The Technology of the #Huad Editor

by
Jim Keamer
Hewlett-Fackard Co.
St, Louis, Missouri

i, Introduction

The Hduad editor is a simple text editor that is being
contrituted to the Users Group library st these meetings, It 3
several features which make it notable armd wuseful, the most
ipportant of which are that it texts files instazntanecusis
that it can undo any or all editing changes. The purpose of this
paper is to explain the technolegy behind these and other
features,

I1. A Brief History and Descripltion of Qusd

Quad was created to avoid the high overhoad of Edit 3866 °s
text ard keep commands, which are essentially file capy
operations,

Early versicns of Quad simply opened the texted ¢ile znd made
changes directly to it. This precluded the possibility of adding
or deleting lines from the file. It slsc made editing = somewhat
risky business, since changes were being made directlw ko ths
£ile rather than to a work file copy ("@Uab® originally meant
@QUick Ard Dirty), Honetheless Guad was very fzst for iooking =t
files and msking simple changes.

The current version of Guad retsins most of the gdvantages of
the early versions and eliminates the main deficienciss., & file
is still tewted just by opening it, =o that the averhesd of

bl (]

file copy isg eliminated. Howewver changes are kept in 2 wor
file, sc that a user is not committed to them urtil he does =
keep of the file.

Hawving separate text and work filss reguires Quad
legically merge the two to give the user the illusion of wor
en & =ingle file, However it zlsec makes it posgsibile to =
any and &ll changes just by removing them from the woark ¢
Fuad’'s undo command returns 21l lines within g specified ran
their originsl state,

Monday A-2 - 01

In qeneral GQuad must, vhen keeping the edited file, crestes
new file which merges the text and work files, However if the
kteep ig back to tho texted file and no lines hewe besn added or
deleted, then the keep is done just by updating existing records
in the text file, Thus whenever possible the file copy on
keeping is eliminated also,

It is important that fuad be sble to find lines in the texted
file quicklw., @Quad starts ocut with no knowledge of the locztion
of lines in the file, and must find reguested lirnes wsing binary

search, However Guad hkeeps a record of all hlocks read during
the search process and uses thi=z record to shorten subseguent
searches, The method iz descriked in a2 paper titled "8 New Tool

for Kewed File FAccess <Sometimes?” in the proceedinogs of the
Users Group’'s 1980 Horth American meeting

I11. The Work File

Huad creates & work file only whernn the user first makes =
change to the temted file, This can be any type of changs --
adding or deleting a line or modifying an existing line.

The work file is & keved file which allows both keus and dats
to be warigble lenath. 1t can contzin twe types of entries —-
deletes and changes,

ftuad allows deletion of a range of records ~-—- for emample "D
249" iz a comrand which deletes line numbers 2 throughk 9. To do
the deletion, Guad makes & single entpyy in its work file as
follows:

LBOeae2eoaieaa»0an

Thiz 1= just = 17 charzcter key, The first character is & "7
Cfor delstel, the next 8 rharacters zsre the lower line nusker in
the range., and the lzst & are the upper line number

Sirce deleticn iz schieved with 2 single work File entry, it
is wvery fast, snd the spesd is independent of the number of lines
being deleted,

How suppese that the command was given to delete records 8
through 14, This command would rnormally result in an entery of
D&A$4 into the work file. However this range cverlaps an already
erizting delete rarge of D2/%, so that OGuad vould comkine the tuwo
into & single entrw of DESHY,

1f +the user now urndid changes over the interval from ° to &,
it would he neces=zary to "undelete” over this range, Therefore
the entry D2/14 wouid have to be s=plit inte twe ~- D&/4.9%9 and

pDa.aatA14,
The other iype of entry in the work file iz =2 change antey,

There is a change entry for every line added during sediting and
every line modified,

A-2 - 02

change entry consists of both & key snd data, The keyw is
Just the letter "C" followed by the 8 character lire number, snd
the data ig the line of text corraesponding to that lirne number,

I, The Structure of the Work File

The work file used by Gusd was originslly desigoed for
another purpose == a diffsrent editor. The desire was for & file
access method which gave random sccess to wvariable length
records, and re-used space from deleted records

The sclution is a ¥§File sccess method which 1 o211 ticket
files,

With mast file access methods, the user who wants datz stored
specifigs where it iz +to be stored -- & record number, HWith
ticket files the user does not specify; itristgad he Jjust szupplies
the data tc the access method 2nd receives back & "ticket”
telling him where the dats has been stored, In order to retrisve
the data, he just supplies the tichket,

Iy is important to recognise that this technigque giwves
enormous flexibility to the file access mamsger. The dats can be
put in the most convendent spot, for example 3 block that is
already in a buffer in main memory. Within the biocck the record
can be placed wherever there ig space. With ticket files 3
record need not even bhe placed contiguously within the biock --
it can be braken into pisces,

Although ticket files might at first seem unnatural or sven
clumsy, they turn cut te be perfectly =suited teo those
applications 1in which data iz found throuah pointers: tickets
are really just pointers,

Image detail data sets are an example. If we regleact serial
access, a detail data entry is found through pointsrs which are
stored in other detail entries or in & master sntryvw, Ticket

files could in fact be used to implement Image details and would
relieve Image of the burden of keeping track of free space,.
Further they would add a capability that Imane destails currently
do not have —-- variable length records.

K3AM files are ancother exwample -- all datas in & KSAM file can
be found through pointers if only the locaticrn of the root block
in the key §file is kneown. Ticket files will, by the way,
remember one ticket for the uczer,

I order to make ticket fileg saticfactory as work files, it
was necesgary to implement a keyed sequentizal access mebthod based
on ticket files. The implementation is significantly different
from KSAM and actually more powerful: both keys and dats can be
variable length, space is re-used, and keyed sequential access
can bhe either forward or kackward,

A-2 - 03

The kasys zre stored in & tree-structure called 3 trie, In &
trie & key wvalue is asctuslly distributed through varicus levels
of the tree structure; branching cccurs when twe kavs which are
identical for some number of beginning characters first differ,

Far emanple the keus "ANDY, “ARNMOR®, and "ANDBEOID" would
result in the following structure:

HD RMOFE

:‘" “:

Y ROID

Generally this structure will have more levels than KSaM-s
tree, On the other hand its structure is & furcticn of ths dat
itseld, pot of the order in which the dets is lcaded. Therefar
tree re-organizaticn is never necessary during loading, wherea
with KISaAM it usually is,

When a kew is stored, a ticket iz stored with it, The tick
pointe to data. Thus storing dats by key is 2 two-step process

., Store the dats =nd receive a ticketl,

2, Store the hew and the Licked
Retrieving datz by key revercee the twe steps:

Y. Supply the key aznd receive the zssociated ticket.

2., Usge the ticket to retrieve the zesscciated datas,
Y, The Help Facility

Fraom the start 1 wanted Quad to be & single program file not

reguiring a&ny aumiliary message or documentaticn files, The
reason is thet I wanted the acquisition and use of Gusd Lo

simple and foolproof as possible,

This meant that Guad had Lo heve a very good help faciliiy --

z built~in manual., @uad does in fact now have guits an extsnsive
penu-driven help facility, gttt of its text can be przﬁten

cffline to make &n adequ=ie user manual,

n help facility prezents some technical probilems. I the
first plesce it sheould be very easy for the programmer bo write
the help text., Morecver the text must be prevented from making
the program enormous! text takes up program Space verw guiochly,
Therefore blank compression is very deszirable,

The solution adopted in early wversions of Guad was gimpls bot
ot Fully zatisfactory. # line woeuld be written to the zoreen by

A-2 - 04

doing an ZFL move of 2 literal to a buffer followed by a call to
a procedure to write the huffar to the screen. By using SFL
defines it was possibis toc make the code to write 2 line locok
like the line itself bordered on both sides by z bit of zuxmiliary
text, Thus the code

BGD "Thi=z iz a2 Yine to go to the screern” EOGC
was shorthand for the code:

MOYE MSGi={"This iz =a line to qo to +the gorsen®,0);
KRITE 30 SCREENIMEG;

This made help text very sssgy bto wite, Unfortunasts
also wasted code space., EBsch line to be writien reguired i
move and call, and there was no blark comprersion 4ait
trziling blanks couvld ke suppreszzed’,

#n efficient soluticornr to save code gpace iz to have each
=cireen of help text stored in & FHerelative array in 2 compressed
form, R PE-relative array is an S3FL array which is part of s
code =egment), The procedure containing the asrray would fetoh
the temt line by line in a loop snd call sncther procedure to
write each line to the =creen. In this way there is only ons set
of mowve and call coede for the entire screen rather than one set
per line,

The problem is that it is wery difficull to wite code that
initiglizes arrays with blank-compressed text. It would be far

better to just write:

o

o Help ‘proc ¢ Help seg #*
This is a block of help text, which we would likse to be
converted to a space efficient procedure named Help ‘proc
{for the segment Help'seg)
AL
The sclution of course is to have & program which converds
such bilecks to the desired procedures. Gusd’'s help facility was
wiritten wusing such a program which served az 3 pre-processor to
the SPL compiler,

¥YI. The Command Interpreter

There were two main objectives in the implesmentsticn of
Huad’'s command interpreter:

Y. Je catch &s meny errors 35 possible during command
analysis, rather than commsnd execution.

2, To emit the most meaningful possible error messages,

A-2 - 05

As an example, sditors must have commands which include file

names., The editor could be desigrned do no checking on the file
name; any errors will ke detected later on by the file svstem,
Guad, however, assures that the rname is syentactically wvalid
first, For example it checks that there are no more than thraes

parts to the name (file, qroup and accountd, that each part has
between 1 and 8 alpharumeric characters with the first being
alpha, that there is no more than one lockword, that the lockword
follows the file part, stc. RAny error found results in g msssage
which describes that particular srror,

One aspect of emitting meaningful error messages is to point

out where in the command the error occuitked. To this

end Giusd
points to the errcor, just as MPE does for command sriors,

A-2 - 06

