MEASURING TRANSACTION RESPONSE TIMES

Chuck Storla
Hewlett Packard
Rolling Meadows, IL

ABSTRACT: One of the major problems confronting system
managers and programmers trying to improve the performance
of an application 1is their lack of knowledge of exactly
where the application is spending its time. This paper dis-
cusses a method of "instrumenting™ the user's application
so that precise timings are available to the development
staff. One of the major benefits of this method is that it
may not require any modification or even recompilation of
existing code.

I. Introduction.

An on-line application program typically contains subsystem
calls and code which performs the following functions: ter-
minal I/0, file handling and logic/computation. All of the
specific functions of a user's program such as data entry,
inquiry, and error handling, will fall into these three
categories. Many current users of the HP3000 have existing
applications which perform these respective functions with
V/3000, IMAGE/3000 and a high-level language such as COBOL.
Although the method discussed in this paper has some
general applicability, it will be specifically aimed at the
users in this environment.

Should a user experience performance problems with a par-
ticular application, the programming staff needs to deter-
mine where the bottlenecks are. This can be accomplished
through intelligent guessing, through consultation with a
Hewlett Packard Performance Specialist or by adding timing
code to the program(s) under suspicion., We will add this
extra code to the program to determine which phase is
taking an unusually large amount of time to execute. If we
can narrow the scope of our investigation to that portion
of the application which takes the most time to perform or
at least takes longer than we feel it should, then we are
much closer to knowing how to solve our performance
problem., We might find, for example, that for a transaction
which takes 20 seconds, the program uses five seconds to
retrieve all of the records we need, 2 seconds to display
the data, but thirteen seconds to format it. We might then
choose to spend our time improving the performance of this

Tuesday C-7 - 01

MEASURING TRANSACTION RESPONSE TIMES

formatting code, rather than on a redesign of the data-
base.

This 1is not meant to imply that the portion of a program
which requires the most time to execute is necessarily the
least efficient or even the cause of the problem. However,
any area in which a program spends a great deal of time
will certainly be of interest to anyone wishing to optimize
its execution.

1I. DETERMINING WHAT TO TIME.

If we examine a typical on-line application we might find
that the program had the following structure:

BEGIN
Initialize data, Open files; L1 >
Display formatted screen; K2 >
WHILE NOT DONE DO
BEGIN
Read screen; << for input data >> KL 3>
IF end THEN
done : =TRUE
ELSE
BEGIN
Retrieve data from files; LK 4 >
Format for output to screen; K5 >
Display data; KL 6 »
END,
END;
Clean-up, Close files; LT >
END.

This program is a simplified version of many now in use on
HP3000's. This description does not include any error han-
dling and is limited to a single screen, but will serve for
the purposes of this discussion. Our interest in the per-
formance of this program would probably center on steps
<< 3 >> through << 6 >>. The additional steps (1,2 and 7)
would only be of interest if this program was run many
times and for brief periods. Unless this is true, the
start-up and shut-down functions are probably not as cru-~
cial to us as the intermediate processing. However, since
file opens can be very high overhead operations, we might
need to consider these steps in other programs.

C.7 - 02

MEASURING TRANSACTION RESPONSE TIMES

To the terminal operator, the function of this program
would appear as follows:

(a) irun program
<< wait for 1 & 2 to complete >>

(b) enter data, hit ENTER
<< wait for 3 through 6 to complete >>

() look at data and either EXIT or return to step (b)
<< if EXIT wait for 3 & 7 to complete >>

Obviously, from the terminal user's perspective, the impor-
tant timing consideration here is the time he or she must
sit and wait between hitting ENTER and receiving a full
response. Time from the operator's perspective will from
now on be referred to as "wall time" and will be distin-
quished from the amount of time the computer system spends
executing instructions on the behalf of this user, which is
known as "cpu time". We are interested in cpu time only as
it pertains to improving the wall time responses we can
provide our terminal user.

It is very important to note that there are many instances
in which our program can require significant amounts of
wall time for a step that requires little cpu time. This
will be especially true when our program must compete for a
resource such as a file or data-base lock or must wait for
the operating system to grant a buffer, sufficient room in
memory or a disc I/0. During the time we are waiting for a
particular resocurce, our process 1s said to be impeded.
While in this state, no cpu time will be used by our
process, buf many seconds or even minutes of wall time may
go by. This being the case, we are interested in timing
both wall and cpu times.

Returning to our hypothetical program, we see that we might
like to add our timing code just before and just after each
of the major steps, especially << 3 >> through << 6 >>.
Given the nature of these steps we might assume that step
three, reading the screen, will not take much cpu time but
due to the operator's typing speed and delays caused by his
or her decision making, our measured wall time will be sig-
nificant. The wall time attributed to thinking about what
to enter and actually typing the data is usually referred
to as "think time". The wall time from the point at which
ENTER 1is hit until the screen is ready to accept new input
will be referred to as "transaction time".

c-7 - 03

MEASURING TRANSACTION RESPONSE TIMES

III. HOW TO TIME.

There are several intrinsics available to programmers on
the HP3000 to determine both cpu time and wall time. The
first of these intrinsics are PROCTIME and TIMER, respec-
tively.* The PROCTIME intrinsic will return the number of
milliseconds that have been "charged" to a process for cpu
usage, The TIMER intrinsic returns the number of mil-
liseconds from the 1last time the system was started, or
since the last automatic reset to zero. This reset occurs
on twenty-four day intervals at midnight.

It should be noted that these intrinsics each have a
resolution of one millisecond and therefore should not be
used to make single measurements in that range. At the ap-
plication level in which we are currently interested, most
measurements will result in times greater than a tenth of a
second and often into seconds. Should an investigation
require timings in the millisecond range or below, special
methods must be used.

IV. A METHCD OF IMBEDDING TIMING CALLS.

Part of our method then will be to insert into our applica-
tion program the calls to PROCTIME and TIMER so that we can
arrive at elapsed times for cpu and wall time. In many
cases however, it may be difficult or undesirable to modify
an existing program to add the necessary timing calls. If
the calls were imbedded within the source code itself we
would as well need a means of disabling the timing during
normal operation. In looking at our example program and
considering it to be written so that the screen handling is
done through calls to V/3000 intrinsics and the file han-
dling 1is done through calls to IMAGE/3000 intrinsics, we
might modify our pseudo-code as follows:

¥These intrinsics are documented in the "MPE
Intrinsics Reference Manual" (30000-90010).

C-7 - 04

MEASURING TRANSACTION RESPONSE TIMES

BEGIN
Initialize data, Open files; <K 1>
VSHOWFORM; << Display screen >> <L 2 >
WHILE NOT DONE DO
BEGIN
VREADFIELDS; << Read screen >> K 3>
VFIELDEDITS;
IF end THEN
done:=TRUE
ELSE
BEGIN
VGETBUFFER;
<< Retrieve data from files >> << 4 >
DBFIND's & DBGET's;
Format for output to screen; K5 >
VPUTBUFFER;
VSHOWFORM; << Display data >> K 6>
END;
END;
Clean-up, Close files; LT »
END.

We can now see that several of the major steps which we
wish tc time become one or more intrinsic calls, If we
could time each of the indivdual intrinsic calls and as
well capture the time between several of the calls we could
get the bulk of the data we need.

The method wused by MPE to 1link a program to external
procedures provides the mechanism we need. At the time a
program 1is executed with the :RUN command** the MPE LOADER
will try to resolve any unresolved externals by searching
one or more Segmented Libraries. The default is to search
only the SL.PUB.SYS file, while at most three SLs will be
searched. Assuming a program file resides in a group other
than PUB of an account other than 3YS, the command ":RUN
program;LIB=G" will cause the search to proceed as follows:

#%or is allocated with the :ALLOCATE command or
has a process created with the CREATE
intrinsiec.

C-7 - 05

MEASURING TRANSACTION RESPONSE TIMES

SEGMENTED LIBRARY SEARCH ORDER

1) SL.group.account is searched

any externals not resolved or any "new" externals
will cause a search of

2) SL.PUB,account

any externals not resolved or any "new" externals
will cause a search of

3) SL.PUB.SYS

any unresolved externals at this point will cause
the load to abort

The reference to any "new" externals after 1) and 2) refers
to the following situation: Assume a program which has two
unresolved externals, procedures "A" and "B". If we run the
program and specify LIB=G, then SL.group.account will be
Searched. Assuming that this SL contains procedure WA, it
will be resolved. When procedure "A", in turn calls "X"
which is not contained in SL.group.account, then "X" is a
new external and it must be resolved at the account or sSys-
tem SL level.

If the program we wish to time exists in a non-PUB group of
a non-SYS account then it might search for the V/3000 and
IMAGE/3000 intrinsics in the first two groups and, not
finding them, will finally 1link to those routines in
SL.PUB, SYS. If we wish to "intercept" the calls to a par-
ticular intrinsic, we can accomplish this at the group SL
level. To intercept each call to DBGET, for example, to
determine how much time our data-base reads were taking we
could write our own version of DBGET and place it in
SL.group.account. Now all calls to DBGET would execute our
own DBGET routine. This solves the problem of capturing the
calls to DBGET, but to allow the program to operate cor-
rectly we need to somehow get from our routine to the
"real" DBGET in SL.PUB.SYS. If our local DBGET makes a
call to DBGET it will simply be recursive on itself.

The solution involves calling another user written routine
which we will call DBGET'. This routine will simply accept

C-7 - 06

MEASURING TRANSACTION RESPONSE TIMES

all of the standard DBGET parameters and use them to call
DBGET. It will be placed into the account SL so that its
call to DBGET will be resclved to the "real" DBGET in the
system SL. Thus, when our program calls DBGET, it executes
our group SL version of DBGET which logs some timing infor-
mation and then calls DBGET'. This routine 1in
SL.PUB.account in turn, calls DBGET in SL.PUB.SYS which ex-
ecutes the actual function.

This solution solves several of the problems we discussed
previously. SInce it requires no modification of user or
system code, it 1is easy to implement and can be used in
some situations where original source code is not available
for modification and recompilation. It also allows us to
enable and disable the timing code easily. To enable the
timing simply run the program(s) with LIB=G. The default
case is disabled (LIB=S).

V. CONSIDERATIONS.

The following must be considered when evaluating this tech-
nique:

- Programs must reside in non-PUB group of non-
3YS account.

- If the programs currently use the group 3L,
then two versions must be created. One includ-
ing timing calls, one without.

- Performance may be minimally affected by the
additional procedure calls (two per call to a
timed intrinsic) and the additional timing and
logging code.

- If timing information is being written to a
file, provisions must be made to allow it to be
shared between multiple users.

- Timing of some portions of the program must be
inferred, since only certain procedure calls
are captured.

- No indication is given as to the cause of poor
performance in the case of impedes.

c-7 - 07

MEASURING TRANSACTION RESPONSE TIMES

The method discussed here provides a tool for application
programmers to use in learning more about the behavior of
their systems. The use of dummy intrinsics in group and ac-
count SLs has Dbeen used successfully by various Hewlett
Packard personnel as a method of timing the execution of
some routines and as a method of logging all terminal in-
teraction to a disc file for later manipulation. Within the
limitations of the data gathered and depending upon the
analysis of that data it provides a mechanism that is both
easy to implement and is specific to the area in which data
is desired.

c-7 - 08

