A SYSTEMS DEVELOPMENT METHODOLOGY
BASED UPON AN
ACTIVE DATA DICTIONARY/DIRECTORY

T. M, Curtis
Quasar Systems Ltd.
March 1981

Monday A-1 - 01

N

P W

Y, |

Introduction

Historical Perspective
Proposed Approach

Method and Technique
Obstacles to Implementation

Conclusions

A-1 - 02

Introduction

Computers are not very tolerant of humankind
communications. Phrases such as

"you know"

"things™"

"what do you call it"

"etc."
are incomprehensible to the average COBOL compiler.
Similarly people are not tolerant of the machine's
"pickiness" and need for detail. As a result of this
communications gap, the EDP professional has leapt into
the breach to become a translator between the two
uncompromising camps, translating the needs of the user
into language and terms that may be manipulated by the
computer as well as explaining the strengths and
limitations of the machines to unsophisticated users,

The problem with this approach is that the
translator has become the key element in the cycle. All
communications dealing with the development of computer
systems must pass through the EDP professional in both
directions.

In recent years there have been dramatic increases
in the demand for automated systems and the power of
machines to provide services.

However, the supply of EDP professionals

(translators) has not kept pace with either the demand for

A-1 - 03

services nor the hardware capacity to deliver the required
services. As a result, the limitation on fully utilizing
the new hardware power to address the burgeoning demand is
us, the EDP professionals.

The traditional approach taken to solve this
problem has been to increase the productivity of the EDP
professional. A procession of analytical, design and
programming techniques has been combined with more
powerful languages, data management systems and utility
software to address the EDP productivity problem.

Although these facilities are worthwhile in their own
right, they are merely treating the symptoms rather than
the problem,

Our challenge is to develop more sophisticated
tools for computers and to raise the level of technical
literacy of their users so that they may directly interact
with the computer for "routine" development processes,
This is a natural continuation of the process that has
relieved EDP organizations of the burden of data
preparation and entry by using hardware to switch from
card input (controlled by EDP organizations) to direct
data entry using DDP and on-site terminals. That is, we
have turned over operational control of systems to the
user. The next evolutionary step is to return routine

development tasks to the user.

A-1 - 04

The problem of increasing the level of technical
literacy within our society must be left to our

educational systems.
This paper will address the opportunity presented

by the need to support direct user/computer communications

to effect the development of automated data processing

systems.

A-1 - 05

Historical Perspective

Although each of us may follow slightly different
analytical, design and development methodoleogies, the
underlying principle is the same:

--determine requirements

--design a computer system that will satisfy the

requirements

--develop the system
The requirements are usually, or should be, phrased in non
computer oriented language, comprehensible to the user.
These requirements are then transformed into a computer
design, and the functions and data are translated into
process descriptions.

We have traditionally organized our approach to
preparing detailed procedures (programs) intoc data and
processing specifications. The file structures, record
layouts and field descriptions are prepared. The
programmer must then combine these data descriptions with
the procedural process descriptions in a program.

We know from experience that the result has been
large, unwieldy, incomprehensible, and unmaintainable
programs and systems. To overcome this problem we have
adopted structured techniques that stringently define the
domain of a process and the size of the resulting module.
This is essentially an attempt to limit the number of
variables and levels of data and processes the programmer

must concurrently deal with.

A-1 - 06

By limiting the size and complexity of modules we
have been able to keep the entire complex of data and
processes within the intellectual grasp of the
programmer. The result of this structured technique has
been to achieve greater productivity and dependability
through simplifying and standardizing the fundamental
system building block, the module.

However, these techniques do not produce the
increases in productivity necessary to respond to current

and projected demands.

A-1 - 07

- 7 -

Proposed Approach

General

The dramatic increase in the power of computing

hardware coupled with the relative decrease in

cost

provides us with the basis of a solution: if we can

divert some of the power of the machines from "getting the

work done" to easing the man machine interface
reduce the comprehension gap between users and
This approach has previously not been feasible
the cost of machine power necessary to support

of interface as well as the requirement to get

we can
machines,

because of
this level

the job

done, ie., application systems required all available

cycles.

Theoretical Framework

All systems are composed of two elemental items:

a) an entity

b) a relationship

It is possible to comprehensively describe a system in

terms of the component entities and relationships that

make up that system,

A-1 - 08

Definitions:

Entity: "Thing's existence as opposed to its

qualities or relations.”

We have problems manipulating concepts on a
machine, therefore for our purposes an entity may
be considered to be;

: J That characteristic of something that

identifies, describes or quantifies it.

Relation: "What one person or thing has to do
with another."
for our purposes a relation may be considered to be;
: A characteristic or series of
characteristics that establishes a link
between entities based upon some common

identity, description or value.

There are three types of entities that can be used

to describe the nodes of a system:
a) data
b) processes

c) users

Data, or course, refers to the information

maintained, manipulated or produced by the system.

A-1 - 09

Processes refers to the rules, precedences, time
sequences and operations to be performed con the data
handled by the system.

Users refers to the owners, users, controllers and
authorities responsible for and involved with the system,

Each of these entity types may be further

subclassified as follows.

ENTITIES maintained by DD/D

DATA
- Data item - a primitive - data definition
- Data group - sub schema - (record) lst order
assoc.
- Data file - schema - 2nd order association
- Data system - (base) - 3rd order association
PROCESSES
- Operation - a primitive - "4 "o ete, QUIZ
& QUICK commands
- module - an association of functions
- program - an association of modules
- system -~ an association of programs

A-1 - 10

A physical hierarchical view of the entity types is as follows:

DATA
SYSIEM
(IASE)
DNTA FILE N
(SCHIMA)
_“
~__ | para croup

= (S0 SCHEMA)Y

DATA
LLEMEN

DATA HIERARCHY
Fig. 1

A-1 - 1

PROCIFSSTING
SYSIM

/

o

o,

PHOGIRAM

OPERATTON

PROCESS HIERARCHY

Fig. 2

A-1 - 12

AUTHORITY

CONTROLLER

OXNER

USER HIERARCHY

A-1 - 13

&

oy

R

Fig. 3

USER

Owner

User

Controller

Authority

- 10 -

person or process responsible for
accuracy and timeliness of value
person or process that "uses" the
data

person responsible for controlling
access to the data or process
person responsible for the defin-

ition of the entity

A-1 - 14

- 11 -

Relationships between entities may be of two categories
and take one of three forms.
Relational categories are:
a) absolute: the relation between the
associated entities exists at all

times and under all conditions.

b) conditional: the relationship between
associated entities does or does
not exist based upon the value of
another entity or the result of

another relationship.

The three forms of a relationship are:
a) Relative
b) Associative

c) Algorithmic

a) Relative: "what one person or thing has to do with
another."
"Kind of connection, correspondence,
contrast or feeling that prevails between
two persons or things."
for our purposes we will consider a Relative

Relationships to be;

A-1 - 15

- 12 -

A grouping of entities that collectively

identify, describe or quantify a higher

level entity.

€.0., all information maintained on an
employee is related and provides
an identification, description and

"value" for that employee.

b) Associative: combine for common purpose
: connection between related ideas
thing connected with another
for our purposes we will consider an associative
relationship to be;
¢ A grouping of entities based upon a
common or related value of individual or
grouped elements.
€.4g., all personnel working in the
products office are "associated"

entities,

c) Algorithmic: process or rules for calculation
for our purposes we will consider an algorithmic
relationship to be;

: A procedural relationship established
between entities with the purpose of
identifying, describing, quantifying or
deriving another entity.

A-1 - 16

- 13 -

e.g., the entity "net pay" may be
derived algorithmically as Gross

Pay minus Total Deductions.

Relationships may be established (may exist):

a)
b)
c)

d)

between like entities

between dissimilar entities

both like and dissimilar entities
concurrently

recursive (a part may itself be composed of

parts, etc.)

RELATIONSHIPS BETWEEN ENTITIES

Fig. 3a

A-1 - 17

- 14 -

Method and Techniques

The active Data Dictionary/Directory appears to be
a viable tool to implement an entity/relationship
description of a computerized system. We are all familiar
with a number of passive data dicticnaries used basically
for documentation and data structure source language
generation, Packages exhibiting these characteristics
have been on the market for years. More recently some
dictionaries have become more active, actually resolving
references to stored data entities.

The passive Data Dictionary/Directory has the
typical structure shown in figure 4. Of course, most
current data dictionaries do not maintain process
descriptions below the compile unit level, typically a
program or subroutine, This structure is not conducive to
gfficient or effective handling of entity/relationship
descriptions., A proposed structure for an active Data

Dictionary/Directory is provided in figure 5.

A-1 - 18

Bl e, g e e Emet At — p——

*
|
!

NOLLYIHAO

|

WRIDOM A

WLTSAS ———— o —— . —

ONTSSEDOId u:u WAISAS YWIVd

TINLONMLS 4/3d TYIIJAL

//

qasn

A-1 - 19

g "3ty

E -o19 ‘ppe ‘oburys ‘Aetdsip
tazodax *e3ep SYI Y3itm butyl

-2oWwos Op 03 Sjuem x9St 9YL
*p3ep 9Y3 JUEM JOU S20p IAISS(]

SHITA S5H3CAd

NOTION

"Op O3 o3IT PLnOoM oM JeyM

JTINACKW

SNOTIVIHdO

20

A-1

- 15 -

The structure may be interpreted such that a series
of hierarchical processes and data entities form a set
joined by relationships. This set of entity/relationships
has been organized and termed a function that is "owned"
or "used" by a user entity. Therefore, to use structured
terminology, if we can establish and define data/process
relationships at each level of the hierarchy we wil be
able to describe a system. If this description can then
be maintained and manipulated by an active Data
Dictionary/Directory, we will have established a Function

Processor.

A very simple example of this concept is shown by:

Data can, of course, be a structure

- input file (screen, etc.)

- output report (file, etc.).
Process can be

- move

- add

- display, etc.
It is possible to describe processes as a series (time
sequence} of such entities. At higher levels the

description takes the form:

A-1 - 21

update

e -—--
“ie(n) “m—=—a Heport, I output
N : reso et

At a lower level, the process/data relationship may be

described as:

fotid

Multiply

The best way of describing how this approach may
work is through the use of an example. An order entry
application has been selected for demonstration purposes.

The processes to be performed are:

a) Receive order (Recrive)
b) Perform verification and
credit checks (Verify)
c) Commit stock from inventory (Commit)}
d) Back order "shorts" (Back Order)

A-1 - 22

- 17 -

e) Print picking slips (Pick slips)

f) Generate invoice {Invoice)

for purposes of this discussion we will consider Back
Orders, Picking S$Slips and Invoices as products of
Commitment.

We may therefore describe the process hierarchy as:

I Gl
ENTET

ETOTTNTY .-
anCEIVE Vi

[
oe|
-3
L)

it

K

The corresponding data entities are:
a) Orders

b) Client file

c) Stock on hand file (INVENTORY)
d) Back QOrders

e) Picking Slips

f) Invoices

A-1 - 23

- 18 -

The data hierarchy may therefore be represented as:

ORDEERE

ORDER
ENTRY

STOCK ON PICKING
HAND SLIFS

BACK

CLIENTS ORDERS

It should be pointed out that the association of a

data entity to a process entity does not imply ownership.

Rather, the relationship may be classified as:

We may

PROCESS

RECEIVE

VERIFY

COMMIT

a) wuse or input

b} update

c) create

d) delete

e) derive

define this function as

Function: ORDER ENTRY

DATA

ENTITY USED USE
ORDERS INPUT
ORDERS INPUT
CLIENTS INPUT
ORDERS INPUT
5TOCK UPDATE
BACK ORDERS CREATE
PICK SLIP CREATE
INVOICE CREATE

A-1 - 24

AVG,
VOL. DISTRB PEAK

Information to be
used to support the
structure design.

- 19 -

The RECEIVE process is straightforward and does not
have to be elaborated upon here.

The VERIFY process is interesting. In essence
VERIFY is meant to apply the validation rules that are
part of the data definition for each item in the source
structure. A sample source structure, in this case an

order, is presented below.

ORDER NUMBER

CLIENT IDENTIFIER
CLIENT ADDRESS
CLIENT CONTACT NAME
CLIENT CONTACT PHONE

SALESPERSONS IDENTIFIER

DATE
ORDER LINE
PART NUMBER
PART DESCRIPTION
PART UNIT PRICE
LINE EXTENSION
SALES TAX
TOTAL

A-1 - 25

CHDER
ENTRY

A-1 - 26

e
RECEIVE u__ —| ORDEERS -
o //
Vd
/
/
s
VERTIFY ¥ / (
] /. input, ¢ CLIENT
/ |
/
/
-
COMMIT K update S — 4 STOCK
L — e e e ____..__-? ON -
HAND
| BACK
C create) 7t CHDERS
FICK NG
create T3 SLIIS —
L
— - B
ORDER ENTKY ENTITY RELATIONSHYES
Fig. &

- 20 -

Fach data item of the structure is defined as a
data element within the dictionary.

Typical definitions will contain:

unique name

- Synonyms

- description and purpose

- type of datsa

- edit/validation rule(s), severity and messages

- spurce or derivation

- principal site

- responsibility

- authority

- security restrictions

- links to processes

- links to other data items.

Once the relationship between the process (VERIFY)
and the data entity (ORDER) has been established the
functional processor may then sweep the data structure
applying the edit/validation rules. These rules are not
limited to range and type checks but can reference other
data items described in the dictionary. As an example,
the verification of the CLIENT IDENTIFIER may involve the
application of a number of rules.

a) Type is numeric

b) Range 000 - 999

¢) Registered on client file CLIENT FILE: PRESENT

d) CREDIT equal 0K
A-1 - 27

- 21 -

The first two rules are simpie checks., The third
and fourth rules require the resolution of data entities
contained in other (but related) data structures. The
projected operations of the Function Processor in
resolving these references would be:

a) retrieve definition for CLIENT IDENTIFIER

b) resolve "immediate" rules

d) determine other entities required: CLIENT

FILE: CREDIT

e) resolve physical location

f) obtain physical representation (record)

g) apply rule(s)

h) set status, produce message, etc.

As this example has illustrated, it is possible to
perform the VERIFY function by invoking a primitive
operation (VERIFY) and relying upon the data and process
specifications maintained by the Data Dictionary/Directory.

Similarly the COMMIT process may be simplified to

four subprocesses:

update the stock on hand

create back orders

create picking slips

create invoices

Again the data and process structures used to

A-1 - 28

- 22 -

perform these operations may be defined in the active data
dictionary/directory. The relationships between origin
data structure, process and target data structure are
given by the structure and linkages of the dictionary.

Utilizing a top down approach to system
specification we are able to comprehensively describe the
application in a hierarchical fashion.

Once we have the hierarchy of functional blocks we
may further decompose the problem until the leaves of our
hierarchical tree represent primitives in terms of data
and process entities. Anyone familiar with the Jackson
methodology will be acquainted with the technique and
representation of processes and data.

- Data structures are represented hierarchically.

- Relationships are expressed as correspondences.

- Processes are "operations lists" and are merged

with the consolidated data structures, ie.,

hierarchically structured.

This organization can be maintained by a data
dictionary. 1Indeed many data dictionaries already
maintain most of the information necessary to support this

type of process/data description.

A-1 - 29

- 23 -

Obstacles to feasible and practical implementations.

There are two major obstacles to a feasible
implementation of this model. The principal difficulty is

the development of a non procedural grammar that is

concurrently
a) natural language like - to allow the
end user to specify data and processes
in familiar terms
b) structured enough to provide

comprehensive and unambiguous data and

process descriptions to the systenm,

The second obstacle deals with the operating efficiency of
such a system. The hierarchical trees of entities and
their relationships can quickly become extremely large and
complex for even medium sized applications. The
organization, maintenance and reference of such a
structure will require considerable sophistication to
provide the responsiveness, performance and reliability

necessary to produce a workable tool.

A-1 - X

- 24 -

Caonclusion

The techniques and approach outlined in this paper
depend upon tools and technology currently available.
What is necessary is the impetus required to revise our
thinking about bow we specify, design and develop
computerized systems. The challenge of closing the gap
between the unsophisticated user and the uncompromising
computer can be addressed from either end. This approach
attempts to use the power of the computer to accept non
procedural, non technical descriptions of functions, data

and processes, and generate automated systems.

y A-1 - 31

