DESIGNING FRIENDLY INTERACTIVE SYSTEMS

A presentation on financial systems design
to be given at the HPGSUG North American
meeting in Orlando, Florida, in April 1981,
by ¥Mr. Jack Damm of The Palo Alto Group.

Monday B-6 - 01



DESIGNING FRIENDLY INTERACTIVE SYSTEMS

8y Jack Damm, Principal, The Palo Alto Group, Sunnyvale, Calif. (408) 735-8490

6”‘ Good afternocon. I am going to talk about financial planning on the
HP3000 with the Dollar-Flow planning language. My discussion wili focus
on three areas: 1) What financial Planning is, and why there is a need for
computerized planning; 2) Design considerations for "friendly" user-

oriented applications; and 3) How the language Dollar-Flow is used for
applications like profit planning.

THE NEED FOR FINANCIAL PLANNING

AL ED S i = —— LD bk mm r — — —

First, let®s start with two questions: What is financial planning?

And why is it necessary? Financial planning is making decisions about allo-
cating the scarce resources of an organization so as to best achieve its
goals. In the private sector, this usually means how best to allocate money
and people to achieve profitability goals. In the public sector, it may mean
how best to allocate people and dollars to provide a desired level of service.
The main idea here is that the resource is scarce and, as a manager, hard
decisions have to be made about how to use it. More specifically, financial
planning is setting budgets, making pricing decisions, and estimating future

demand for products and services, in order to achieve profit and/or perfor-
mance goals.

Why is formal planning necessary? First, of course, because a scarce
resource (typically money) is involved. If we had enough money for everything,
then we could simply raise our salaries and retire early. Secondly, it is very

gﬂdmportant to have general agreement within an organization about how goals
are to be achieved. No assumptions should be made without clearly stating
and documenting them. With a good financial plan, trouble signs can be
spotted earlier and corrective action taken sooner. Businesses which fail
to plan effectively are the best illustration of the need for planning.

Let me offer one last reason why planning is important. For many
companies, planning is a necessity because of the complexity of their opera-
tions. A typical manufacturing company may purchase thousands of parts for
use in a vast array of products, and assemble them in many different locations.
They cannot wait until there is no money in the till to decide that it"s time

to raise prices. And the current rates of inflation make this an even more
important consideration.

THE TYPICAL PLANNING PROCESS

Okay, let”s assume that one accepts the need for financial planning.

So what”s the big deal? Well let”s look at the typical planning process and
I°11 show you.

First, planning involves lots of numbers. And these numbers change
often. Financial plauning involves projections into the future and is
a very uncertain process. When you're uncertain, then you have to do contin-
gency planning. Play "what if" games. What if sales are 20% higher than
planned? What if the cost estimates are too optimistic? What if our product
€pﬁa1es mix is different? Because of uncertainty, alternative plans are neces-
;ary, increasing the amount of work required to plan several times over.

B-6 - 02



And that”s not all. The attempt to reach a targeted objective such as
profit adds to the work. It may take several passes before all of the budgets
combined with the sales estimates, cost estimates, and so forth, sum up to the
desired results. The task soon becomes monumental. ,ﬂ%

company? Try changing every format statement in the model in an hour. And
add to that the bother of documentation.

To summarize, manually prepared plans can be flexible, but they take
a long time to do and lots of effort, especially if several passes are done.
They often lack documentation. Planning with traditional programming lan-
guages takes too long to set up, is inflexible, and requires the services of
a programmer.-

PROBLEM ORIENTED LANGUAGES

Let me digress for a moment. For several decades now, computer scien-
tists have been searching for a “"universal” programming language. ALGOL?
PL/I? APL? PASCAL? The search goes on. Each has its merits, each its disadvan-
tages. But these "procedure oriented” languages have one thing in common: You
have to be a programmer to use them. And it is altogether too easy to include
bugs in even the simplest of programs. As long as there is a programmer acting
as middleman between the user (or analyst) and the computer there are going to
be communication problems. Maintenance problems. Rescurce and priority problems.

What“s the answer? A planning oriented application language which
incorporates the good aspects of traditional programming, but eliminates the
problems. Where plans can be set up and revised easily, without having to be
a programmer. What I am describing here is one example of another class of
programming languages, "problem oriented” languages. Languages which have be
designed to provide solutions in a general way to classes of problems. Simpl.
enough to be used by non—-programmers. Easier to debug. Self-documenting. .
QUERY is an example of a problem oriented language. It provides access to
IMAGE data bases in a fashion simple enough to be used by non-programmers.
Dollar-Flow is a problem oriented language, designed as a tool for non-program—
mers who want to set up tabular planning reports.

&

Financial planning is an area well suited to problem oriented languages.
There is a considerable amount of generality in what planmers do, although no
two plans are the same. A financial plan typically involves mathematical
operations on rows and columns of numbers. With well defined rules for the
calculations. And the burden of planning in any other way gives the financial
planner considerable incentive to try new appproaches.

This is a good start. But we still have to get the planner onto the
terminal and communicating with the computer. How is this done? By giving him
an effective tool. One which is both friendly and enables him to get the job
done in a way that he understands.

DESIGNING FRIENDLY SYSTEMS

This leads us to the next point: What makes a system “"friendly™?
How can a system be designed so the novice or non-computer type feels com-
fortable with it? I ofer here a few of my ideas and techniques for develop-
ing friendly systems. ﬂ%

B-6 - 03



SIMPLICITY -

Keep the system simple at all cost. Do not let the internal struc-
ture on the computer dictate how a system looks to the user. Let him express
is ideas Iin his own terms. For example, the original design for the Dollar-
fhfow language was based on a set of documentation which I prepared far a group
of accounting types. This documentation described the workings of a particular
customized model on a line by line basis. I figured: What could be a better
set of design specifications for a language than actual documentation? As you
document your model you are also writing your program! Another example.
Dollar-Flow re-oxrders calculation rules automatically. Thus, line 1 on a report
can reference data on line 10, which, in turm, can reference data on line 20.
Dollar-Flow automatically figures out the proper sequence for calculations

fealentate 20 then 10. than 1Y without anv intervention bv the user.
The following is not an uncommon occurrence: You work many hours pre-—

paring budgets and doing sales forecasts. With a board meeting just a few days
away, you finish your plan. The company president takes one look at the ra-
sults of the combined numbers and gives it back, requesting a 15% cut in the
budget. You prepare a revised budget, repeat all of the calculations, this time
under increasing pressure to get the job done fast. The day before the board
meeting, marketing revises the forecast. All of the budgets must be revised
again. And now it is getting late into the evening the day before the meeting.
The planning process finally ends. With a good plan? No, with exhaustion.

Does this seem like a doomsday tale? It“s not. I ve seen this happen many
times. No wonder people dread budgeting time.

Combine the sheer effort required to plan effectively with the require-

ments for a good plan: It must be TIMELY. In a dynamic, growing company, a
plan must reflect today”s expectations, not yesterday”s. It must be ERROR FREE.
Late-night, reworked plans suffer from simple calculation errors. Errors due
€”M using the wrong set of estimates, because they keep on changing. Imagine

-ae embarrassment of a summation error. And with all this, the plan must remain
FLEXIBLE. I worked on a profit plan for a company a few years ago which added
an entire product line between iterations of the plan. And finally, when you
are all done, a good plan must be WELL DOCUMENTED. What factors were used for
overhead? What was the basis for the final sales figure? How was a particular
number calculated? All too often, there is little documentation on how a plan
was actually prepared.

To summarize: A typical financial plan involves lots of numbers, which
change often. The need for many iterations makes this process time consuming
and exhausting. At the same time, the plan must be timely, error free, and
well documented. 1In short, good financial planning is not easy.

WHAT IS THE BEST WAY TO PLAN?

Given that this 1s the nature of planning, what is the best way to
plan? How can it be done with a minimum of difficulty? Traditionally, there
have been two ways of planning. Planning by hand (and calculator) and planning
using the computer. Let”s take a look at both of these methods and evaluate the
pPluses and minuses of each.

Preparation of plans manually has several drawbacks. First, because of
the amount of data involved and the number of iterations, it 1is slow and time
consuming. After many iterations, accuracy becomes a problem. The wrong es-—
ghimates may be used, particularly if they keep changing. Calculation errors

- .em to increase with each iteration. And documentation is usually not very
good.

B-6 - 04



On the other hand we have financial planning on the computer using the
traditional programming languages like BASIC, FORTRAN, or COBQOL. Once set up,
a model written in one of these languages will run on the computer in a matter
of minutes or seconds. Great! But here”s the catch. The model will run veryf%
quickly once it has been set up, but it may take months to get it developed.
And you need a programmer. Let”s see what can happen. You start your plan
well in advance of the next budgeting cycle. With six months lead time you give
a precise set of specifications to an enthusiastic programmer who dutifully sets
about coding your model. At the end of the first three months, he comes back
to you with his first try. You patiently point out where the model is not
consistent with the specifications, settle on a set of revisions, and the
model is reprogrammed to your satisfaction. All set, right? No. As you begin
using the model, the company president starts to change his mind (even though
he reviewed the original specifications). Add a decimal place here, another

1ine_item there. Why aren”t all twelve columns of data on the first page?
Frustration.

What is the moral of our story? Programming a planning application
with the traditional programming languages lacks flexibility. The programmer
needs lead time to set up the application and has difficulty in reacting to
short term rhaneas. How ahont addine another division to a multi-divisional

It is important that the application be self documenting. For example,
Dollar-Flow is a menu driven system. At each step of operation, the user knous
his alternatives. There is little need for a "pocket guide” to the language.
This is not to say that there is no need for manuals. A good manual is impor-
tant. But it is a fact that few people actually read manuals. The less a sys-—
tem forces a user to read the manual, the more usable it will be. ﬁ%

Not only should the user be told what his altermatives are, the system -
should also help him to choose the proper response. Throughout the Dollar-Flow
prompts, the most likely response is shown in brackets as the "default" res-—
ponse. In some cases, he can use the default response without bothering to
even understand the question! For example, the prompt:

USE STANDARD OVERALL REPORT FORMAT (<Y>,N,W-WIDE PAGE)?

In one brief prompt, the user can see his options and pick one. A simple car-
riage return will cause the system to use the default response. And his entire
report format is set up. No PRING USING or FORMAT statements. Very simple.
And it can be changed easily. As the user becomes more familiar with the
language, he can begin to exercise more optiomns. With .an “N” response, Dollar-
Flow leads the user through a review of the many formatting alternatives.
Report formatting can even be done on a trial and error basis. Start off with
the standard format, then change the column width or number of decimal places
shown as needs require.

As 1 already mentioned, the design for the Dollar—Flow calculation
rules was based on a set of user oriented documentation. Ask a user to describe
hov the values on the report are to be calculated in his own terms. With the
addition of a few quote marks here and there, he has already written a program
in the Dollar-Flow language. Self-documenting languages not only save the
effort required for documentation, but make debugging easier as well.

-

B-6 - 05



One last comment about simplicity. Save the user concerns about
internal structure through structure independent (or data base) approaches
; data relationships. One of the beauties of QUERY is that the user doesn’t
uaeve to concern himself with all of the details of the data base to get a sim=-
ple report. In Dollar-Flow, all reports are programs, all saved programs are
files, and all save files contain reports. To reference data on a saved
Dollar-Flow report, simply indicate the line name and the report save file
nanme:

MARKETING BUDGET = “BUDGET”~ QF “MKTG";

There is no need for the user to know how the data is stored or even which
line on the “MKTG” report i's the “BUDGET” line which he is using.

ERROR HANDLING

Okay, so let”s say you have implemented a simple system. Does this mean
that users won"t make mistakes? Of course not. In fact, the friendlier a
system is, the greater the likelihood that the users will not be computer types.
So, keep in miand that "too err is human, to forgive 1is good systems design.”
Of course, you must edit all inputs. But then use a friemndly approach when
the user has made an error. 3Because Dollar-Flow is menu driven, simple typing
errors cause the system to repeat the prompt. Errors of a more complex nature,
such as where a report is referenced but does not exist, generate intelligible
error messages. Along with each error message give a message number. And
provide a glossary with the documentation which gives even greater detail on
the possible cause of the problem.

@h- At the same time that it is informative, a system should help the user
to work around problems. For example, in the case of anm invalid report refer-
ence in Dollar-Flow, the user can interactively specify a different report
name, or values, or zeroes. He can also indicate that computation should cease
after a scan for further errors. Again, unless a particular error is extremely
SelLluus, wdlll TN user ana proceed \wlitin N1S5 permisSLOoL). Anocner example.

As 'far as the mathematician is concerned, division by zero gives unworkable
results. In Dollar-Flow, division by zero ylelds “invalid” numbers (which
print as asterisks), but doesn”t stop computation. It”"s amazing how much more
satisfying a2 user finds a report filled with asterisks than just a list of

error messages. At least he can look at the format to see if it”"s to his 1lik-
ing.

If you must tell the user that he has made an error, tell him as early
as possible. One of the most enlightened things done by the MPE operating
system 1s to edit the job statement when a job is being streamed from an inter—~
active session. It sure is better to find out right away than waiting for
the job to begin execution to find out that a simple error has been made on
the JOB statement. Report development in Dollar-Flow is completely interactive.
If a user is setting up a report and he enters a calculation rule with invalid
syntax, the system responds with a message immediately, and permits him to edit
his error (not unlike the BASIC interpreter). It is not necessary to go into
the computation step to find many errors.

w«

B-6 - 06



MAINTENANCE AND SUPPORT

Let us assume that as an enlightened designer of friendly systems you m%
have now designed and implemented your masterplece. Are you done? Of course
not. This is only the first step. There are two more important aspects which
are critical for good, friendly systems: Continuing improvement and good sup-
port. Let me talk about continuing development first. No system is great on
the first try. I am a believer in the iterative approach to systems develop-
ment, if you can afford it. I am not talking about sloppy design. 1 am talking
about the tremendous wealth of ideas that you can get from your users, AFTER

you have implemented a system. Try to be receptive to the suggestions of your
users (even if they are infeasible). ©Never give a critical user the impression
that you think he has just offered a bad idea. Go out of your way to solicit
ideas from your users. If the situation merits it, get involved in several of
their applications. You can learn about ways the system is being used that you
never thought about. Ways in which its use may be awkward. Which messages are
more annoying than useful. Which features are badly needed. I send periodic
questionnaires to my users (some of them even respond). This helps to priori-

tize new features. And users group meetings are a great boon to information
flow.

How should this wealth of new ideas be integrated into an already deve-
loped system? Carefully. Do not rush a new version of a system out to users
just because they need a particular feature. You must let a new version of a
system be "burned in" first by a test site. Software bugs cost you credibility.
Once lost, credibility is very difficult to reestablish, so reliability is
extremely important. After all, would a user prefer a system with the bells
and whistles he wants but doesn”t work, or one which works with a few less feaxm

tures? /f%

Speaking of bugs and user suggestions leads me to the question of sup-
port. There is nothing more frustrating to a user than to get 95%Z of the way
to his computer solution omly to be stopped by the application package he is
using. For any reason. If you can afford to do it, good support pays great
dividends. Dollar-Flow is supported in an "on-line” fashion. This means that
if a user has a problem, he picks up the telephone and calls. If his problem
is with an existing report, we may even log onto his system and take a look at
that report. This kind of support not only helps to find and eliminate system
problems quickly, but we also find out about areas where the documentation may
be confusing (or incorrect). Where another feature might simplify the user”s
application. In short, on—line support can be another source of good ideas
from users.

Let me summarize these techniques for creating friendly systems. First
KEEP IT SIMPLE. Try to think like the user instead of a computer expert. Use
his terms. Assume that he won“t read the manual. Try to make it self-explana-
torv. Second. be INFORMATIVE but FORGIVING with vour error handling. Edit all
inputs, but don"t bother the user with minor errors. When the application
merits, CONTINUING ENHANCEMENT will make a much more usable system. Respond to
user suggestions. But exercise good judgment in the trade—off between adding
new features and degrading SYSTEM RELTABILITY.

é%

B-6 - 07



‘'IT PLANNING

I am not going to take too much time on the last part of my talk. I
am just going to show you a few sample reports prepared using Dollar-Flow. At
f§be risk of violating my agreement not to make a sales pitch, I invite you to
. .sit the PALOC ALTO GROUP"s booth during the vendor exhibits for a demon—
stration of Dollar-Flow in action.

Let me first describe the typical company profit planning cycle
and the environment in whiech a planning tool 1like Deollar-Flow is used. The
typical Pollar—-Flow user is the accountant or company controller who is respon—
sible for preparing the reports. Not a programmer. Most users are working on
in-house HP3000 systems. With access to CRT"s and a system line printer nearby.
Reports are written interactively, and manual inputs are also entered via the
terminal. Usually, reports are printed on the CRT for review then saved when
the user is satisfied with the report. If hard copy is desired, the reports can
be routed to the line printer. For generating large numbers of reports, the
"batch command mode” is used, where with very little terminal input a large
number of reports can be generated.

Profit planning typically begins with a preliminary sales forecast.
Preliminary. Sales forecasts always change. And at the last minute, too.
Often the sales forecast is done on a product—-by-product basis for the first
year or so, then combined with overall dollar sales projections further im the
future. The near term unit forecasts are sowmetimes adjusted based on an over-
all dollar figure. The forecast is iterated several times. To make a change,
the product manager just runs Dollar-Flow, inputs whichever figures have chang-
ed, pushes a few buttons, and the new sales forecast is ready. Since many
parts of the profit plan depend on this sales forecast, the typical plan is
usually set up with reports referencing the sales forecast report. If the
#gures are changed on the sales forecast, these changes will be automatically
.eflected on the other reports the next time they are run. Some manufacturing
companies even use a multi-level sales forecast step, where a build plan (or
production plan) is generated from the sales forecast.

Meanwhile, departmental budgets are prepared. Some Dollar-Flow users
centralize the budgeting function and only distribute budget worksheets to each
department or location. This is usually done if there are only one or two
budget iterations. On the other hand, some of our customers distribute the bud-
get preparation, with each location setting up its own budget in Dollar-Flow.
In this case, figures can be input to Dollar~Flow, changes can be made, and
several iterations. of the budget can be done all in a matter of minutes. And
budget consoclidations are fun! With a few simple commands to Dollar-Flow, a
whole series of budgets can be consolidated into a departmental or divisional
budget. When changes are made to the low level budgets, they automatically are
reflected on the consolidated budget the next time it”s run.

The profit/loss projection is next. Using the data from the sales fore-
cast, the build plan, and the budgets, and adding factors for items like sales
discounts and returns, a pro forma operating statement is prepared. Often, the
bottom line (profit) on this report determines what (if any) changes need to be
made to the budgets. With a flexible tool like Dollar-Flow, a financial execu-
tive can even do sensitivity analysis: What 1f sales are 20% lower then fore-

cast? What 1f our discount schedule is more aggressive and our volume is
larger?

ﬁh Some companies that rely on substantial amounts of debt to finance their
operations combine the profit/loss projection with a cash flow projection.

This is because interest pald (an item of expense on the profit/loss statement)

has an impact on the amount of money required to rum the business. This deter-—

B-6 - 08



mines the level of borrowing, which, in turn, affects the amount of interest
which is paid. Dollar-Flow, and most good financial planning languages, can
solve the "simultaneous equations” this circular logic represents, and determirM%
a level of debt and debt service which are consistent with each ether. This

is far more difficult when done manually.

Another procedure which is laborious when done by hand is the aging of
accounts receivable and accounts payable projections. Using Dollar-Flow, once
the rules for aging have been set up, a change in the sales forecast or the

build plan will automatically be reflected in new receipts and payables pro~-
jections.

And, finally, some companies prepare pro forma balance sheets as the
last step in their profit planming cycle. This is not necessarily the way all
companies plan. Or even the way all Dollar-Flow users plan. 1In fact, many
Dollar-Flow users are not even responsible for profit planning. Instead, the
system is used for a wide variety of ad hoc applications involving calcula-
tions on rows and columns of numbers. It is even used as a design tool for
systems which will later be haxd-coded in COBOL, FORTRAN, or BASIC.

Some of the other applications-of Dollar-Flow that I am aware of
inelude: '

Product pricing. Comparing alternative prices for a single product
(the plotting capability is great for comparisons). Or comparing profit per-
centage across am entire product line. Financial ratio analysis. Comparing
selected financial ratios against industry standards or company objectives.
Capital budgeting. Rates of return and discounted cash flows can be calculatedﬂﬁ
easily using bullt-in financial functions.

Performance reporting. Variance reports showing actual budgets or
profits versus plan. How sales are doing against target. (One Dollar—~Flow user
generates 500 graphs every month showing product line sales performance for
every branch of every distributor who markets his products!)

SUMMARY

Let me leave you with a few parting thoughts. Financial planning is
not an easy process. Figures change. The whole approach to a plan may change.
And you need your results yesterday. Traditional systems design and program-
ning methods are not going to be effective in this kind of situation. Use a
better approach. With a friendly, problem oriented planning language 1like
Dollar-Flow, applications nightmares can become applications successes,

B-6 - 09



