ONLINE
DATABAGSE

START TO FINISH

Robert B, Garvey

Robert L, Womack IV

Witan Inc,
Kansas City, Missourt

Monday A-4 - 01

Presentation QOutline

Introduction, wnat will be covered,

The Foundations:

1
2

Goalsy A System Lanouage and Methodology
System Principles
A Elements

1 Components

2 Relationships

B Use Iin System Phases
1 Analysis 2 File Design 3 General Design

Information System Architecture

A General System Architecture
{1 Detailing 2 Development 3 Implementation

B Use of Image and View
Interactivity and Control
A Menu Progranms

B Control Tables

C Data Area Control

D Quiet Callablility

pynamically Callable Programs?

i

5L’s USL’s

A-4 - 02

i. Introduction

Foundation

Bob Garvey will f£irst lay the a foundation for the understanding of an
approach used to understand, design, and implement interactive systens,

A system language, Goals, will be introduced to render systems and
c¢omponents,

A general set of principles will be presented 1incorporating the
components and structures i{nherent in a structured system, The use of

these components in the system life cycle and as a documentation system
will evolve,

A general system architecture will be presented and an approach to
interactivity will be discussed,

Callables

Bob Womack will present the detafled use of callable programs in the
3000 environment,

A-4 - 03

Goals

GUOALS

A System Language

Goals was desjigned to meet the following criteria:

Provide good documentation
Ease maintainence
Expedite development
Provide users early understanding of System

functions and restraints
¥ Improve project management and reporting
Reduce resources required for documentation
¥ QOptimize System performance
nany of the above c¢riteria c¢an be achieved through reasonable
structuring of the system . But many of the structuring technigues
that are now popular are simply more trouble than they are worth,
Yourdon, Jackson angd certainly IBM’s HIPO 4involve more work in their
maintainenge than rewards merit, Warnler c¢omes <¢losest to being

worthwnile but <c¢annot be reasonacly maintalned 1in machine sensible
form,

W ¥ W

Goals will be described as a methodology only because 1t seems to
accomplish all the criteria of the popular "Methodologles®, and much
more, We do not feel that any of the methodologies should be
considered ends in themselves and more sacred than the system at hand,
Once the principles are learned and applied the implications should be
obvious and the apparent need for a methodology forgotten,

A-4 - 04

Goals

Documentation

1 General Statement
2 Goals, Structural Notation

1 General Statement

The purpose o¢of documentation is to assist in the maintalinence and
operation of a system, To those ends software documentation must be
flexible, easily modifiable, current and easy to read, WwWitan has
developed a system of documentation called Goals which uses simple text
files assoclated through control numbers to meet the criteria iisted
above, The feollowing sections (2 and 3) degscribe the genera)l features
of the structural notation used in Goals and the General system
structure used in system projects.

Goals is used throughout the life of a project, It 1s used toi
To state reguirements

Render flow and components in the analysis phase

Tc develop, test and render a general design

As a pseudo code or structured english for detail design

As a high level programming lanquage

As a project network descriptor,

O W=

2 Goals, Structural Notation

Formal structuring permit three primitive operationst

Sequence, Repetition and Alternation, Structural Notation was
developed to meet the criteria of formal systems Iin a generalized
way and was guided by the assumption that systems must be rendered
in a machine sensible form., Goals relies upon

text sequences and key words as it’s basis, Structural Notation
1s the basis of the syntax of Goals.

Followlng are the representations of the primitive structures using
flowcharts and Goals, The word process is used to represent a step, a
Process or an item depending on the use of the notation at the time,

A-4 - 05

Goals

Goals Primitive Structures

SEQUENCE

FLOwW Swmeessoee
< BEGIN >

!-..------.o--!

| PROCESS 1 l

l---u.---w-n--!
[}

| PROCESS 2 !

H

LA LA L L0 1T L 1 17 7T 3 1 35

} PPROCESS 3 !

{

< END >

GOALS 1 PROCESS 1
2 PROCESS 2
3 PROCESS 3

A-4 - 06

ALTERNATION

FLOW

GUALS

IF
IF

1F

< BEGIN >

¥
¥ ¥
¥ ¥ lunonveswpesne
¥ IF X ¥ wee truemeeesd] PROCESS 1| [=o=s=]
* ¥ lanssenesscsas] i
* ¥ !
¥ !
! !
false l
! !
* {
¥ ¥]
* * lowonponennnnsl !
* IF Y X mestrue-w=weed! PROCESS 2 {=w=]
o i
* H
! |
false !
! !
* !
x x !
E lansaswwvenons]]
¥ 1F 2 ¥eestryes=e=seme>! PROCESS 3 lews!
¥ X lomeocononssan [}
* * 1
* !
i !
false [}
!

!(-----—-.-.w-------------u-----------w(

< end >

X 1S TRUE
PROCESS 1
¥ 15 TRUE
PROCESS 2
Z 15 TRUE
PRGCESS 3

A-4 - 07

‘Goals

Geoals

REPETITION

FLOW
< BEGIN >
T YT I T I
!
*
* *
* *
{wfalsemw=Ck IF Y Fewnafrii@eees
! ¥ ¥ !
! ¥ * !
! ¥ H
< END > {<emenmmmess! PROCESS 1 !
- - IR T LTI LY 3]
GOALS REPEAT UNTIL ¥ 1I& FALSE
PROCESS 1
PROCESS 1A
PROCESS 1B
PROCESS 1C

The exclamation polint is used to signify control in the
REPEAT loop. If the condition is met the control passes to the
statement following the (!) on the same level, If the condition
is met the control passes to the first statement following the
condition,

Processes 1A through 1C were added to show a simple subseguence,

A-4 - 08

Goals

DATA STRUCTURING

Goals 1s also used to represent data structure, As with control
structure there are three general structures which can bpe
represented,

Data items listed line after line represent seguencei

i 1item=1

2 1item=2

3 item=3

Subsequences are represented as sequences on a level below the
item of which they are are a part,

1 ftem=}
ia item=1A
18 ltem=18
1C item=1C
2 item=2
3 item=3

LEVELS: are represented graphically with the use of indentation, The
£irst character in a 1line 1is considered to begin an "A" level
subsequent levels are indented an additional three spaces each,

Successively lower levels (nhigher value characters and more deeply
indented) represent subordinate processes, As will be seen in the
general system structure the highest most levels are controled by
increments of time; vyears, quarters, months, days, etc, while lower
levels are controlled by events or conditions,

CONTROL NUMBERS: The control numbers used in Goals are developed by
alternating the use of numbers and letters to represent sucessively
lower 1levels within the system, The system 15 similiar to English
outlining except that only capital letters and numeric characters are
used, For a given statement there is nothing to indicate its position
in the njerarchy unless the entire control number is dipicted or the
starting control number on the page is given, When Goals statements are
machlne stored the entire control number 1is either stored or is
assumed,

A-4 - 09

Goals

Repetition jin data structuring can be represented by "(S)" at the end
of the 4{tem name which 1is repeated, this can take the form of an
expregsion (i,e, {(0>s<i5)),

1 fitem=1(S)
1A item=1

Example: a file of accounts

Account File
1 Account(s)
1A Account
iB Account number

i€ Name

10 Address(s)

iD1 Address type (h=home,w=work)
1D2 Street number

iD3 Direction

1D4 Street name

iD5s Affix

iE Amount due
iF Order(s)

iF1 Order number
1F2 Item(s)

1F3 Itenm
ALTERNATIONS

Alternation is represented with the IF control word or with the
notation (1,0},

2A IF segment descriptive code = 1

2A1 material
B IF segment descriptive code = 2
281 supply

This éonvention is seldom used beceuse the REPEAT handles
most situations for the case of data structuring,

The other type 0of alternation is within a string of data items
where the item can either exist or not exist, Another way of repe
resentin a nonerequired item,

1 item=1

2 item=2

3 item=3(1,0)

This says that items 1 and 2 must exits or are required and item 3 is
optional,

Discussion:

The highest level of repetition within a data structure is assumed to
be the Key to the file or at least the major sort sequence, If

A-4 - 10

Goals

additional keys are required they can be represented with the word KEY
({i.e, 1ter=3 (KEY}) or an additional data structure can be presented
to represent the structure represented when the KEY is used,

Goals cah be used to represent logical structures as well as the
physical jimplementations, It is important that the required logical
views of data be derrived and decumented before any phy- sical
structures be planned., A recommended goal in system design is to have
a one to one relationship between the physical and the loglcal
structures of the system, The coding complexity is reduced appreclably
as well as the maintainence activity., An additiconal byproduct is the

ability to use GQuery or other general fnquiry languages in a more
straight forward fashion,

A-4 - 11

Principles

2 Principles

An Information system is distinguished from operating systems, command
interperters, compilers and the like, An Information System is that

set of communications, operations, files and outputs associated with a
single conceptual "filev,

I am not tailking about a single program, Historically I am talking
more about an application area,

A. Elements

Al Components

First an analogy: All purely mecanical devices are made up of
elemental components; the incline plane, the wheel and axle, the lever
and the c¢hamber, The physics of these basic compenents and the
materials £from which they are constructed define the limits of their
application, You may be saying, that list does not sound correct or
"what about the scCrew", In 1listing elemental components certain
definitions are inherent. I define the screw as a "rolled incline
plane®,

For Information systems I assert that the list is: Communicetions,
files, operations and outputs, The limjits for such systems are defined
by the ordering of the elements using the primitive structures
(sequence, aiternation and repetition),.

As & notey to date the list of elemental componeénts may have been
Input, process and output without reguard to to sgstructure, This is
more elemental considering all computer processes but is unbounded.
This makes a general system design technique very difffcult, Adding
hierarchy to the above does not enhance these primitives to any great
extent,

A2 Relationshlps

With these boundries and definitions In hand, 1lets 1look at the
relationships that develop.

There 1s generally a one to one relationship between file structure and
operations structure, between communications structure and operations
structure, between output structure and operations structure, In other
words the operations or contrel structure mimics the other components
of the system and each componet is related to the other in structuyre,
The structure begin with the file structure,

Example; 1if vou have a flle of accounts and you want to report themj
the report program will have to be Sstructured exactly the same as the
file or database to report all the data in the flle, Most often there
is & one to one relationship between files and outputs, In the report
example the report structure could be expected to look exactly like the
file, If the report is to look different than the file there would be
in intervening operation usually a sort or selection teo convert an

A-4 - 12

Principles

intermediate output to the final output,

The same is true of communications which on the data processing level
are the transmissions to the uses, the screens and the nesgages, The
structure of a communication is generally the same as the operation
structure which 1s the same as the data structure and thus the
communication structure §is the same as the data structure, This
substantiates the theory that systems can be completly described
knowing only the data strycture, True but limited, Knowing the
structure of any part should in theory give you the whole,

If everything describable about a system can be described In simple
structures (and thus in Goals) and the components of a system include
only communications, files, operations, and outputs and Goels can be
used ip all system phases then we have a framework for a general system
covering conception through maintalnence.

Lets look at any application, Traditionally vou would begin with a
regquirements statement and do an analysis of the existing systenm,
Forget flowcharts, classic narratives, and other charting techniques,
Think of progressively decomposinag the system using simple english
outlining starting with the functions, Functions f£it into the
operations structure discussed, You will note that as you get down a
level or two you will encounter repetitive tasks dependant on
conditions, add REPEAT and IF to vour outlines and keep describving,
Rememper that users can understand outlines and repetition and
alternation are not difficult to understand,

‘Operations will include existing machine processes, manuyal proceedures,
paper flows, sorting processes ect, As vyou are g¢goling through the
operations keep a 1llst of the files that are mentioned and note the
flle Kkeys (and sorts) and any advantages or requests for multiple
Keys,

List any outputs or reports prepared by the organization or required in
the future,

Communications will be minimal at this stage but note any memos that
may go from one section to another of a "file® of notes used as
crossreference or duplicate of any more perminent file,

Your documentation is now shaping ups your notebook and I assume that
the whole world has change to 8 1/2 by 11, should be divided into
communications, file, operations andé outputs,

The starting point for design Is the detalling of the files in your
file 1ist, You will want to reduce the files as much as possible to a
single file, By way of naming conventions the "file" sShould have the
same name as the system at hand,

You will notlce that many of the manual files are really communjications

in that they are "views" of the file that are required in a particular
subfunction,

A-4 - 13

Principles

The design of the conceptual flle must be validated against the
required operations, 1 am going to leave this hanging for a moment to
discuss a General System Structure,

A-4 - 14

Architecture

3 General System Structure
A General System Structure is presented on the following page in Goals,

This structure s not applicable §n all systems but {5 used as a
pattern for system discription, design and understanding.

The Key elements of design of thls structure areg

1. File unitys a system with this structure has only
one conceptual file, It may have any number of
datasets of or physical flles but they must be
formalized into one,

2. Journalizing or icgging; all changes made to data
items can be (and normally should be) logged,

3, Last action dating; incorporated as part of logglng,
permits an offline log,

One detajled implication of this is need to have a date

stamp in each detall set and & master date stamp in the
master flle,

A-4 - 15

General System Architecture

Begin systenm
REPEAT until EDSystenm
REPEAT until EQYear
REPEAT until EOQQuarter
REPEAT until EOMonth
REPEAT until EGDay
REPEAT for each user
Begin online
identify operator and security
Open system file
Open current files
REPEAT for each Communication
IF control transfer
transfer control
IF batch reguest
initiate request
IF update , add or delete
Begin
Memo to LUG
LOCK
Update ,add cor delete
UNLOCK
End
1F inquiry
perform communication operationh

i
End Online
Begin daily batch
Perform dally batch processing
Run LOG analysis
If end of week
Perform Monthly Processing

L
ROLL FILES
!
!
perform Monthly processing
Perform Quarterly processing
1
Perform end of year processing
!
Close system
End

A-4 - 16

Architecture

Architecture

A GENERAL DESIGN

with this Architecture and database design complete we have the basis
for the development and implementation of any application,

Step 1 is inquiry into our filepy if there is only one search c¢riteria
then we calculate into to file and return the master data or a summary.
Once positioned iIn a master we can c¢chain through our detall sets or
follow appropriate programatic paths,

The master screen (a communication) should provide ingquiry, update, and
addition ability.

Each detaill set should have a screen providing the same update add and
inquiry ability, Our screens will be one for one with the detail sets,
Think of a detail set as having a buffer that will corresgpond to
communication (VIEw) buffer, Moving date within one program {is
facjilitated with this concept,

The 1list of detail sets becomes a list of programs which must be
written to handle the retrieval, update, addition, deletion and editing
of data for the detail set,

when this Is complete you will have a functioning systemy it will not
function weill, 1 have {ntenticnally oversimplified, The office
proceedures which may be in place or will evolve will dictate what
combination of sets will appear on a screen but no effort was be lost
in developing the barebones system according toc this method, Each set
(detail set) should have its own program to handle retrieval and
update, When requirements demand inclusion the programs can usually be
used with few changes, You canh take this one step further to include a
general schere to handle multiple data sets on one screen,

The question then becomes; "How do 1 tile this all together?®,

A-4 - 17

Control

4 Interactivity and Control

Lets say that we have written a system composed of a series of programs
that correspond to our data sets, The way 1in which we permit
interactivity is through & control program called MENU,

4A Menus

R master data set will exist at the top of the conceptual file and the
primary search path will be the file key, Dther search paths will be
provided through subsystems such as "Name Family" or through automatic
masters, For all detall sets assoclated to the master there will be a
program to handle that data set. Your analysis will dictate all the
processes that the operator may wish to perform, AS other requirements
develop associating more than one data set the code can be combined and
new screens developed,

The wmenu control program provides transfer of control, It can do this
either ‘"quietly"” of "joud", Loud is the obvious implementation; the
operator choses a data set from a menu screen, the control is
transfered via a "call" to a dynamic subprogram the data set 1is
accessed updated, ect, and control returns to the controlling menu.
But let us give the operator the ability to "tell" the system where he
wants to go next, If he does a common area £lag can be set to say
don’t display the menu simply transfer control to some other
subprogram, We call are common area for data SYSBLK and out flag(s) @1,
Q2, ect, (you are not limited to one level of menu).,

A menu structure may look like this:
MAIN MENU
REPEAT UNTIL PARENT OR END OF SYSTEM
IF LOUD
GET MAIN MENU SCREEN
SEND (SHOwW) SCREEN
REPEAT UNTIL EDITS PASS
EDIT FIELD
IF EDITS FAIL
SEND SCREEN

SET MODE TO QUIET
IF QUIET
IF NEXTPROCEEDURE=A
CALL A
IF NEXTPROCEEDURE=B
CALL B
1F NEXTPROCEEDURE =N
CALL N
ELSE
CALL CONTROL’NUMBER’TABLE

A-4 - 18

control

Through this technique tnose programs which are not being used are not
using memory resources. The CONTROL NUMBER TABLE refers to
implementations which have levels of menus, If the control reference
is not handled at that menu level control is appropriatly passed to the
proper level where a contro) program can handle it,

The quiet "CALL" technique can be used for any of the data set programs
discussed by putting the gulet call structure "around" the program and
requiring the passing of appropriate data 1into or from the
communication buffer, Bob womack will descrice this technique in the
"NAME FAMILY"®" giscussion.

A-4 - 19

SL

SL*s and USL’s

’
]

Modules, Entry points, Programs referenced in require
CST entries if they are not allready referenced in a
running program,

Code is sharable by all programs, The PUB,SYS SL
is avalable tao all programs, Ac¢count and group SL's
are avallable to programs being run out of that Account,

.You need exclusive access to the SIL to make an entry in it,

When SL entries are made you d0 not need to prepare the
SL, It 1s avallable after you have exited the segmenter,

L * s

Programs compiled into a USL must be prepared before they are
runnable,

Many programs may be compiled into the same USL, When

a program {s run the system will look to the USL for resolution
0f called programs, it then looks to the PUR,SYS SL unless

@ library is specified in the RUN, (RUN progj;LIB=G)

All USL resolved entries create XCST entries except the outer
block,

CST’s and XCST’s

0

1o

There are 192 CST entries available to user processes

There are 1028 XCST entries avallable toc user Processes,

A-4 - 20

COMPILE INTO A USL

1JOB JOBNAME,username/ serpass,accountname/accountpassjOuTCLASS=,!
{COBOL progname,SNEWPAS ,$NULL
ISEGNENTER

UsSL SOLDPASS

NEWSEG prognhame,progname”’

PURGEREM SEGMENT,progna e’

USL yourusl

PURGERBM SEGMENT,proOgna e

AUXUSL SQLDPASE

COPY SEGMENT,progname

EXIT

ITELL user.,accty yourprog =e=> yourusl
1EQJ

PREP 0OF UgsikL

1JOB DyourusSL,user/userpass.account/accountpass}PRI=ES;OUTCLASS=,1
IPURGE yourrun

ICONTINUE

{BUILD yourrunsDISC=2500,1,1;CUDE=PROG

ISEGMENTER

Usl, yourusl

PREPARE yourruns¥MAXDATA=16000;CAP=MR,DS

EXIT

ITELL user,accty yourrun ===> yourrun

1EQOJ

CALLABLES INTO SL’s

1JOB DlSL,user/userpass,account/accountpass;CUTCLASS=,]
{COBOL yourprog,$0LDPASS,8NULL

LSEGMENTER

AUXUSL SOLDPASS

SL SL

ADDSL yourprog

EXIT

!TELL user.acct; yourrun =e=s=> yourrun
EGY

A-4 - 21

MENU

REPEAT uvtil parent or nd of system
IF lodd
get menu screen
show screen
REPEAT until edits pass
edit fields
IF edlit fall
send screen
1o

set mode to quiet

IF quiet
IF nextprocedure = "Q"
CALL "0O" USING o, o7
IF nextprocedure = "1I"
CALL "I® USING ., 7

[]
IF nextprocedure = "p©
CALL "n" using a7 op »
ELSE
CALL "CONTROLNUMBERTABLE" using nextprocedure

A-4 - 22

