, reduce the record size, or expand the capacity to a higher
prime number. How much will this improve the speed of your batch
jobs? I have not yet run a controlled experiment. However, if you
have a "regular" problem (dataset too full or block size too
small}, elimination of this problem "should" improve batch programs
(that do DBFINDs or Mode-7 DBGETs) by about 1.25 times. If you
have a "serious" problem (clustering of records) caused by a bad
choice of key field type (and/or values), solving the problem (by
converting to a different data type and/or restructuring the key
values), will bring a dramatic improvement. I have seen cases
where the elapsed time to do a single DBPUT was between 30 and-60
seconds (due to extensive clustering), when it should have been
less than a second.

A8. DBLOAD DATABASE TO OPTIMIZE PRIMARY PATH

If you have an IMAGE detail dataset with 11 records per block,
and one of the paths has an average of 11 records per chain, how
many disc reads will you need to retrieve the entries on a given
chain (not counting the hash to the master dataset)? Did you say
"one read"? That would only be true if the dataset were perfectly
"organized". In the real world, entries are added to and deleted
from chains in a "random" fashion, creating holes that are reused
for other chains. Over a period of time, the chains in a dataset
tend to become discorganized (assuming puts/deletes). Therefore, it
may take as many as 11 disc reads to retrieve all of the records on
your "average" chain, or as few as cone.

The contributed program DBLOADNG reports on the randomness in
the chains of each master-detail path [07]. The last column in the
DBLOADNG report is called "elongation™ and is the eritical value.
If elongation equals 1.0, the chains for that path are as

D-2 - 13

ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

well-organized as is possible (given the blocking factor). If
elongation equals 5.0, then those chains are unorganized; they are
spread among five times more disc blocks than is theoretically
necessary.

What can you do to reduce "elongation"? Very little, unless
the disorganized path happens to be the PRIMARY PATH for the
dataset. In that case, reloading the database will repack the
entries so that elongation for that path is close to 1.0 [45] [34],
Of course, this only fixes the primary path, not the other paths
into the dataset. Therefore, the primary path for a dataset should
be the actively-used path with the longest average chain length
{you cannot optimize a chain with only one entry!).

In order to "reload" a database, you must DBUNLOAD it to
magnetic tape, erase the database with DBUTIL, and DBLOAD the data
from the tape. I reloaded a database of 75,000 sectors (19.2
megabytes) which had undergone many DBPUTs and DBDELETEs without a
reorganization. DBLOADNG showed that elongation for the largest
dataset (capacity 200,000 entries) was 5.85 (very bad)! The
DBUNLOAD/DBLOAD took two hours and, as predicted, elongation
dropped to 1.17. The average blocks per chain was reduced from 8.3
to 2.3, over 5 times better.

I reloaded the database again to double the block size; this
further reduced the blocks per chain to 1.6, If chained access is
very frequent, the larger block size, combined with regular
reloads, should improve batch speeds (as well as on-line response).
I have not had time, however, to verify this hypothesis on an
actual application.

A9. RELOAD SYSTEM TO REDUCE DISC FRAGMENTATION

Many sources suggest that you keep at least 20% free disc
space (15,000 sectors minimum), and that you not let the number of
entries in the free space tables get too large [23] [39] [41].

This is accomplished through a RELOAD from magnetic tape (a full
backup). I am not convinced that this will make any difference in
the speed of batch tasks. However, my personal experience does
verify that disc fragmentation and lack of free space lead directly
to increased System Failures. Since System Failures obviously
reduce system throughput (on-line and batch) [06], I have no
hesitation in suggesting that you do frequent RELOADs.

A10. CONTROL FILE PLACEMENT FOR "HEAD LOCALITY"

The favorite strategy in the optimizing literature is called
"head locality" [48] [23] [15] [473 (41] [42]1 [07]. By placing
files carefully on selected spindles, we ought to be able to keep
the arm from moving back and forth so much. According to this
theory, "head locality"™ plays a big factor in performance by
reducing the average disc access time. It is frequently suggested,
for example, that master datasets should be placed on different
drives from their detail datasets, because the two are often

D-2 - 14

ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

accessed at the "same time".

The only tests of this technique that I have uncovered [38]
[04] do not demonstrate a universal benefit from head locality.
The first test attempted to improve sort performance by placing
SORTSCR on specifiec drives. Unfortunately, sort times were
actually slightly faster when all three files (input, output,
scratch) were ON THE SAME DRIVE. In the second test, the user
achieved a 6% improvement in his batch jobs after moving datasets
to separate drives. This is not much improvement, considering the
inconvenience and time required to obtain "head locality"™ (:STORE,
:RESTORE, or copy from disc to dise). In the final test, the user
improved file copies by 1.14 to 2.3 times when he copied from one
drive to another [13]. However, a straight file copy is much
simpler than most actual application programs.

I was concerned that these inconclusive findings might be
"flukes", caused by faults in the experiments. Therefore, I
devised several experiments to prove that "head locality" would pay
big dividends. First, I reproduced the sort experiments referred
to above; the sort times were essentially EQUIVALENT, regardless of
where the input, output and scratch files were located. I tested
file copies, extracting 10,000 records from a file with 100,000
records. When the files were on separate drives, the copy was 1.08
times faster than when they were on the same drive. This was not
very encouraging. Finally, I tested test the effect of separating
masters and details. I read 2000 records from a disc file and
DBPUT them to a detail dataset that was indexed by one master
dataset. When all three files involved were carefully isolated on
three separate drives, the extract task ran slightly SLOWER than
when all three files were moved to the same drive. This was a most
suprising result.

The situation with masters and details may be complicated by
the fact that DBPUT and DBDELETE must update the "userlabel" on
each dataset (to record the number of available entries), and this
label is always located at the beginning of the dataset. Perhaps
the steps involved in achieving "head locality" (:STORE, :RESTORE)
reduce the overall efficiency of the system by fragmenting the free
space. These results show that MPE is seldom as simple as it
seems. "Head locality" deserves more research, especially on MPE
IV. Until that research is completed, I suggest that users
discontinue efforts to obtain head locality.

D-2 - 15

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES
B. SIMPLE CODING CHANGES

A "simple coding change" is one that changes the method of a
program (the "how") without changing the purpose of the program
(the "what"). The techniques proposed here can be implemented by
mechanical changes to programs (i.e., code substitution). In fact,
most of these ideas could easily be provided by the language
subsystems automatically (e.g., by the COBOL compiler). Since the
objectives of the application program are not modified, only
programmer time, not system analyst time, is needed.

B1. USE MORE EFFICIENT PARAMETERS ON IMAGE CALLS

Another technique that is universally recommended is to code
your IMAGE database calls with the "best" parameters [01] [45] [07]
[30] [34] [ete.]. For the field list parameter (which fields
within the dataset to process), the source with the most detailed
testing [01] concluded that write access, plus the "@" list (all
fields) is always the fastest. However, write access, plus a field
list that is subsequently replaced by an "¥", 6 is almost as fast.
Tests that I performed (doing DBGET extracts serially from a large
dataset, varying the field list parameter) verified these results.
When there were only four fields in the dataset, € improved DBGET
speed by 1.34 times, and "field-names-plus-*" improved DBGET by
1.33 times. Since the @ option can lead to program maintenance
problems, I suggest the use of field names (only the fields you
need) followed by an ¥. I also checked use of the dataset number
in place of the dataset name, and found the improvement to be too
small to be worth the trouble (861 seconds instead of 869).

Using the optimum parameters in IMAGE intrinsic calls improved
the "data rate" for database extracts from 45 seconds per 1000
sectors of data (using field names) to 29 seconds per 1000 sectors
(using *). 1In order to get closer to the "ideal" data rate of i
second per 1000 sectors, we must use another approach which is far
faster than any DBGET call: bypass the normal database overhead
completely for high-volume serial access by reading the data
directly using NOBUF. This technique will be explored next.

B2. USE NOBUF ACCESS TO REDUCE CPU TIME

The most powerful technique for making batch jobs faster is
NOBUF access. Normally, files are accessed through intermediate
buffers provided by MPE, KSAM or IMAGE (as described above under
A1-A6). However, in my 1978 paper on optimizing [15], I described
how you can disable buffering using the NOBUF bit (in FOPEN) and
read physical blocks directly into your data stack. When you use
NOBUF, it is your responsibility to "deblock™ the logical records
from the physical blocks. At the time, I was discussing the
application of NOBUF to on-line problems; specifically, how to
write a program development editor that would not be a drain on the
system. The resulting program, called QEDIT, used NOBUF (and other
techniques) to cut the load of editing at least in half, while

p-2 - 16

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

still providing editing speeds that were 2 to 12 times faster than
EDIT/3000.

Encouraged by the success of NOBUF in QEDIT, I wrote another
program in 1978, called SUPRSORT, that used NOBUF access for file
copies and file sorts. This program proved to be 2 to 10 times
faster than FCOPY and 2 to 5 times faster than SORT/3000, primarily
due to use of NOBUF (see topic B3 below for more information).
NOBUF works so well because it REDUCES CPU TIME DRAMATICALLY, by
eliminating calls to the file system (or KSAM or IMAGE) and by
replacing the general-purpose "deblocking™ code of those systems
with specialized deblocking code written by the user.

Since 1978, the "secret" of NOBUF has spread from user to user
and has been explained in many papers [09] [08]1 [29] [11]. One of
Hewlett-Packard's System Engineers wrote (and contributed) FASTIO,
a set of general-purpose deblocking routines that allow the COBOL
programmer to benefit from NOBUF easily [44]. Users then reported
results such as a reduction in CPU time from 76 seconds to 10
seconds, a reduction in elapsed time from 7.5 minutes to 1.3
minutes, and scan rates of 60,000 records per second instead of
8500 [03] [o02].

FASTIO was designed to accelerate sequential access to files;
but, an enterprising vendor wrote another set of deblocking
routines (called BREAD [26]), that provides both random and
sequential NOBUF access. BREAD is callable from BASIC, as well as
COBOL, SPL, and FORTRAN and it has better documentation than you
can expect from a contributed routine like FASTIO. Using either
FASTIO or BREAD, a batch application file can access disc files 3
to 20 times faster than by using the standard READ/WRITE statements
provided by the programming language.

With the 1918 release of MPE in 1980, Hewlett~Packard upgraded
SORT/3000 to use NOBUF, (There can be problems with NOBUF if you
are not careful. Witness the failure of the 1918 sort release to
work with card input files or line printer output files.) With
these enhancements, SORT/3000 is now slightly faster than SUPRSORT
at sorting MPE disc files (up to 10%).

A user who ran timing tests on a file of 50,000 records (64
words long, 20 records per block), found that a NOBUF sort (using
either SUPRSORT or the 1918 version of SORT/3000) ran slightly
faster than a simple FCOPY of the same file (he also found that
SUPRSORT copied this file four times faster than FCOPY) [36]. 1In
other words, the MPE deblocking of 50,000 records took the same
amount of time as a sort of the same records. At another site, a
Jjunior programmer wrote a set of deblocking routines for magnetic
tape blocks (slightly more complicated than disc blocks). After
modifying several report programs that scanned tapes, he was able
to achieve a ten-fold reduction in CPU time and two-times-faster
elapsed times.

D-2 - 17

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

Since NOBUF works by reducing CPU time, any changes in MPE to
make the file system faster will reduce the "perceived" benefit of
NOBUF. This has happened with MPE IV and the Series 44, One of
the test sites for this new Hewlett-Packard product found that
FCOPY runs twice as fast as it did on the Series III with MPE III
[36]. The NOBUF copy was now only 2 times faster than FCOPY, not 4
times.

NOBUF can also be applied to KSAM files, but with some
difficulty (there are problems with deleted records and the
end-of-file). SUPRSORT supports NOBUF access to KSAM files, while
SORT/3000 does not. In a sort of 12,444 records (-80, 16, F,
ASCII; KEY=B,40,20), SUPRSORT took 1.7 minutes and SORT/3000 took
5.6 minutes, an improvement of 3.3 times. Since SORT/3000 uses the
default access to KSAM files, KSAM must use the key file to put the
data records into primary key sequence, after which SORT/3000 sorts
them again, into the final desired order. SUPRSORT reads the
records in chronolegical sequence, instead of in primary key
sequence. For a K3AM file that has been loaded randomly over time,
primary key sequence can require a great deal of disc head movement
to retrieve the records.

NOBUF access can also be applied to IMAGE datasets, but
SUPRSORT and ADAGER (Adapter/Manager for IMAGE [331) are the only
software tools that I know of which do this. SUPRSORT, for
example, retrieves records from an IMAGE dataset by reading the
data blocks directly from the disec, rather than calling the DBGET
intrinsiec for each record. This results in a dramatic savings of
CPU time (and elapsed time).

In 1980, I added a generalized selection capability to
SUPRSORT (i.e., >IF AMOUNT>100000 AND ORDSTAT<>"X" OR DATE>801030)
and changed the name of the software product to SUPRTOOL. In one
comparison test, I used SUPRTCOL to select 1033 records from a
dataset with 105,504 current entries. When the dataset had
256-word blocks, SUPRTOOL took 222 seconds to do this task, 2.9
times faster than the best SPL program (using DBGET) and 4.8 times
faster than QUERY/3000. The effective data rate in this experiment
was 11.62 seconds per 1000 sectors of data scanned, versus 34
seconds with the best SPL program. This gain is strictly due to

savings in CPU time, since both cases read a single data block per
disc revolution.

When the database was reloaded with 512-word blocks, SUPRTOOL
took only 110 seconds (twice as fast) and was 4.8 times faster than
the SPL program (7.4 times faster than QUERY/3000). The larger
block size improved SUPRTOOL's data rate from 11 seconds per 1000
sectors to 6 seconds. (Warning: before you reload your databases
with larger blocksizes, read the next section! With the IMAGE
database, you can enjoy the benefits of large disc blocks, while
still retaining small blocks for your on-line users.)

D-2 - 18

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

B3. USE NOBUF ACCESS AND TRANSFER SEVERAL BLOCKS AT ONCE

When you open a file with NOBUF, MPE allows you to transfer
one OR MORE blocks on each call. If NOBUF with one block per
transfer is good (see previous section), would several contiguous
blocks per transfer be even better? Sometimes it is, and sometimes
it isn't. I ran a test with SUPRTOOL to demonstrate this
phenomenon. From an IMAGE dataset with 251-word blocks (117 words
per record, two records per block, 15,255 entries in the dataset),
I extracted all of the entries that contained a customer number
starting with "X". GSUPRTOOL read one disc block at a time and the
task took 176 seconds (65 CPU seconds). When I forced SUPRTOOL to
read 16 blocks at a time (using DEBUG), the task took 1.44 times
LONGER (189 seconds), but used less CPU time (only 45 seconds)!

How can 16 blocks per transfer be worse than one block per
transfer? The CPU time was reduced, as we would expect, because
there were 16 times fewer calls to the FREAD intrinsic; but the
elapsed time increased by 1.44 times instead of decreasing. The
answer lies in the BLOCK SIZE: 251 words. Since each block MUST
START ON A SECTOR BOUNDARY, a 251-word block must have 128 data
words in the first sector and 123 data words in the second sector.
That leaves 5 WASTED WORDS at the end of each block. When SUPRTOOL
asked MPE to read 16 contiguous blocks from the disc, MPE had to
remove those 5 extra words at the end of each block. Since the
disc controller is not smart (or fast) enough to perform this
chore, the only way that MPE can remove the words is to issue a
separate read request for every. Thus, a 16=-block read takes at
least 15 full revolutions of the disc to complete. When SUPRTOOL
asked for one block at a time, each read request took about
one-half a revolution to complete (depending upon where the head
was when the read occurred). When there are unused words at the
end of a block, reading one block at a time is the fastest method.

However, when there are no wasted words at the end of each
block, multi-block transfers allow serial processing at rates which
reach the theoretical limits of the HP 3000. For example, in
copying a file of 32 word records, with 4 records per block, FCOPY
has a "copy" speed of 57 seconds per 1000 sectors. SUPRTOOL, using
transfers of Y4096 words, has a measured copy speed of 1.6 seconds
per 1000 sectors, faster than the hypothetical limit of 2 seconds.
Of the total 1.6 seconds, 1.46 seconds are spent in either the
FREAD or FWRITE intrinsics. The only way that SUPRTOOL can be
faster than the "speed limit", is if the actual latency per
transfer is less than the average (11.1 ms., or 1/2 revolution).
See Section II for the detailed calculations.

Prior to the Athena release of IMAGE (2011), databases were
always created with "odd" block sizes, such as 251 words. But, if
you build (or rebuild and reload) a database under the 2011 release
{or later), IMAGE will round up the block size of each dataset to
the next sector boundary (128 words). This was done to allow the
DBUTIL program to use multi-block writes to erase a database.

D-2 - 19

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

What are the results if I reload my database under 2011 IMAGE
and ask SUPRTOOL to scan the database using varying numbers of
blocks at a time? In the previous section, I reported an extract
job that took 222 seconds to perform, reading one 256-word block at
a time from the dataset. Here are the times for the same job,
reading 1 to 32 blocks at a time (block size is exactly 256 words):

Number of Blocks: 1 2 4y 8 16 32
Words per Read: 256 512 1024 2048 4096 8192
Elapsed Time (s): 223 116 115 89 75 69
Times Faster: - 1.9 1.9 2.5 3.0 3.2

These times are more like it -- up to 3 times faster. The
conclusion that you should reach is: ALWAYS PICK A COMBINATION OF
RECORDS IZE AND BLOCKING FACTOR WHICH PRODUCES A BLOCK 3IZE EVENLY
DIVISIBLE BY 128 WORDS [11], even if you must "waste" a few words
per record.

If you follow this rule, you can achieve data processing
speeds that are close to the theoretical hardware limits (1 second
per 1000 sectors). SUPRTOOL, for example, performs selective data
extracts on "even" block sizes at rates up to 3.6 seconds per 1000
sectors. Straight copy operations, without selection, are even
faster: 1.6 seconds per 1000 sectors. When doing selective
extracts, SUPRTOOL spends .75 seconds per 1000 sectors in the FREAD
intrinsic. That is faster than our target speed limit. It shows,
once again, that CPU time has the power to stretch out the elapsed
time for any task. SUPRTOOL uses 2.85 seconds per 1000 sectors to
evaluate which records to select (and to move them to output

buffers) and only .75 seconds per 1000 sectors to read and write
the data blocks.

Another advantage of using NOBUF reads of the database (as
SUPRTOOL does), instead of calling DBGET, is that a serial search
does not disturb the shared "buffer pool" in the global DBCB extra
data segment (see topic A3 above). If there are other users
accessing the database, a batch program that makes 100,000 calls to
DBGET in a short time will "flush" the buffers that are allocated
to other users. NOBUF access bypasses these buffers completely.

With an "even" block size, the speed of multi-block NOBUF is
exactly as fast as single-block NOBUF using very large blocks.
Therefore, you can keep your actual block sizes small (but they
must be divisible by 128 words with no remainder) to optimize
on-line access, but not too small (I suggest 512 to 1024 words) to
optimize cases where you choose to use buffered access instead of
NOBUF access. Since IMAGE now rounds up blocks for you
automatically, I suggest that you use the default IMAGE block size
(512 words), except in cases where a record size does not block
well into 512 words (see A3 and A6 above). If you have an existing
database with "odd" block sizes, you can convert to "even" blocks
either by building a new database and reloading from tape (DBLOAD),
or by running the new REBLOCK function of ADAGER/3000. For
magnetic tape files, I suggest a very large block size (4000 to

n-2 - 20

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

8000 words) and NOBUF access, one block at a time. Multi-block
tape transfers seem to crash some releases of MPE.

B4, USE DBCONTROL TO DEFER DISC WRITES BY IMAGE

Normally, after the completion of each IMAGE intrinsic call,
the IMAGE database system flushes all "dirty" blocks in the buffer
pool back to the disc. This is one of the reasons IMAGE data
structures are so reliable: the time window during which they are
inconsistent is very small.

The DBCONTROL intrinsic provides a way of disabling the
automatic posting of dirty blocks. It has been suggested that
DBCONTROL be used to improve large batch jobs [34#]. The DBLOAD
utility, for example, uses this feature to accelerate the loading
of databases from tape. However, if the system should crash while
you are in "deferred-output" mode, you must RESTORE your database
from a backup tape. Otherwise, there could be serious logical and
structural inconsistencies in your database.

One user test of DBCONTROL found a reduction in elapsed time
from 21 minutes to 16 minutes for one application, and from 22
minutes to 8 minutes for another [04]. These are improvements of
1.3 times, and 2.75 times, respectively. It is likely that tasks
requiring a large number of puts and deletes (relative to gets and
updates) will show the biggest improvement. Designers are often
encouraged to avoid doing on-line deletes from the database by
flagging "dead" records and deleting them with a batch program
[45]. Such a batch maintenance program is a good candidate for
DBCONTROL, since it can easily be scheduled to run after a database
backup (essential to avoid losing your database without any way to
recover).

When I upgraded my SUPRSORT utility into SUPRTOOL, I added the
ability to write the output records to an IMAGE dataset (i.e., do a
DBPUT). I also included a command to enable "deferred-output" mode
through DBCONTROL. Using these features, I loaded 2551 records
into a detail dataset that had a single key field. In normal mode
("complete-output™), this task took 333 seconds; in deferred mode,
it took 156 seconds, an improvement of 2.13 times. (See topic A3
above for related ideas.)

The dramatie difference between a DBPUT and an FWRITE to a
sequential file can be seen by calculating a "data rate" for DBPUT.
In the test mentioned above, with a single path to update, DBPUT
had a rate of 203 seconds per 1000 sectors of data in
"complete~output” mode (default) and 94 seconds per 1000 sectors in
"deferred-output" mode. This compares with a rate of 1 to 2
seconds per 1000 sectors for NOBUF, multi-block transfers using
FREAD and FWRITE. The reason DBPUT takes so much longer is that it
must do random (i.e., "hashed") reads from the master dataset
(about 1570 reads per 1000 sectors, plus 1570 writes, times .03
seconds per transfer, equals 94 seconds).

D-2 - 21

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

B5. RECOMPILE COBOL PROGRAMS WITH COBOL II COMPILER

Hewlett-Packard has run a large number of tests to measure the
performance of COBOL II, relative to COBOL/3000 (also known as
COBOL I or COBOL 68). In analyzing their results [22], I have
noticed a number of interesting points. Batch jobs should run a
bit faster (1.1 to 3.0 times faster), depending upon how much I/0
they do (compute-bound programs are improved the most). On-line
programs use less CPU time, but users do not see any improvement in
response time (since on-line programs spend most of their time in
IMAGE and V/3000).

The big surprise is that data stack sizes are often reduced by
25-60% due to the elimination of RUNNING-PICTURE and
PARAGRAPH-RETURN tables. For on-line users, this "should" mean you
can run more terminals with the same memory (unless you are already
disc~bound). For batch programs, this savings in stack size can be
used to eliminate disc transfers by copying tables (i.e., small
master datasets) from the disc into the stack. The only problem
with COBOL II is getting a version that works right. The "Cheetah"
version appears to have most of the bugs worked out
(HP32233X.00.02C7).

B6. REWRITE SOME CODE IN S3PL/3000

Rewriting COBOL programs in SPL is a technique that I have
recommended for several years [17]. However, this does not apply
to batch programs. Without proper training materials and
programming guidelines [16], you could actually make things slower
by rewriting COBOL code in SPL., I can give two examples that I
have seen in actual user sites.

First, by converting to SPL, you lose the built-in data
conversion power of the COBOL language. You you must code explicit
conversions between ASCII and BINARY formats. If you use the
intrinsics provided with MPE to perform this task, your batch tasks
will take longer in SPL than in COBOL. The MPE intrinsics take 3
times longer to execute than substitute routines that I wrote in
SPL. This is probably due to the enabling and disabling of the
error trap mechainisms which must be done in every MPE intrinsic.

Second, since SPL has no "packed decimal" data type, you may
be forced to write (or acquire) SPL subroutines to do
packed-addition, packed-subtraction, etc. Because each addition
(subtraction, etec.) now requires a procedure call, these tasks will
take significantly longer than they do in COBOL (which generates
in-line code). These considerations are even more applicable to
COBOL II, because it consumes less CPU time than COBOL 68.

In summary, while it makes sense to rewrite MPE intrinsics
(such as ASCII) in SPL and it may make sense to rewrite high-usage
COBOL subroutines in SPL (i.e., checkdigit, edit validations), it
does not make sense to rewrite batch reports in SPL. SPL should be
reserved for on-line optimization, for specialized support routines

D-2 - 22

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

(access to MPE capabilities and hardware features), compute-bound
subroutines which are called frequently, and utility software.
Many of the optimizing techniques mentioned in this paper be used
most easily in SPL, but you do not need to hire SPL programmers to
take advantage of them. You can buy the optimizing tools, already
coded, debugged and documented, from a software vendor. (If you
want to develop SPL expertise, see [16] for suggestions.)
Production batch jobs should be written in COBOL II (or RPG or

FORTRAN), unless there is some compelling reason to write them in
SPL.

B7. BYPASS THE FORTRAN FORMATTER (ETC.)

Each implementation of a programming language has problems.
In FORTRAN/3000, the notorious trouble spot is the "formatter"
(processing of FORMAT statements) [43] [40]. In a bizarre example
sent to me by a customer [43], performance of a particular program
varied by a factor of 58 times, depending upon how the READ
statements were coded. The differences were totally a matter of
CPU time spent in the formatter (the program read 4600 records,
2040 bytes each, blocked 4, using default buffering).

Case 1. U4632.8 CPU seconds (over 1 hour to read 4600 records!)
3 FORMAT (2040 (A1))
CHARACTER A2040%1(2040)
READ(10,3,END=2) A2040
Case 2. 108.91 CPU seconds (42.5 times faster)
3 FORMAT (10 (A204))
CHARACTER A2040%*204(10)
READ(10,3,END=2) A2040
Case 3. 79.16 CPU seconds (58.5 times faster, without format)
CHARACTER A2040%7(2040)
READ(10,END=2) A2040

Apparently, the compiler generates 2040 calls to the formatter
for each record in Case 1. Horror stories like this prove that CPU
time matters. In batch processing, a small inefficiency in the
innermost loop can turn into a big increase in elapsed time, when
it is repeated a million times (as above). The programmer should
learn the constructs to aveid in his language, whether it is
FORTRAN, COBOL [22] or RPG [U46].

B8. ELIMINATE UNNEEDED DATA CONVERSIONS

One area where standard programming languages usually have
performance pitfalls is in data types. Standard languages must
"map" their logical data types into the available hardware data
types of the HP 3000. When the types match closely, performance 1is
good. When they do not match, the compilers must generate "fixup"
code and performance can be bad. In COBCL, for example, numeric
data fields can be either signed (S9(4)) or unsigned (3(4)), but
most of the HP 3000 hardware data types are only signed.

Therefore, according to Hewlett-Packard [22], "using signed instead
of unsigned data avoids the need for computing the absolute value

D-2 - 23

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

of a result after it is obtained. This affects COMP-3 and DISPLAY
items more than COMP, and can result in a moderate savings in
execution time."

Many implicit data conversions occur in standard programming
languages, especially (but not exclusively) when you mix data types
in expressions. In COBOL 68, it is rumored that COBOL, all COMPUTE
statements are done using packed-decimal arithmetic, regardless of
the original data types. In a benchmark that I read about, a COBOL
68 program was reduced from 10 minutes to 12 seconds by changing
"ADD 5 TO SUM" to "ADD FIVE TO SUM", with "FIVE" defined in the
data division as a numeric field with the same data type as SUM.

In FORTRAN, mixed-mode expressions are discouraged by S.E.'s
[31] [40], because conversions occur. In RPG, users are encouraged
to avoid using numeric display or binary field types, since RPG
must convert them to packed-decimal to perform arithmetic [46].

Saving a few milliseconds may seem like a minor matter. For
ON-LINE programs, it IS minor, because on-line programs seldom use
enough CPU time in an entire day to be justify optimizing them.
But, if something is repeated often enough, the inefficiencies in
CPU time start to add up to a significant amount of elapsed time.
That is why NOBUF (in place of MPE buffering or the interface of
DBGET) makes batch jobs run faster.

In summary, the potential exists in many applications for
major improvements through more detailed knowledge of the
machine-dependent features of programming languages. However, I
strongly suggest that you start the habit of verifying each
suggestion before implementing it. This is not difficult to do.
Start writing test-case programs, with subroutines to measure the
CPU time consumed. In one example that I saw recently [04], the
user had followed advice to convert data items to "binary" (from
what?)}. Instead of running faster, the elapsed time increased from
21 minutes to 31 minutes. You should not put total faith in
everything you read. Compilers change. MPE changes. Hardware
changes. Keeping up with these changes is a continuing process.

B9. REDUCE NUMBER OF "OPENS"

I once optimized a program that took an entire weekend to
prepare and print monthly bills for 18,000 customers. The user
client needed the program fast enough to produce 400,000 bills per
month. One of the most blatant problems in the program was the
result of last minute specification changes. An "audit" database
was added to the application. The transaction subprogram was
modified to create an audit copy of each transaction. To do 30,
the programmer opened the audit database, did a DBPUT, then closed
the database. This meant a minimum of 18,000 extra calls to DBOPEN
and DBCLOSE. I changed the program to open the audit database once
in the mainline, and to pass in the database name to the

transaction subprogram. This one change cut the elapsed time by 15
hours.

D-2 - 24

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

Sloppiness of this kind often creeps into batch programs when
changes are made at the last minute, and schedule dates are not
extended. Testing seldom catches programming errors of this kind,
because the the volume of test transactions is usually too small.
Other operations that should not be performed 18,000 times are
FOPEN, RENAME and SORT.

As I said in my earlier paper [15], one method of optimizing
is to focus on the common events. Start with the tasks that are
repeated the most times. Ascertain that they are efficient, before
worrying about tasks that only occur one tenth as often. You can
use the MPE log statistics to detect files which are heavily
accessed (or opened too often) [U42], and to select programs for
review which run often (or for too long).

B10. INCREASE SIZE OF CODE/DATA SEGMENTS

In reading about optimizing, you will see suggestions on
segmenting programs into small (4K word) code segments. Code
segmentation reduces the impact of a program on the rest of the
system, but it DOES NOT MAKE THE PROGRAM RUN FASTER. Since a
"local PCAL" (calling a routine in the same code segment) takes 6.1
microseconds, and an "external PCAL"™ takes at least 14.9
microseconds (34 milliseconds, or more, if the code segment desired
is not present in memory), segmenting your program actually makes
it run slower. Stand-alone batch programs may run slightly faster
with fewer, but larger, code segments. (You should still put
routines that call each other in the same segment). I tested this
hypothesis by calling data conversion routines 64,000 times. When
the routines resided in the same code segment as the calls, the
execution time was 1.06 times faster than when the routines were in
a separate code segment.

My general point is this: avoid being trapped into inflexible
thinking by the constant emphasis upon on-line programming in most
manuals and optimizing documents.

Another common prescription for bad performance is to shrink
your data stack using the ZSIZE intrinsie [151 [39] [22] [18] [32].
If your stack is larger than necessary for long periods of time, it
impacts the response time of other on-line users. It takes only a
few milliseconds to contract your stack to give back the unneeded
space. But, it takes considerable time to expand your stack again
(which is done automatically when you need the space). Stack
expansion requires a disc write and a disc read [23]. 1In a batch
program, if you contract your stack after each transaction, you may

have a very slow program, if MPE expands your stack again for the
next transaction.

When an on~line application program is coded to shrink the
stack dynamically, the savings are multiplied by the number of
users running the program (1, 10, or 30). Big improvements in
response time are possible through this technique because large
amounts of main memory are freed for other users. Now many copies

D-2 - 25

ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

of a batch job run at once? Usually only one copy. Reducing the
size of your batch stack does not increase the speed of your batch
program; it only contributes marginally to the response time of
other jobs. Given the rapid increase in main memory capacity of
the HP 3000, I suggest that batch stacks be increased whenever that
Wwill lead to a decrease in CPU time or disc accesses.

For example, consider the practice followed by many HP 3000
programmers of eliminating global data storage by making it local.
Instead of making data "dynamic", consider making more of it
"static" (global, common, own, subprogram). Allocating local
storage "dynamically" each time you enter a subprogram conserves
stack space, but it takes CPU time to do the allocation.

The ideas in this section are controversial, and, until
sufficient tests have been performed to verify their impact on
throughput, they should be treated as "promising", but unverified,
proposals. Users are encouraged to do their own performance
measurements in this ares.

C. CHANGES TO APPLICATION DESIGN

When all possible improvements have been made to data storage
methods and programing efficiency, the only area left for attention
is the logic of the system. Although design changes are the most
expensive to implement, they also provide the greatest potential
for gain. If you can eliminate the need to run a certain report,
your percentage gain in throughput is infinite.

Ct. USE DATA STACK SPACE INSTEAD OF DISC ACCESS

In the previous discussion (topic B10), I suggested that you
look for ways to trade off a larger data stack for fewer disc
accesses. For example, if a program uses a small temporary file as
a buffer space, the entire "file" could be kept in the stack as a
large array. (This will only improve performance if the file is
accessed many times per transaction.) One of my clients has an
invoicing program that uses a temporary disc file to hold the line
items of each order (after they are copied in from the database).
The number of line items per order varies from 1 to 50, with an
average of 3. According to the contributed program FILERPT [u2],
this file is the second most heavily accessed file on the system.
If I add subroutines to the program to simulate the temporary file
using an array in the stack, I should be detect a significant
decrease in elapsed time for a given invoice run.

Another candidate for a place in the data stack is a "lookup
table" for validating data fields. In many batch processing tasks,
each transaction record has one or more fields that must be checked
against a list of valid values in an IMAGE master dataset. If the
number of valid values is small enough, you can move the entire
master dataset into your stack (4000 to 16,000 words). This
strategy would not make sense for an on-line program, because there

D-2 - 26

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

are too many copies of the stack that must reside in memory at the
same time. Also, on-line programs seldom do enough table lookups
per minute to justify each user having a copy of the entire dataset
in memory. For a batch task, however, there is only one copy of

the stack, and there may easily be 100,000 table lookups in one
run.

How much time could the in-stack table save? A computed DBGET
takes about 75 milliseconds (including one or two dise reads). For
a batch job to do 100,000 DBGETs, it takes about 7500 seconds, or
125 minutes, or 2 hours. Most of this two hours would probably be
eliminated by an in-stack table (how much depends upon how long it
takes to search the table in the stack).

C2. USE EXTRA DATA SEGMENTS INSTEAD OF DISC ACCESS

When you have exhausted the 64,000 bytes that are possible in
your data stack (copying tables and temporary files into the stack,
as proposed above in topic C1), there is one more resource that you
can tap before you use a disc file: Extra Data Segments (XDS). An
XDS is a "chunk" of data space that belongs to your program, but is
swapped in and out of memory by MPE, independently of your data
stack. Your program accesses data within the XDS via the DMOVIN
and DMOVOUT intrinsics. The size of an XDS can vary from a few
words (why bother?) to 64,000 bytes (the maximum size is a system
configuration value). Each program can create and access up to 255
XDS (also limited by system configuration).

The HP 3000 has a lot of main memory fto work with, so why not
use it all for a stand-alone batch job? If you have one megabyte
of real memory, of which MPE uses 128k and your program needs 256k
(for stack, IMAGE DBCB segments, code segments, ete.), you still
have 655,360 bytes left. If you limit your XDS size to 16,000
bytes (8000 words, an easy size for MPE to swap), you can have 40
XDS and still not be swapped (this is all theory, subject to
experimental verification).

According to one article, an XDS is 25% to 900% faster than a
disc file [24]. Of course, it is not as fast as data in your
stack, so use the stack for the most frequently accessed data.
Access to a subscripted variable in COBOL takes about 60
microseconds, while access to an extra data segment takes 1.3
milliseconds [25]). Access to a buffered MPE file takes 2.9 ms. if
the record you want is in the buffers, and 40 ms. (or more) if a
disc transfer must be done.

In 1980, David Greer of my staff did a research project to
investigate the substitution of main memory resources for disc
access resources [19]: "One answer is a memory file. This is a
file that looks, and is accessed, as if it were on the disc, but
which actually exists in memory. The savings could be great if the
number of disc accesses is very high, but the cost should be low,
since systems are all tending towards more memory as memory costs
continue to drop. The memory file should be implemented with

D-2 - 27

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

little or no knowledge of the applications programmer. One way to
do this would be with a special MPE device class (such as MEMORY).
The first time a file with this class is opened, 1t would be read
into main memory. All accesses to the file from then on would be
memory to memory, rather than disc to memory. When the file is
closed, it would be copied back to the dise. A prototype memory
file system was implemented (for exclusive-access files only),
using a number of extra data segments, including one to hold
control information. All file system calls from the applicatiocn
program were intercepted by interface routines that emulated the
MPE file system. Test programs showed that the MPE file system was
faster than this double-XDS system UNTIL the MPE file buffers were
exhausted (default = two buffers). After that point, the average
times for MPE files increased 4 times, while the memory file system
times remained steady. The results show that a memory file system
could provide a major improvement over the regular file system, for
small files that are heavily accessed."

The contributed library contains TBPROC [37], a set of SPL
routines that allows a COBOL program to maintain a table in an XDS
(routines are provided to define a table, add entries to a table,
update entries, sort the table and retrieve entries from the table
by key value or relative index). TBPROC allows you to define the
maximum number of table entries, the byte length of each entry, the
offset of the key value and the byte length of the key value. The
author of TBPROC wrote it to hold small IMAGE master datasets, as
proposed above. He feels that this change reduced the elapsed time
of a large production job by one-third [36], but cannot be certain
(since other factors were changed at the same time). I would like
to enhance TBPROC to allow for an optional buffer in the stack.

The user-supplied buffer would be used instead of the XDS5, when the
table was small enough. If the table overflowed this space, it
would be stored in an XDS and the in-stack srace would be used to
optimize access to the XDS.

Another contribution to the library, ARHND, uses up to 64 XDS
of 16,000 bytes each to provide one megabyte of virtual array space
for a program. Where TBPROC is COBOL-oriented and provides table
lookup by key-value, ARHND is FORTRAN-oriented and provides up to
13 virtual arrays (of single or double integers). The size of the
arrays can be varied dynamically, and they can be one or two
dimensions. Routines are provided to allow the program to emulate
sequential files using a virtual array. Using ARHND, it appears

that a single FORTRAN program could consume the entire resources of
an HP 3000,

There is a certain unavoidable overhead in the DMOVIN and
DMOVOUT intrinsics, because they are part of the MPE operating
system (if MPE had a NOOP intrinsic, it would take at least ONE
millisecond). For maximum speed of access to an XDS, you can use
the hardware instructions that move between data segments [14]. Of
course, this requires privileged mode and careful programming on
your part. Another option is to use EXCHANGEDB and operate in
"split-stack" mode. This also requires privileged mode. The

D-2 - 28

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

BASIC-callable version of the "BREAD" NOBUF routines uses
"split-stack" [13], because the BASIC Interpreter claims total
control over data space allocated in the stack. I mention these
options only for completeness; I have never seen them put to use in
an actual, commercial batch program. They might be very useful,
however, in software products (such as [13]) which are designed to
support and optimize production batch programs.

One thing about XDS usage worries me. An XDS can be swapped
out by MPE if the memory space is required for a higher priority
process. When the program next references the XDS, MPE must swap
it back into memory again. It might be faster to use NOBUF disc
files and manage buffers in your stack (assigning buffers
dynamically to the "active" blocks; that way, you control the level
of swapping that occurs.

When Hewlett-Packard implemented APL on the HP 3000, they
needed a large virtual data area for the APL workspace. Rather
than use XDS, they created a new data structure called a "Virtual
Array". A VIRTUAL ARRAY can be declared in SPL, but requires the
APL firmware at run-time. The APL virtual array is stored on the
disc as a series of fixed-length "pages", and the APL interpreter
allocates a certain amount of in-stack space as a buffer pool (to
hold some of the pages). When the interpeter references a virtual
array, the special firmware instructions check to see if the
required page is in the buffer pool. If it is, the virtual data is
accessed immediately. If it is not, the "least recently used" page
is swapped out and the page containing the desired data is swapped
in.

I would like to see a controlled experiment matching the
ARHND-type of virtual array against a stack~NOBUF-file type of
virtual array. This entire area has tremendous potential for
optimization of batch programs, but needs a great deal more
research.

C3. SAVE DATA OR POINTER FOR RE-USE ONCE RETRIEVED

Having retrieved a specific record(s) from a detail dataset
(using 5-10 IMAGE calls), you should save the record number (found
in the STATUS array) [45]. It can be used for a DIRECTED-GET
later, when vyou are ready to update or delete the record. Does
each subprogram of your COBOL program re-retrieve the
customer-master record from the database when it needs it? You
should only retrieve each customer-master record once, store it in
a global data division, and pass it to the subprograms as a
parameter? Does your program validate transaction fields by doing
lookups in the database? You should save the key value that was
tested for the last transaction in a global place, and check there
before checking the database (or keep a working set). IMAGE adds
entries to unsorted detail-dataset chains in chronological order.
Therefore, if the entries that you need are more likely to be
recent than old, you should read up the chain (mode 6), instead of
down the chain (mode 5).

D.2 - 29

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

A program spends most of its time doing "work" to gonvert
dispersed, raw data into accessible, organized information. Onge
the program has converted the data into accessible and/or organlged
information, the program should save that information, if there is
any chance that the same information will be needed again soon.
Otherwise, it must repeat the work later.

Ch4. REPLACE MULTIPLE PUTS/DELETES WITH UPDATES

DBPUT and DBDELETE take 5 to 20 times longer per call than
DBUPDATE, because DBUPDATE is not allowed to change "ecritical™
fields (search items or sort items). That is, it cannot make
"structural" changes to the data. For each path path into or out
of a dataset, DBPUT and DBDELETE must update the chains that link
entries with the same key value (in a detail dataset) and the chain
heads (in the master datasets). This task requires disc accesses
and CPU time. The more paths there are into an entry, the longer
it takes. That is why optimizing papers often recommend that
on-line programs merely flag "dead" records and let them be deleted
in batch [45]. Similarly, if you are not changing any critical
fields, you should always use DBUPDATE instead of deleting the
entry and adding it again [34].

One way to replace PUT/DELETE with UPDATE is to eliminate
paths (see topic C5 below). Another way is to merge several
independent entries (that must be PUT and DELETEd) into a single
entry, with a "column" for each individual piece of data. For
example, instead of creating an entry for each month of the year
(12 PUTs and 12 DELETEs per year), use one entry for the entire
year (1 PUT, 1 DELETE), and UPDATE the entry when you need to
record the value for a particular month (12 UPDATEs).

I tried this approach with one client's application. The
previous consultant had designed a detail dataset to hold billing
transactions, indexed by customer number and sorted by date.
Customers were normally billed once a month, for a recurring fixed
amount (i.e., $5.00 per month). When they paid, another detail
entry was created to show the payment. In order to examine the
status of an account, it was necessary to retrieve all of the
entries on the chain (24 entries minimum for a year). But, the
transactions were predictable (billed $5, paid $5). We replaced
the individual transactions with a single entry that showed the
amount to be billed per month, and had places to be "checked off"
when each month was billed and then paid. This replaced 24 PUTs
and 24 DELETEs (you have to get rid of those transactions someday),
with 1 PUT and 24 UPDATEs. The impact on batch throughput (as well
as on-line response) was impressive; and, this approach was
actually closer to the way the company had kept track of its
customers before the computer was installed.

D-2 - 30

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

C5. CONSIDER SERIAL SEARCH INSTEAD OF CHAINED ACCESS

On-line functions should only do chained (or keyed) reads from
the database. They should never do serial scans of an entire
dataset (unless the dataset is very small). This is what search
items are for: to provide quick response to inquiries.

For a batch program, "response time" (i.e., the time it takes
to retrieve a subset of entries from a dataset) does not have to be
immediate, it only has to be reasonable. An application may
actually run faster (overall) if you eliminate a search item that
is accessed exclusively in batch, and use a serial scan instead
[45]. The time to PUT and DELETE those records will be reduced,
and you may be able to do an UPDATE instead of a DELETE/PUT (if the
field to be updated is the deleted path or the sort item). Some of
the search items that I have eliminated from datasets are "division
number" (where there are only four divisions), "transaction date",
"transaction month", and "salesman" (with only 10 salesmen).

In fact, if a given path has only a few unique chains and each
chain is very long (i.e., only a few values for that field), a
serial scan MAY ACTUALLY BE FASTER than a chained read. This
inversion of logic is most likely to occur in datasets that have
had many DELETEs and PUTs since the last DBLOAD reorganization.
Such activity tends to spread the entries that are on the same
"logical" chain into different physical disc blocks (because IMAGE
reuses deleted space for new entries). Each chained read can,
therefore, require a separate disc read. Serial reads, on the
other hand, only do a disc read once for each N entries
(N=blockfactor).

In one test that I ran, chained reads took 16 milliseconds
each, and serial reads (using DBGET with *) took only 5
milliseconds each. In this case, the chained retrieval will only
_be faster if there are four or more unique key values (each chain
has less than one quarter of the entries). With SUPRTOOL, the time
per serial read is much faster, only .63 milliseconds. As a
result, SUPRTOOL will be faster than chained access for any path
that has less than 2% unique chains.

C6. ISOLATE DATA BY FREQUENCY OF ACCESS

Do you plow through the transactions for an entire year every
night, in order to produce an audit report of the activity for the
day? Why not put the day's work into a separate dataset? After
producing the audit report for the day (which should finish 30 to
400 times faster) and re-validating the transactions (to catch bugs
in the on-line programs), move the entries into a month-to-date
dataset and delete them from the daily dataset. After month-end
closeoff, move the month-to-date entries to the year-to-date
dataset. Another benefit of this approach is that each dataset can
have a different type of access (different number of search items
and sort fields). Finally, after the end of the fiscal year, you
can copy the year-to-date dataset to a disc file (never throw away

D-2 - 31

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

good transactions) and clear out the dataset for the next year.

The archive disc file can easily be reported from, since it has the
same format as the year-to-date dataset. It can also be stored to
tape if there is no immediate call for it. (SUPRTOOL has commands
to perform most of these extract/copy operations, and with
excellent speed.)

In the previous discussion (topic C5), I suggested eliminating
search items that have less than 4 unique values (less than 25, if
you have SUPRTOOL). Now I am suggesting that you create separate
datasets to isolate entries, when the distinguishing field has only
3 to 5 active values (such as range of date = current day, current
month, current year, or other year). "Isoclation" reduces the
number of physical entries that your serial search programs must
read. They need only look in the relevant datasets.

C7. KEEP RUNNING TOTALS IN DATABASE ~ ELIMINATE SEARCH

I have seen many batch applications which must re-scan all of
the transactions for the year (or two years), in order to compute
sub-totals by account number, month, division, etc. Once each
month, they sort all of these transactions in two or three
different ways. Several users have reported to me job times of 20
hours or more. With the availability of the IMAGE database, there
should be few designs of this kind. Once a total has been
calculated, and you know that you will need it again next month, it
should be stored in the database for quick retrieval. The basie
principle that I try to follow in disposing of information is:
reduce transactions to summary totals as soon as possible, while
saving the transactions (with their wealth of detail), in case a
question comes up that cannot be answered from the summary
information.

General ledger packages seem to be the worst offenders of this
rule -- especially the ones that were converted to the HP 3000 from
card-oriented IBM systems. By far the most elegant use of IMAGE
for a general ledger that I have seen is the hierarchical structure
(trees of accounts with sub-totals at each node) that is described
in [32]. Anyone designing a new general ledger system should read
that paper for ideas.

By saving summary totals, you are "depositing" into the
database the CPU time and disc accesses that were used to calculate
them. When you need those totals the next time, you have only to
look in your safe deposit box (instead of taking out a loan to
"buy" the information for a second time).

C8. SORT DATA BEFORE WRITING TO—KSAM FILE

Within IMAGE and K3AM, there are "sorted" data structures --
sorted chains for IMAGE and sorted keys for KSAM. The time needed
to add entries to such a structure may be reduced, if the entries
are in sorted sequence initially [U45]. (Of course, if there are
multiple sorted keys, only one key can be optimized.) I used

D-2 - 32

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

SUPRTOOL to test this hypothesis on KSAM. When SUPRTOOL copied
2551 records to an empty KSAM file (with one key, duplicates
allowed), the elapsed time was 92 seconds. KSAMUTIL reported that
2224 key block I/0 transfers had been required. SUPRTOOL then
repeated the operation, but sorted the 25571 records before writing
them. The total time was reduced to 46 seconds, including the sort
time (2 times faster), and the number of key block I/0 transfers
was reduced to 134 (17 times less).

In the tests that I performed, KSAM obtained a load "data
rate" of 111 seconds per 1000 sectors with unsorted data and 53
seconds per 1000 sectors with sorted data. Compare this with the
rates for DBPUT (203 seconds in default mode and 94 seconds in
"deferred-output" mode, which is the way KSAM operates) and the
rates for NOBUF calls to the file system (1 to 2 seconds per 1000
sectors). The more organization you demand of your data, the lower
the rate at which it can be updated.

C9. SORT ENTRIES BEFORE PUT TO SORTED CHAIN

Since sorting data before writing it to a KSAM file cut the
elapsed time in half, I hoped that the same thing would be true for
IMAGE. There are two major differences, however, between KSAM and
IMAGE. First, the entire KSAM file is sorted by the key field,
while only a single chain is sorted in IMAGE. 1If the IMAGE chains
are short (average length less than the blocking factor), it may
not take IMAGE very long to put them in order. Second, KSAM always
operates in output-deferred mode (it does not post buffers at the
end of each FWRITE). 1IMAGE operates in output-complete mode.
Therefore, the disc transfers needed to update the sort sequence
will probably be a larger percentage of the total disc transfers in
KS5AM than they are under IMAGE. I have not seen a satisfactory
experiment with these ideas yet.

If you do try this technique, I suggest that you either limit
it to large batch tasks (where you sort an entire dataset before
copying it to another dataset), or that you write your own internal
sort routines. There could be nothing more catastrophic for your
throughput than to do 10,000 seperate sorts, one for each sorted
chain. FEach time that you initiate the Hewlett-Packard sort
sub-system (whether by running SORT.PUB.SYS, or using the SORT VERB
in COBOL, or calling SORTINIT in SPL and FORTRAN), you are causing
a temporary file with 10,000 records to be allocated on the disc.
If you are only sorting 15 to 100 records, this is a tremendous
waste of resources (both disc accesses and CPU time).

C10. COMBINE KSAM WITH IMAGE IF YOU NEED SORTED ACCESS

If sorted chains in IMAGE are bad [45] [34], and invoking the
Hewlett-Packard sort package for each chain of 50 records is also
bad (too much overhead to initiate and terminate the sort), what
else can be done? Sometimes you need sorted access to IMAGE
entries. Sorted access is the easiest way to provide generic

D-2 - 33

ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

search capability. IMAGE is not always the best answer. Sometimes o,
you should use KSAM,

Here is a suggestion: copy your key values from an IMAGE
master dataset and write them to a KSAM file (single key, no
duplicates) in sorted order. One of the references that I read
[38] found that sorting the key only (instead of the full record)
could save up to 41% of the sort time. My tests (reported above,
C8), found that sorting records before writing them to a KSAM file
would cut the load time in half. Therefore, this IMAGE-to-KSAM
transfer should be very quick. This is one of the tasks that
SUPRTOOL can accomplish (extract and sort keys, write them to a
KSAM file, clearing it first).

If you follow this prescription, you will have an "updatable”
mechanism for sorted access to an IMAGE dataset. If the key field
is "date", and you want to find all entries with dates in the month
of June, you do a FREADBYKEY into the KSAM file and use the key
values retrieved to get the actual records from the IMAGE dataset.
If you want your index updated during the day, you must modify your
on-line programs to FWRITE new key values to the KSAM file. Or,
you may be willing to have the sorted access updated only once a
day (after new transactions are validated in batch). In this case,
Just run the SUPRTOOL copy operation once every night.

D2 - 34

HP 3000/CPTIMIZING BATCH JOBS - Robelle Consulting Ltd.

e e e R W R R R N SR A R e e S A S ek e e T S S WS M e D W N . e e

| I
i [
| Section V | WHAT "ACTUALLY" MAKES BATCH FASTER?
| |
[[

T e R S R S W W S R M M A S EE W R M M Sma R e e W ——— A

The last section evaluated many possible techniques to make
batch jobs faster; the results are summarized below:

THESE TECHNIQUES WORK (sorted by their "power" to improve)

3x to 300x faster: Isolate data, at design time, by
frequency and type of access.

5x to 50x: Save summary totals in a database.

5x-58x: Bypass the FORTRAN Formatter.

5x-20x: Eliminate unneeded data conversions.

10x: Convert DBDELETE/DBPUT to DBUPDATE.

2x-10x: Use NOBUF with MPE files (see FASTIO, BREAD).

2x-10x: Use NOBUF with KSAM/IMAGE (see SUPRTOOL).

3x: Rewrite some MPE routines in SPL (i.e., ASCII/BINARY).

2x-5x: Use more key block buffers, if a KSAM file is empty.

2x: Sort records before loading them into a KSAM file.

1.5x-2.5x: Use DBCONTROL to defer IMAGE writes, if the
database 1s backed up to maghetic tape first.

1.3x-3x: Convert from COBOL 68 to COBOL 74 (COBOL II).

1.1x-3%x: Increase IMAGE buffers for a single batch job
to the maximum allowed.

1.5x: Keep IMAGE master datasets "clean" (see DBLOADNG).

1.5x: Use "¥" field list, with write access to the dataset.

1.2x-1.5x: Increase the block size of MPE files to 1024
words, and that of IMAGE datasets to 512 words.

THESE TECHNIQUES LOOK GOOD, BUT NEED MORE TESTING

Use DBLOAD occasionally to reorganize your database. Reload
the entire system to reduce disc fragmentation. Rewrite COBOL
subroutines in SPL, if they are called frequently. Increase
the size of code and data segments (the opposite of on-line
optimizing). Use in-stack tables and extra data segments to
eliminate disc accesses. Save pointers and data to eliminate
some disc accesses. Consider serial search in place of
chained and drop the search item. Sort data before DBPUT to a
long sorted chain. Use K3AM with IMAGE to provide sorted
access to IMAGE data.

THESE TECHNIQUES DO NOT WORK AS ADVERTISED

Using more than the default MPE file buffers. Dividing
program code into small code segments (on-line programs only).
Repeatedly contracting the data stack (on-line only). Doing
extensive work to optimize head locality through explicit
placement of files (except for straight file copies).
Increasing IMAGE block sizes above the default (512 words).
Increasing MPE file block sizes above 1024 words.

D-2 - 35

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

D Em D T S S e e R T W S R R A SIS M S e R . W W S A S

The findings of this report have different implications for

the different groups of people associated with an HP 3000
installation.

END-USERS: Ask for summary information and exceptions instead of

mountains of paper; you will get your results faster.

DP MANAGERS: The "stock™ HP 3000 may have to be "souped up” to

handle your batch processing load. Try to acquire optimizing
tools such as SUPRTOOL, BREAD and FASTIO, and give your staff
the time needed to investigate the contributed library.
Establish procedures to measure the resources consumed by each
batch program, and review the results quarterly. Question
changes to specifications at the "last minute" and insist on
adequate time to implement them properly. Invest in staff
development (through training and the users group) to keep up
with the changes in hardware and software. Don't skimp on
disc space. Ask systems analysts to estimate elapsed time for
batch jobs, not just response time of on-line programs, when
they design an application.

OPERATIONS STAFF: Don't spend hours moving files to specifie disc

drives. Run DBLOADNG once a month to check master dataset
hashing and detail dataset "randomness". Consider DBLOAD
occasionally.

APPLICATIONS PROGRAMMERS: Eliminate disc accesses wherever

possible, by using DBCONTROL to defer writes in IMAGE, by
copying small master datasets into the data stack, by doing
multi-block NOBUF transfers, and by using extra data segments
to access the main memory that is ocutside of your data stack.
Save CPU time, especially in modules that are invoked in a
loop, by avoiding inefficient constructs in your programming
language, by switching to COBOL IT, by using NOBUF access, by
writing subroutines in SPL, by using the "#*" field list with
write access, and by hand-coding some operations, instead of
using the general-purpose software provided by Hewlett-Packard
(e.g., small sort operations). Measure the throughput of your
programs using alternative methods. Avoid doing the same
"work" twice when you could save the results for re-use later.
Concentrate your efforts on "common events", such as the
functions of a program that are executed the most often.

APPLICATIONS DESIGNERS: Keep record sizes below 256 words and

block sizes between 512 and 1024 words, with the block size

always a mutliple of 128 words. Design the database to hold =
summary totals, rather than recalculate them from the original

data every time a batch report must be run. Add datasets to

D-2 - 36

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

isolate records that may have the same fields, but are used
with a different frequency and type of access (serial versus
chained). Eliminate some search items with few values and use
serial scan intead (use SUPRTOOL for maximum speed). Save
search items for on-line access. Combine several records into
one and use DBUPDATE instead of DBDELETE/DBPUT. Select search
items that will hash well (X8 instead of J2). Consider KSAM
for sorted access to IMAGE key values. Identify batch
processing tasks at design time and estimate their execution
times; use these estimates when designing the database.
Develop guidelines, goals, and strategies for setting up job
control commands, just as you would with any other high-level
programming language.

SYSTEMS PROGRAMMERS: For COBOL (and other standard languages), add
a built-in deblocking capability and make use of extra data
segments where applicable. For IMAGE, do multi-block reads
when a serial DBGET is requested and the buffers are not
"busy". Improve the job control language of MPE so that jobs
can handle more situations without needing operator
intervention.

SYSTEMS SOFTWARE DESIGNERS: Provide special "paths" for batch
programs so they can avoid slow, general-purpose systems
software (IMAGE, Formatter, file system). Concentrate on
making full use of the existing disc hardware speed. Merge
KSAM capabilities into the IMAGE database.

HARDWARE DESIGNERS: Build a smarter disc controller (on a full
track transfer, begin wherever the heads are located, and
adjust the memory address, instead of waiting for the disc to
rotate to the correct sector). Add CPU instructions to
perform deblocking and database processing. Expand the data
Stack size to at least one megabyte. Provide multiple disc
channels. Build a "black box" to do sorts.

D-2 - 37

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.

-—— o o e o oy R L R R R AR R R e A R A . AR AR A M A A A A A M S P NS M M ke My SR M e A e e e e

———— T — — ——— a Em E Sw Sm m Ter fEm M s T M Em W e e e

For HP 3000 users who would like a "self-teaching course" on

optimizing, I have listed below the references that I suggest, in
logical reading sequence. If you belong to the Users Group, you
may already have all but two of these documents: [06] [20] [27]

[15]
(01]

(o2l

[03]

[o4]

[05]

[06]

[07]

[08]

[09]

[10]

[11]

[12]

[13]
[14]

(251 [331 [341 (071 [09] [44] (291 [181 [41] [26] [21].

author unknown, "Data Base Retrieval Optimization",
SCRUGLETTER, Vol. ITII, No. 5, 1979,

author unknown, "FASTIO", S.E. newsletter, date unknown.

author unknown, "FASTIO Benchmark Benefits"™, SCRUGLETTER, Vol.

ITI, No. 5, 1979.

author unknown, "Slides on optimizing" {??]1, CCRUG Meeting
minutes, distributed January 1981.

Keith Baer, "ARHND, Virtual Array Handler", HPGSUG 1980 San
Jose Swap Tape.

John Beckett, "Managers, You Can Control Response Time",
HPGSUG 1980 San Jose Proceedings.

Rick Bergquist, "Optimizing IMAGE: an Introduction®, HPGSUG
Journal, Vol. III, No. 2, 1980 (reprint from San Jose
meeting).

David Brown, "Disc File Access Optimization Using

Multiple-Record, Non-buffered Data Transfer, SCRUG8O
Proceedings.

William F. Burggrabe, Jr., "Disc I/0 Comparision Chart",
HPGSUG Journal, Vol. III, No. 2, 1980.

Stephen M. Butler, "Faster with Fast KSAM", HPGSUG 1978
Proceedings.

Mike Casteel, "Programming for Multi-terminal Applications™,
HPGSUG 1980 San Jose Proceedings.

Jim Dowling, "Performance Management Techniques for the HP
3000 Series III", paper presented to HPGSUG 1980 San Jose
Meeting, not published in proceedings.

EASY Software Company, "Blocked IO Reference Manual", 1980.

Rick Ehrhart, "Using Extra Data Segments - Safe and
Efficient", HPGSUG 1978 Proceedings.

D-2 - 38

[15]

[16]

171

(181

[19]

[20]

[(21]

[22]

[23]

[24]

(251

[26]

£271

[28]

[29]

[30]

(311

HP 3000/0PTIMIZING BATCH JOBS -~ Robelle Consulting Ltd.

Robert M. Green, "Principles for QOptimizing Performance of
On-line Programs"™, HPGSUG Vol. II, No. 2, 1978 (also printed
in Denver meeting proceedings).

Robert M. Green, "SPL/3000 in a Commercial Installation",
training guide published by Robelle Consulting Ltd, 1980.

Robert M. Green, "SPL/3000: Overview and Common Errors",
HPGSUG Journal, Fall 1979.

David Greer, "Checkstack and Controlling COBOL Stacks®", HPGSUG
1980 San Jose Proceedings.

David J. Greer, "Memory Files"™, unpublished paper of Robelle
Consulting Ltd.

Pick Hamilton, "Tips for News Users", HPGSUG 1980 San Jose
Proceedings.

Hewlett-Packard Co., "Application Design and Optimization for
the HP 3000", internal training manual [see your S.E.].

Hewlett~-Packard Co., "COBOL/3000 vs, COBOL II Performance",
1980.

Hewlett-Packard Co., "Performance and Optimization Seminar for
NOWRUG", 1979.

Marc Hoff, "Using Extra Data Segments", HPGSUG Journal, Vol.
I, No. 4, 1977.

Jack Howard, "Extra Data Segments and Process-handling with
COBOL"™, HPGSUG Journal, Vol. II, No. 1, 1978 (reprint from
SCRUGTS).

Jack Howard, "System Design and Optimization Techniques and
Tools", HPGSUG Journal, Vol. III, No. 3, 1980 (reprint from
SCRUGT9).

John E. Hulme, "System Performance and Optimization Techniques
for the HP/3000", Applied Cybernetics Inc., 224 Camino del
Cerro, Los Gatos, CA, 95030, 1980,

Steve Kaminsky, "KSAM vs. IMAGE", HPGSUG Journal, Vol. I, No.
6, 1978 (reprint from SCRUGT8).

Madeline Lombaerde, "NOBUF/NO-WAIT I/O0", HPG3SUG 1980 San Jose
Proceedings.

Eugene H. Mitchell, "IMAGE Access Timing Test"™, HPGSUG
Journal, Vol. III, No. 2, 1980.

Christine Morris, "FORTRAN Optimization™, HPGSUG Journal, Vol.
I, No. 6, 1978.

D-2 - 39

HP 3000/0PTIMIZING BATCH JOBS - Robelle Consulting Ltd.
[32] Gary B. Nordman, "Using a Hierarchical Data Structure", HPGSUG =
1980 San Jose Proceedings. h

[33] Alfredo Rego, "Design & Maintenance Criteria for IMAGE/300Q",
HPGSUG Journal, Vol. III, No. 4, 1980 (reprint from SCRUGSO0).

[34] Bernadette Reiter, "Performance Optimization for IMAGE",
HPGSUG 1980 San Jose Proceedings.

[35] Robelle Consulting Ltd., "SUPRTOOL User Manual™, 1981,

[36] Joe Schneider, conversation with the author regarding MPE
IV/Series 44 experiences and other topiecs, January 1981.

[37] Joe Schneider, "TBPROC, Table-handling with Extra Data
Segments", HPGSUG Contributed Library Volume 7.

[38]1 Anil Shenoy, "Sort Performance Guidelines", S.E. Note 170,
October 16, 1979.

[39] Rodney Smith, "Application Design for HP 3000", SCRUG80
Proceedings.

f40] Ed Splinter, "Optimizing FORTRAN™, HPGSUG 1977 Proceedings.

[41] Jim Squires and Ed Splinter, "System Performance Measurement
and Optimization™, HPGSUG 1978 Proceedings. -

[42] Chuck Storla, "Determining File Usage", paper presented to
HPGSUG 1980 3an Jose Meeting, not published in proceedings.

(431 Mark Terribile, correspondence with the author, January 1987.
[44]) Mike Vislosky, "FASTIO", HPGSUG 1980 San Jose Proceedings.

[45] Geoff Walker, "IMAGE Optimization Checklist", HPGSUG Journal,
Vol. II, No. 2, 1978.

[46] Dave Walmsley, "RPG/3000 Program Optimization", HPGSUG 1977
Proceedings.

[47] Frederick White, "Improving Performance of IMAGE
Applications", HPG3UG Journal, Vol. II, No. 4, 1979 (reprint
from SCRUGT9).

[48] Ted Workman and Mats Jonsson, "The Effect of Disc I/0 on
System Performance'", unpublished paper presented to HPGSUG
International Meeting in Switzerland, September 1980,

[#9] Lu Yamada, "DBLOAD times with varying BUFFSPECS", S.E.
newsletter, date unknown.

D-2 - 40

