
PROGRAMMING FOR DEVICE INDEPENDENCE

JOHN HULME

J. HULME
ApPLIED CYBERNETICS, INC.
Los GATOS, CALIFORNIA
224 CAMINO DEL CERRO

Ul 1

PROGRAMMING FOR DEVICE INDEPENDENCE

John Hulme
Applied Cybernetics, Inc.

Los Gatos, California
(408) 356-7296

224 Camino Del Cerro

INTRODUCTION

The purpose of this presentation is to discuss techniques

and facilities which:

1) isolate the programmer from specific hardw~re con­
siderations

2) provide for data and device independence

3) allow the programmer to deal with a logical rather
than a physical view of data and devices

4) allow computer res~urces to be reconf~gured, re­
placed, rearranged, reorganized, restructured or
otherwise optimized either automatically by system
utilities or explicitly by a system manager or
database administrator, without the need to rewrite
proqrams. '

The evolutionary development of these techniques will

be reviewed from a historical perspective, and the specific

principles identified will be applied to the problem "of pro-

ducing formatted screen applications which will run on any

type of CRT.

Ul 2

WHAT IS A COMPUTER?

As you already know, a computer consists of one or more

electronic and/or electromechanical devices, each capable of

executing a limited set of explicit commands. For each type

of device some means is provided to allow the device to re­

ceive electrical impulses indicating the sequence of commands

it is to execute. In addition to commands, most of these

devices can receive electrical impulses representing bits of

information {commonly called data> which the device is to

process in some way. Nearly all of these devices also pro­

duce electrical impulses as output, which may in turn be

received as commands and/or data by other devices in the

system.

Nowadays, most devices also have some form of "memory"

or storage media where commands or other data can be recorded,

either temporarily or semi-permanently, and a means by which

that data can later be received in the form of electrical

impulses.

The tangible, visible, material components which these

devices are physically made up of is generally called com­

puter hardware. Any systematic set of instructions describing

a useful sequence of commands for the computer to execute

can be called computer software. As we will see later, soft­

ware can be further subdivided into system software, which

is essentially an extension of the capabilities of the hard­

ware, and application programs, which instruct the computer

how to solve specific problems, handle day-to-day applications,

2 Ul 3

and produce specific results.

Originally it was necessary for a computer operator to

directly input the precise sequence of electrical signals by

setting a series of switches and turning on the current.

This process was repeated o~er and over until the desired

sequence of instructions had been executed.

By comparison with today's methods of operating comput­

ers, those earlier methods can truly be called archaic. Yet

the progressive advancement of computer systems from that

day to this, however spectacular, is nothing more than a

step-by-step development of hardware and software building

blocks, an evolutionary process occuring almost entirely

during the past 25 years.

ENGINEERING AND AUTOMATION

I think we mostly take for granted the tremendous com­

puting power that is at our fingertips today. How many of

us, before running a program on the computer, sit down and

think about the details of hardware and software that make

it all possible? For that matter, who stops to figure out

where the electrical power is coming from before turning on

a light or using a household appliance? Aefore driving a

car or riding in an airplane, who stops to analyze how it

is put together?

Probably none of us do, and that is exaclly what the

design engineers intended. You see, it is the function of

product engineering to build products which people will buy

3

Ul 4

and use, which usually means building products which are easy

to use. The fact that we don't have to think about how some­

thing works is a measure of how simple it is to use.

Wherever a process can be automated and incorporated

into the product, there is that much less that the consumer

has to do himself. Instead of cranking the engine of a car,

we just turn a key. Instead of walking up 30 flights of

stairs, we just push a button in the elevator.

It's not that we are interested in being lazy. We are

interested in labor-saving devices because we can no longer

afford to waste the time; we have to meet deadlines; we want

to be more efficient; we want to cut costs; we want to in­

crease productivity. We also want to reduce the chance for

human error. By autom~ting a complicated process, we

produce consistent results, and when those results are

thoroughly debugged, error is virtually eliminated. We can

rely on those consistent results, which sometimes have to

be executed 'with split second timing and absolute accuracy.

Without reliable results there might be significant economic

loss or danger to life and limb. Imagine trying to fly

mode~n aircraft without automated procedures.

Automation also facilitates standardization, which

allows i~terchangeabilityof individual components. This

leads to functional specialization of components, which in

turn leads to specialization of personnel, with the attendant

savings in training and maintenance costs. And because the

engineering problem only has to be solved once, with the

4

U1 5

benefits to be realized every time the device is used, more

time can profitably be spent coming up with the optimum

design.

BUILDING BLOCKS

In my opinion, the overWhelming advantage of a~tomating

a complicated process is that the process can thereafter be

treated as a single unit, a "black box" if yO'-l will, in

constructing solutions to even more complicated processes.

Later, someone could devise a better version of the

black box, and as long as the functional parameters remain

the same, the component could be integrated into the total

system at any time in place of the original without destroying

the integrity of any other components.

It is this "building-block" approach Which has· perm~tted

such remarkable progress in the development of computer hard­

ware and software. As we review the evolution of these

hardware/software building blocks, keep in mind that the

chronological sequence of these developments undoubtedly

varied from vendor to vendor as a function of how each per­

ceived the market demand and how their respec~ive ~ngineering

efforts progressed.

ONE STEP AT A TIME

Even before the advent of electronic computers, various

mechanical and electro-mechanical devices had been produced,

some utilizing punched card input. Besides providing an

5

U1 6

effective means of input, punched Cdlds urld p~1per tape repre­

sent a rUdimentary storage medium. Incorporatinq paper tape

and card readers into early computer system~ no~ only allowed

the user to input programs and data more quickly, more easily,

and more accurately (compared with flipping switches manually),

but on top of that it allowed him to enter the same programs

and data time after time with hardly rnare effort than enter­

ing it once.

The next useful development \-/as the Itstored program"

concept. Instead of re-entering the program with each new

set of data, the program could be read in once, stored in

memory, and used over and over.

This concept is an essential feature of all real comput­

ers, but it would have been practically worthless except for

one other essential feature of computers known as internal

logic. We take these two features so much for granted that

it's hard to imagine a computer without t.hem. In fact, with­

out internal logic, computers reoll y wouldn' l be fl:lJch good

for anything, since they would only oe able to execute a

program in sequential order beginning with the first instruc­

tion and ending with the nth. Internal logic is based on

special hardware commands which provide the ability fjrst of

all to test for various conditions and secondly to specify

which command will be executed next, depending on the results

of the test. In modern computer lan')u 'lCJes, in i ernal logic

is manifest in such constructs ~s IF st.1tem2n~~; GO TO

statements, FOR loops, and subroutine calls.

Gut at the stage we are dl~cuss:nC1 I_iiere '.tJere no modern

programming languages, just the langua(Jp- ·~)f electrical signals.

These came to be represented as numbers (even letters and

other symbols were given a numeric e.luivalent) and programs

consisted of a long list of numbers.

Suppose, for example, that the numbers 17, 11, and 14

represented hardware commands for rea~ing a number, adding

another number to it, and'storin<] the result, respectively,

and suppose further that variables A through Z were stored

in memory locations 1 through 26. Then the program steps

to accomplish the statement "give Z a value equal to the sum

at X and y" might be expressed as the following series of

numbers, which we will call machine instructions:

17, 24, 11, 25, 14, 26

In e3sence, the programmer was expected to learn the language

of the computer.

A slight improvement was realized when someone thought

Lo devise a meaningful mnemonic for eacil hardware command and

Lo have the proqrammer write prO(}rc1r:I~.i '--Ising the easier-to­

remember mnemonics, as follows:

REA D, 24, ADD, 25, :; TOh F:, 25

or perhaps even

READ, X, ADD, Y, Sl'Old::, Z.

After the programmer had ,:lescr ibed the logic in this

way, any program could be readily converted to the numeric

torm by a competent secretary. but ~,ince tMe converslurl WCiS

relatively straightforward, it would be automated, saving Lhe

6

Ul 7 Ul 8

secretary some very boring work. A special computer program

was written, known as a translator. The mnemonic form, or

source program as it was known, was submitted as input data

to the translator, Which substituted for each mnemonic the

the equivalent hardware command or memory location, thus

producing machine instructions, also known as object code.

Translators required two phases of execution, or two passes,

one to process the source program and a second to execute

the resulting object code. Once the program functioned

properly, of course, it could be executed repeatedly without

the translation phase.

It would have been possible for the hardware engineers

to keep designing more and more complicated hardware commands,

and to some extent this has been done, either by combining

eXisting circuitry or by designing new circuits to implement

some new element.al command. Each new machine produced in

this way would thus be more powerfUl than the lqst, but it

would have been economically prohibitive to continue this

type of development for very long and the resulting machines

would have been too large to be practical anyway.

Engineers quickly recognized that instead of creating

a more powerful command by combining the circuitry of existing

commands, the equivalent result could be achieved by combining

the appropriate collection of commands in a miniature program.

Thi~ mini-program could then be repeated as needed within an

application program in place of the more complex command. Or

better yet, it could be kept at a fixed location in memory and

8

U1 9

be accessed as a subroutine just the same as if it were

actually a part of each program.

Another approach was to use an interpreter, a special

purpose computer program similar to a translator. The inter­

preter would accept a source program in much the same way as

the translator did, but instead of converting the whole thing

to an object program, it would cause each hardware command to

be executed as soon as it had been decoded.

Besides requiring only one pass, interpreters had the

added advantage of only having to decode the commands that

were actually used, though this might also be a disadvantage,

since a command used more than once would also have to be de­

coded more than once.

The chief benefit of an interpreter lay in its ability

to accept mnemonics for commands more complex than those

actually available in the hardware, and to simulate the

execution of those complex commands through the use of sub­

routines. In this way, new commands could be implemented

without any hardware modifications merely by including the

appropriate subroutines in the interpreter. This step marked

the beginning of system software.

In addition, source programs for nearly any ~omputer

could be interpreted on nearly any other computer, as long as

someone had taken the tim~. to write the necessary interpreter.

Interpreters could even be written for fictional computers

or computers that had been designed but not yet manufactured.

This techniq~e, thoug~ generally regarded as very 1nefficient,

9
Ul 10

provided the first means of making a program transDortable

from one computer to another incompatible computer.

It is possible, of course, to apply this technique to

translators as well, allowing a given mnemonic to represent

a whole series of commands or a subroutine call rather than

a single hardware instruction. Such mnemonics, sometimes

called macros, ga~e users the impression that the hardware

contained a much broader repetoire of commands than was

act~ally the case.

Implementing a new feature in software is theoretically

equivalent to implementing the same function in hardware.

The choice is strictly an economic one and as conditions change

so m1ght the choices. One factor is the universality or fre­

quency with which the feature is likely to be used. Putting

it in hardware generally provides more efficient execution,

but putting it in the software is considerably easier and

provides much greater flexibility.

The practice of res~ricting hardware implementation to

the bare essentials also facilitated hardware standardization

and compatibility, which was crucial to the commercial user

who wanted to minimize the impact on all his programs if he

should find it necessary to convert to a machine with greater

capacity. Beginning with the IBM 360 series in 1964 "families"

of compatible hardware emerged, inclUding the RCA Spectra 70

series, NCR ~entury series, and Honeywell 200 series, among

others.

10

Each family of machines had its own operating system,

software monitor, ur executive system over~eeing the

operation of every other program running on the machine.

In some systems, concurrent users were allowed, utilizing

such techniques as memory partitioning, time-sharing, multi­

threading, and memory-swapping. Some form of job control

language was devised for each operating system to allow the

person submitting the jobs to communicate with the monitor

about the jobs to be executed.

Introducing families of hardware did not solve the

probJem of compatibility he tween one vendor and the next,

however, a problem which could only be solved by developing

programming languages which were truly independent of any

particular piece of hardware.

Since the inventors of these so-called higher-level

languages were not bound by any hardware constraints, an effort

was made to make the languages as natural as possible. FORTRAN

imitated the language of mathematical formulas, while ALGOL

cldimed to be the ideal language for describing algorithmic

logic; COBOL provided an English-like syntax, and so on.

Instead of having to learn the computer's language, a

programmer could now deal with computers that understood his

language. Actually, it was not thp. hardware which could

understand his language, but d more sophisticated type of

trclnslator-interpreter known as a compi.ler.

To the degree that a particular]ar'l<)uage enjoyed enough

popular support to convince multiple vendors to implement it,

programs written in that language could be transported amor.g

Ul 11 11
U1 12

th~se machines for which the corresponding compjler was

available.

The term compiler may have been coined to indicate that

program units were collected from various sources besides the

source program itself, and were compiled into a single function­

ing module. Subroutines to perform a complex calculation such

as a square root, for example, might be inserted by the comiler

whenever one or more square root operations had been specified

in the body of the source program.

Embedding subroutines in the object code was not the

only solution, however. It became more and more common to

have the genera ted ob ject programs merel y "CALL" on subrou­

tines which were external to the object program, having been

pre-compiled and stored in vendor-supplied "subroutine librar­

ies". This concept was later extended to allow users a means

of placing their own separately-compiled modules in the library

and accessing them wherever needed in a program.

I should mention that an important objective of any

higher level language should be to enable a user to describe

the problem he is solving as clearly and concisely as

possible. Although the emphasis is ostensibly on making the

program easy to write, being able to understand the program

once it has been written may be an even greater benefit,

particuldrly when program maintenance is likely to be

performed by someone other than the original author.

It is well-known that program maintenance occupies a

great deal of the available time in the typical data

12

U1 13

processing shop. Some studies estimate the figure at over

SO% and increasing. In order to be responsive to changing

user requirements, it is essential to develop methods which

facilitate rapid and even frequent program changes without

jeopardizing the integrity of ttle system, and without tying up

the whole DP staff.

To avoid having to re-debug the logic every time a change

is made, it is often possible to use data-driven or table­

driven programming technigues. The portion of the program

which is likely to change, and which does not really affect

the overall procedural logic of the program, is built into

tables or special data files. These are accessed by the

procedural code to determine the effective instructions to

execute.

The most common example in the United States, and

perhaps in other countries as well, is probably the table of

income tax rates, which changes by law now at least once a

year. The algorithm to compute the taxes changes very rarely,

if at all, so it does not have to be debugged each time the

tables change. In simple cases lika this, non-programmer

clerks might safely be permitted to revise the table entries.

In more sophisticated applications, tables of data called

logic tables may more directly determine the logic flow

within a program. The program becomes a kind of interpreter,

and elements in the logic table may be regarded as instructions

in some esoteric machine language. Such programs are gener­

~lly more difficult to· thoroughly debug, but once debugged

13

Ul 14

provide solutions to a broad class of problems without ever

having to revise the procedural portion of the program.

Sometimes, logic-controlling information is neither

compiled into the program nor stored in tables, but is pro-

vided to the program when it is first initiated or even during

the course of execution, in the form of run-time parameters

or user responses. The program has to be pre-programmed

to handle every valid parameter, of course, and to gracefully

reject the invalid ones, but this method is useful for cutting

down the number of separate programs that have to be written,

debugged, and maintained. For example, why write eight

slightly different inventory print programs, if a single

program could handle eight separate formats through the use

of run-time options?

Incidentally, program recompilations need not always

cause alarm. Through the proper use of COpy code, programs

can be modified, recompiled, and produce the new results with-

out the original source program ever having to be revised.

This is made possible by a facility which allows the source

program to contain references to named program elements stored

in a COpy library in$tead of having those elements actually

duplicated within the program. A COpy statement is in

effect a kind of macro which the compiler expands at the

time it reads in the source program.

For example, if a record description or a table of values

appears in one program, it is likely to appear in other

programs as well. It is faster, easier, safer, and more

14

Ul 15

concise to say "COpy RECORD-A." or "COpy TABLEXYZ." than

to re-enter the same information again and again. And if

for some reason the record layout or table of values should

have to be changed, merely change it in the COpy library,

not in every program.

By changing the contents of a COpy member in this way

and subsequently recompiling selected programs in which the

member is referenced, those programs can be updated without

any need to modify the source. If procedure code is involved,

the new COpy code only need be debugged and retested once

rather than revalidating all the individual programs.

Where blocks of procedural code appearing in many programs

can be isolated and separately compiled, however, this would

probably be better than using COpy code. For one thing, the

separate modules would not have to be recompiled every time

the procedural code was revised.

BITE-SIZE PIECES

Breaking a complex problem into manageable independent

pieces and dealing with them as separate problems is a

valuable strategy in any problem-solving situation. Such a

strategy has added benefits in a programming environment:

1. Smaller modules are typically easier to understand,
debug. and optimize.

2. Smaller modules ar~ usually ~Rsier to rewrite or
replace if necessary.

3. Independent functions which are useful to one appli­
cation are often useful to another application; using
an existing module for additional applications cuts
down on programming, debugging, and compilation time.

15

U1 16

5.

"4. Allowing applications to share a m~dule reduces memory
requirements.

Having only one copy of a module ensures that the
module can be replaced with a new version from time
to time without having to worry that an undiscovered
copy of an older version might still be lurking
around somewhere in the system.

The fact that a routine only has to be coded once

usually more than compensates for the extra effort that may

In this way, many alternative products may become

available, and the user will have to evaluate which approach

he wishes to take advantage of, based on such factors as cost,

efficiency, other performance criteria·, flexibility of oper­

ation, compatibility with existing software, and the

comparative benefits of using each product.

PRINCIPLES OF GOOD SYSTEM OESIGN

of the following principles:

In case you may need to design your own supporting

software, or evaluate some that is commercially available,

let's summarize the techniques which will permit you to

achieve the greatest degree of data, prog~am, and device

independence. I have already given illustrations of most

have to go into generalizing the routine. The more often

it's used, the more time you can afford to spend improving it.

SYSTEM SOFTWARE

Functions which are 50 general as to be of value to

every user of the computer, such as i/o routines, sort

utilities, file systems, and a whole host of other utilities,

are usually included in the system software supplied by the

hardware vendor. Just what facilities are provided, how

sophisticated those facilities are, and whether the vendor

charges anything extra for them, is a matter of perceived

user need and marketing strategy. Sometimes vendors choose

to provide text editors and other development tools, and

sometimes they don't. Sometimes they provide a very powerful

data base management system, sometime only rudimentary file

access commands. And so on.

When hardware vendors fall to provide some needed piece

of software, it may be worthwhile for the user to write it

himself. If the need is general enough, software vendors may

rush in to fill the void; or perhaps user pressure will even­

tually convince hardware· vendors to implement it themselves.

16

Ul 17

1.

2.

3.

4.

5.

Modularity--Conceptually break everything up into
the smallest modules you feel comfort~ble deal­
ing with.

Factoring--Whenever a functional unit .appears in
more than one location, investigate whether it 1s
feasible to "factor it out" as a separate module
(this is analogous to rewriting A·B+A·C+A·O as
A·(B+C+O) in math).

Critical Sections--Refrain from separating modules
which are intricately interconnected or sub­
dividing existing modules whic~ are logically
intact. .

Independence--Strive to make every module self­
contained and independent of every external
factor except as represented by predefined
parameters.

Interfacing--Keep to a minimum the amount of commu­
nication required between modules; provide a
consistent method of passing parameters; make
the interface sufficiently general to.allow
for later extensions.

17

Ul 18

6. Isolation--Isolate all but the lowest-level modules
from all hardware considerations and physical
data characteristics.

7. Testing--Test each individual module by itself as
soon as it is completed and as it is inteqrated
with other modules.

8. Generalization--Produce modules which solve the
problem in a general way instead of dealing with
specific cases. Be careful, however, not to
over-generalize. Tr¥ing to make a new technology
fit the mold of an existing one may seem like
the best modular approach, and the easiest to
implement, but the very features for which the
new technology has been introduced must not
become lost in the process.

EXAMPLE--When CRT's were first attached to com­
puters they were treated as teletypes, a class of
i/o devices incompatible with two of the CRT's
most useful features: cursor-addressing and the
ability to type over existing characters. Putting
the CRT in block-mode and treating it as a fixed­
length file represents the opposite extreme: the
interactive capabilities are suppressed and the
CRT becomes little more than a batch input device,
a super-card-reader in effect.

9. Standardization--Develop a set of sound programming
standards including structured programming methods,
and insist that ea~h module be coded in strict
compliance with those standards.

10. Evaluation--Once the functional characteristics
have been a~hieved, use available performance
measurement methods to determine the areas which
most need to be further optimized.

11. Piecewise Refinement--Continue to make improvements,
one module at a time, concentrating on those with
the largest potential for improving system perform­
ance, user acceptance, and/or functional
capabilities.

12. Binding--For greater flexibility and independence,
postpone binding of variables; for greater
efficiency of execution, do the opposite; pre­
bind constants at the earliest possible stage.

BINDING

As the name suggests, "binding" is the process of tying

together all the various elements which make up an executing

program. Binding occurs in several different stages ulti­

mately making procedures and data accessible to one another.

For example, the various statements in an application

program are bound together in an object module when the

source program is compiled. Similarly, the various data

items comprising an IMAGE data base become bound into a

fixed structure when the root file is created. A third

case of binding involves the passing of parameters between

separately compiled modules.

Remember that at the hardware level, where everything

is actually accomplished, individual instructions refer to

data elements and to other instructions by their location in

-memory. The "address" of these elements must ,~ither be built

into the object code at the ti~e a program is compiled, be

placed there sometime prior to execution, or be provided

during execution. Likewise, information governing the flow

of logic can be built into the program originally, placed in

a file which the program accesses, passed as a parameter when

the program is initiated, or provided through user inter-

action during execution.

Binding sets in concrete a particular choice of options

to the exclusion of all other alternatives. Delayed binding

therefore provides more flexibility, while early binding

18
U1 19

19 U1 20

provides greater efficiency. BindJng during execution time

can be especially pClwerful but at the :.;amc t.ime potentially

critical to system performance. In generdl, variables should

be bound as early as possible unl~ss you specifically plan

to take advantage ot leaving them unbound, in which case

you should delay binding as long as it proves beneficial and

can still be afforded. Incidentally, on the HP 3000, address

resolution between separately-compiled modules will occur

during program preparation (PREP) except for routines in

the segmented library, which will be resolved in connection

with program initiation. If your program pauses initially

each time you run it, this run-time binding is the probable

cause.

A SPECIFIC APPLICAT~ON

About five years ago, we were faced with the problem

of developing a system of about 300 on-line application

programs for a client with no previous computer experience.

Their objective was to completely automate all record-

keeping, paper-flow, analysis, and decision making, from

sales and engineering to inventory and manufacturing to

payroll and accounting. The client had ordered an HP 3000

with 256K bytes of memory and had already purchased about

20 Lear-Sigler ADM-1 CRT's. About 12 terminals were to be

in use during normal business hours for continuous inter-

active data entry; the re~aining eight terminals were

primarily intended for inquiry and remote reporting.

20
U1 21

Up-to-date information had to be on-line at all times using

formatted screens at every work station. Operator satisfac-

tion was also a high priority, with two- to five-second

response time considered intolerable.

DISCUSSION QUESTIONS

Based on the "principles of good system design" sum­
marized earlier, what recommend~tions·wouldyou have made
to the development team?

At the time, HP's Data Entry Language (DEL) seemed to
be the only formatted screen handler available on the
HP 3000. Consultation with DEL users convinced us it
was rather awkward to use and exhibited very poor re­
sponse time. Also it did not support non-HP character­
mode terminals.

We elected to write a simple character-mode terminal
interface, which was soon expanded to provide internal
editting of data fields, and later enhanced to bandle
background forms. We presently market this product under
the name TERMINAL/3000. You've probably heard of it.

The compact SPL routines reside in the system SL and
are shared by all programs. The subroutine which inter­
faces directly with the terminals is table-driven to
ensure device-independence. By implementing additional
tables of escape sequences, we have added support for
more than a dozen different types of terminals besides
the original ADM-l's.

If we were faced with a similar task today, would your
recommendations be any different?

After completing most of the projec~, we did what should
have been done much earlier: we implemented a CRT forms
editor and COBOL program generator which together auto­
mate the process of writing formatted-screen data entry
programs utiliZing TERMINAL/30DO. We call this approach
"results-oriented systems development"; the package is
called ADEPT/3000. Programs Which previously took a
week to develop can now be produced in only half a day.

Since we were using computers to eliminate monotonous
tasks and improve productivity for out clients, it was
only natural that we should consider using computers to

21
U1 22

reduce monotony and increase productivity in our own
business, the business of writing application programs.
If you write application programs or manage people who
do, you also may wish to take advantage of this approach.

What features of VIEW/3000 would have made it unsuitable
for this particular situation?

- not available five years ago
- HP 2640 series of terminals only
- block-mode only (not interactive field-by-field)
- requires huge buffers (not enough memory available)
- response time and overall system performance inadequate

From what you know of TERMINAL/3000 and ADEPT/3000, how
do these products enable a programmer to conform to the
principles of good system design?

TERMINAL/3000 itself: modular, well-factored, single
critical section, device-independent, independent of
external formats, simple l-parameter interface, table­
driven hardware isolation, well-tested, generalized,
optimized for efficiency, run-time binding of cursor­
positioning and edit characteristics.

ADEPT/3000: produces COBOL source programs that are
modular, well-segmented, device-independent, and
contain pre-debugged logic conforming to user-tailored
programming standards; built-in interfaces to
TERMINAL/3000 and IMAGE/3000 (or KSAM/3000) isolate
the programs from hardware considerations and provide
device and data independence.

ttl 23

BIBLIOGRAPHY

Boyes, Rodney L., Introduction to Electronic Computing:
A Management Approach (New York: John Wiley and
Sons, Inc., 1971).

Hellerman, Herbert, Digital Computer System Principles
(New York: McGraw-Hill Book Co., Inc., 19G7).

Knuth, Donald E.! The Art of Com8uter Progra:n::-.l.rl2. (Readin; 1

Mass.: AddIson-Wesley PublIshing Company, ·~J68) ..

Swallow, Kenneth P., Elements of Computer Programminq
(New York: Holt, Rinhart and Winston, Inc., 19~~).

Weiss, Eric A. (ed.), Computer Usage Fundamental~ (New York:
McGraw-Hill Book Co., Inc., 1969).

U1 24

	Programming for Device Independence

