A SUBSYSTEM THAT IMPROVES RESPONSE TIME
FOR APPLICATIONS WITH LARGE NUMBERS OF TERMINALS

RALPH HENNEN and BOYD CARLSON

OHIO STATE UNIVERSITY RESEARCH FOUNDATION
and
SYSTEM RESOURCES GROUP, INC.

Tuesday C-3 - 01

INTRODUCTION

Time-sharing has aiways plagued users with poor system response
time and relatively high expense, though systems eventually evolved
which alleviated both conditions. Chip processors and chip memory
added to the attraction of time-sharing and it began to develop as
a system rather than an option to a batch system.

As the systems became more sophisticated, however, so did the
applications which were run on those systems. Because of this, time-
sharing systems frequently frustrated the user.

Distributed systems, too, offered a breakthrough for response
times in large systems. They allowed more users ta access stored
information without excessive response time. Their drawback was
that they only applied to a large data volume/Tow transaction en-
vironment.

So it seems that there is a third need for improved service in
the system-and-user market: frequent transactions with associated
low volume of data and processing. Though both the time-sharing and
the distributive systems are overelaborate for this need, their re-
sponse to this type of application can still be extremely sluggish.

Applications which belong to this class of fast transaction-
low data are: plant production control, computer auctioning of goods,
security monitoring systems, data entry, data inquiry, and monitor
control. One such design is currently in production on the HP3000.

THE NEED

This design is the result of a research project which required
a CPU to service, with a response time of two seconds or better, at
least 60 terminals. The project budget complicated the order; it =
would not allow for a large, main frame computer. The salesmen
doubted that it was possible to accomplish a task of this scope, and
the hardware search increased their doubts. But the HP3000 turned
out to have the system tools we needed to develop the required system.
Much of the system design work had been done on what was known as a
"run-time system."

This system was to be used for another almost unheard-of appli-
cation: the electronic market. An electronic market facilitates
trading between buyers and sellers over the terminal using the CPU
as auctioneer, bookkeeper, banker, statistician, and marketing infor-
mation source. Several markets trade simultanecusly. Other users
can do other things during trading, such as getting detailed informa-
tion on the goods to be sold, getting price information for goods
already sold, or even looking at the regional weather forecast.

The user audience in this case was to be diverse. There was no
guarantee that all terminals which might potentially talk to the
system would have identical characteristics. Not only were authorized
buyers and sellers to use the system, but several news services were
interested in tapping into the marketing information for their cus-
tomers.

C-3 - 02

Communicating with the users was not going to be a simple task.
We had little control over users who already had a communication net-
work and who simply wanted to connect to our system. Our communi-
cations would have to accommodate the Beli System as well as several
other vendors. We were to serve both leased line and dial-up users.
Some of the users were on point-to-point 1ines and asynchronous mutti-
point lines.

As information flowed into our offices regarding what we needed
to do to bring the users ontp the system, it became obvious that we
needed all the tools we could find to make the system work. The puzzle
became Targer and more difficult daily.

THE RESEARCH

The system design task for the run-time system took about five
months to accomplish. During that period, we evaluated five different
systems with regard to their potential efficiency, programmability,
maintainability, and practicality. In time we developed a design that
seemed potentially compatible with the HP3000 hardware and some of
MPE III.

We designed the system with structured and modular programming
techniques. The modules were separated into two groups: system and
application. The application modules solved a particular problem be-
tween user and data; the system modules connected the hardware to the
user. The communication modules were coded to be tested apart from
the rest of the subsystem. This separation gave them adaptability in
case we had to change them or add other codes. Many field situations
required considerable tuning of the communication modules.

The true application programs were lowest in the hierarchy of
this subsystem because of convenience. The sponsor who had the final
word on how the application programs would run did not always agree
with us about how they should work. Often the sponsor could not
foresee future needs to an extent that would allow us to write defini-
tive specifications for the application programs. Fortunately, the
application modules had little bearing on the system code.

After we attached the application programs to the completed sub-
system, we began testing and tuning. With alteration of some subsystem
parameters and changing of some MPE III configuration parameters, the
run-time system performed much better than our team or anyone else had
expected. For our application, the response time was better than
1.5 seconds. We inserted pauses in the code to slow the execution
so the users could-expect uniformity of response amd to let them get
used to the cadence of activities at the terminal.

THE_SYSTEM

The system is a collection of processes which are run under MPE

III. These processes are organized to communicate data and to synchronize

€c-3 - 03

M‘

connections between many users and many application programs, as shown
in Figure 1. Much of the work which would be done by MPE in the time-
sharing environment is managed under the subsystem. The disadvantage

of this structure is that users do not have the use of the system hard-
ware that they would have in a time-sharing environment. To the con-
trary, the hardware resources are transparent to the user on the sub-
system; they are available through the applications level. This organi-
zation is an attempt to relieve the overhead of managing the system
resources to control the I/0 to the user.

This subsystem minimizes -the movement of data throughout the
processes. Data bound for system I/0 to the user are stored in a
memory buffer. The characteristics of the data are passed through
the subsystem and the data are accessed only at the point where the
application must use them. In the same way, data produced by the
application program are placed in a buffer; they are not moved until
they leave the system.

Figure 2 illustrates the design of the subsystem, showing it
between the MPE environment and the application environment. Figure
3 illustrates in more detail the cere processes and programs of the
subsystem. The system is loaded and executed at a terminal which
becomes the run-time console. This console is a session under MPE;
it receives information from both the run-time system and MPE. The
console gives the operator control over the rest of the subsystem.

The operator may create initial conditions of the system. These
conditions may vary, depending upon the application environment the
subsystem is serving. The operator can alsc monitor certain aspects
of the system and intervene when necessary.

The I/0 Controller handles all the communication activities
and problems. This module works closely with the I/0 driver pro-
vided by MPE to intercept the I/0 from external devices. It handles
the communication protocol information that the drivers pass to the
subsystem and checks errors on the communication lines. The I/0
Controller regards the remote I/0 device as the primary initiator
of the input. It intercepts input as it comes; when the input is
complete, the data are accounted for and ready for processing. The
I1/0 Controller then sends a message to the next process on the system.
That message contains all the characteristics of the data and in most
cases also indicates which application program should be used to
process the data. In much the same way, the application program
then returns data through the system and back to the terminal.

The 1/0 Controller controls several resources within the sub-
system. It initializes and maintains tables that track activity
within the system and maintains and keeps records.of all I/0 activi-
ties on all devices. All information collected by the I/0 Con-
troller can be made available throughout the subsystem.

The I/0 Controller distinguishes between clock-dependent acti-
vities and those which are not clock-dependent. Clock-dependent
activities may require a specified delay between request and response.
These activities have the highest priority for response in the system.
The attached application programs must then run faster than user-

c-3 - 04

specified response time. Other clock-dependent transactions receive
data at the remote device without solicitation. These transactions
include countdown information, timer processes, pulse bursts, and
monitor requests. Activities which are not clock-dependent pass
through the other part of the system and may include application
programs with variable execution times between user reguests.

These two classes of activities have separate Interrupt Proces-
sors. Both processors queue requests that may use the same system
resource or application program. They wake up the application pro-
gram appropriate to the requests and issue errors for bad syntax and
unknown requests. A1l usable applications for each generation on the
system are known to the processors. It is necessary to reconstruct
the system before changes in the available programs can be attached.

Generally, each terminal or remote device request will stimu-
late a response from some application level program. This trans-
action will cause a complete pass through the system (down and back)
and one pass through the application program. In some instances,
the application program level may be in a conversation-1like mode
with the user device or terminal: for example, when the user must
choose among the items of a menu produced at the terminal. The
Interrupt Processor must then remember which terminals are in that
mode, and the application program must find the position in the code
to which the transaction must return. This position is stored and
becomes part of the communication structure between the interrupt
process level and the application level. The application program
may tell the Interrupt Processors that the transaction is incomplete
and indicate the code location to begin execution upon further input
from the device. This allows the application program to process
another request while the user (or user device) is deciding which
option to take. Should the user choose not to continue the chain
of activity to the particular application program, the communication
between the 1/0 Controlier and the Interrupt Processors will flag
that case. All pending activity for the device is then cancelled
and the new request becomes a new transaction. This type of
communication allows the subsystem to be somewhat transparent to
the user and gives the user interactive capability within the pro-
gram.

Other small system programs do not appear in these generalized
diagrams. They manage some of the common resources in the run-time
environment. These resources can be thought of as highly dependent
or shared resources in the subsystem. Their use dictates the re-
sults of some transactions. For example, in the situation-.of the
electronic market, each item offered to the market is posted on a
market screen. The transaction that results in an offer is com-
pletely separate from those which play the market, though the two
activities are tied together by the market screen. The market
screen must have a governor to ensure that all offered items are
advertised to all marketeers, each of whom is interacting with the
market screen uniquely. These management processes tend to change
in character and number as the run-time enviromnment dictates; resource

C-3 - 05

management for an electronic market would not be the same as for a
production control run-time system, for example, or a security moni-
toring system.

THE INSTALLATION

This run-time system can be thought of as an application system.
Since the application environment is usually tailared te a specific
user audience, run-time systems vary--Each system is designed to be
installed for each new application environment. The system is modu-
lar, and, though a few core system programs occur in all instances,
the remaining peripheral software can be installed by trained per-
sonnel to accommodate the application environment. Not all appli-
cations can take advantage of this type of subsystem; programs which
massage a large volume of data or perform large calculations with
few user transactions will receive little value from it.

Existing needs and software should be evaluated regarding their
compatibility with the subsystem before installation, but ideally
the application programs should be written with the subsystem in mind.

Many of the rules for efficient stand-alone programs apply to
this environment. Code written with some consideration of segmen-
tation, memory allocation, and possible thrashing problems will, of
course, run more quickly. Code designed in a structured, top-down
fashion with one pass through for each transaction state is ideal.
Programs which use data bases efficiently by 1imiting the number of
cross datasets searches will run faster. Single programs which do
not try to accommodate every user's needs at once will be at an
advantage.

The subsystem offers a host of tools which can be used success-
fully at the application program level. The library includes I/0
statements for user device accessing, error diagnostics to test for
errors in the operations, error file operations for user-defined
errors, status checking for the transaction condition codes and
data location, and others.

These subsystem monitors also provide tools for the system en-
vironment. Files can be allocated to save the monitor information
for inspection at a later time. This log of system activity can be
useful for tuning the system.

A special consideration at installation time should be the
various devices attached to the subsystem. The communication modules
in the 1/0 Controller will have to be selected and installed based
on the communication protocol and hardware interface for the device.
This will require different considerations for different communi-
cation subsystems.

THE PERFORMANCE

The run-time system is in production; it has been performing
satisfactorily for over a year with few modifications of the code.

C-3 - 06

The largest production encompasses 55 terminals. Under normal oper-
ation, response time has shown no noticeable degradation, even with
increased activity within the run-time system. The main system cur-
rently feeds to five time-sharing terminals which are used for pro-
gram development and editing large data sets. They run simultaneously
with the run-time system and 55 terminals. There is no noticeable
degradation in response time at either the run-time terminals or the
time-sharing terminals, with one exception. There is a slight delay
in the time-sharing terminals when the Clock Interrupt Processor is
sending countdown information every 1.5 seconds to 40 or more terminals.

Performance data are being collected from inside the run-time
system as well as in the time-sharing environment under MPE. Infor-
mation is being collected in the run-time system as to the average
process time for different types of application programs: those which
are clock dependent, those accessing external file data sets, those
accessing IMAGE data sets, those broadcasting information to more
than one receiving terminal. In the time-sharing environment, data
arecollected as to execution times for a mix of compiles, preps,
edits, data entry and access, and streamed jobs. This is ail done
for the stand-along, time-sharing environment; stand-along, run-
time environment; and the mixed environment, for the purpose of
comparing the differences among the environments.

Several system configurations under MPE obviously play a sig-
nificant part in the response time in the run-time system. The
parameters are time quantum, max extra data segment size, and max
data. These parameters will take on different values for different
configurations of the run-time system. These should be monitored
and tuned before the run-time system is put into production.

CONCLUSION

Many hybrid systems are appearing in the manufacturer and OEM
market. These systems reduce the programming load for the instal-
lations who buy the software. It costs less to purchase an accounting
system than it does to construct one in-house.

The run-time system provides more efficient use of a CPU for
installations serving large numbers of transactions with data volume
in standard CRT screen unite (192C bytes). The added benefit of this
subsystem is the ability to communicate to a large number of termi-
nals attached to a single CPU.

c-3 - 07

Figure 1

-3 - 08

System I/0 device

Environment
(MPE)

\

Terminal

A to D
devices

Subsystem

Run time
environment

Monitors

Terminal

\VAR\4

Application

Environment .
Terminal

Figure 2

C-3 - 09

System

(MPE)
Console
I/0
Controller
Application Application
Clock Request

Interrupt Interrupt
Application Processor Processor Application

Application Application
(Application) (Application)

Figure 3

c-3 - 10

