
SOME PROBLEMS OF SOFTWARE ENGINEERING

WLADYSLAW M. TURSKI

PROF. W.M. TURSKI
INSTITUTE OF INFORMATICS
WARSAW UNIVERSITY
WARSAW, POLAND

QO 1

Some Pr'oblems of Software Engineering

Wladyslaw M. Turski

lnst i Lute of I nfol'mat i cs

Warsaw University

The phrase "software engineering" was coined just over 13

years ago. It was considered a little provocative by its

originators and was chosen explicitly for this reason. The

group of coveners of the Garmisch (October 1968) and Rome

(October' 1969) conference sponsored by the NATO Science

Committee deliberately selected a key phrase that contrasted

wi h t the the n p rev a iii n g perc e p t ion 0 f so f twa r' e issu e s

("software chaos" and "software crisis" being then two

phrases very much in vogue). The phrase "software

eng i nee r i n g" h i n ted at 1 a wandOl'd e r inan (' n vir 0 nmen t

considered hopelessly anarchic, promised some rigour and

discipline where there was none, whiffled of industrial

approaches in the field where artisanship reigned

unchallenged. The phrase "software engineering" evoked - no

matter how nebulously - notions of standards, measures of

productivity, industry-wide and commonly accepted codes of

good practices. Unfortunately, the launching of a phrase

seldom solves any real problems and sometimes creates new

ones, primarily those of cr'poibility.

QO 2

inevitable

r'evea ling

antipodes,

well-read,

computing

rethoric:

engineering". Unlike social ones, this technological

revolution turned against its fathers.

Software C'ngineer'ing caught on. Conceived as an int('llpctlial

pl'ovocation by the most Iy acadpmic animator's of t.he

Car'm i seh-Rome conferences, thp phrase was eagel') y accepted

by a 11 sorts of i ndust ria 1 organ i sa l i ous. Thp younger' spt

(and information processing community expands so q\liekly~

that it constantly seems to consist morp of the' youngpr' set.)

is now firmly convinced that software engineering is a

well-established industrial discipline, opposed or' at Ipast

neglected by the academia. (A year ago I witnessPd a most

..;ortw;tr,p ("'ng;irlt,(,t'ing should ha\,(' ('\It'(,<1 all thpspI dpal Iy,

and s i mil at' i I Is. (fnl'or'tllna(,p I y t IH's(' phpflollH'na - vpr'y r'eill

nrH'S - ilJ'(' merely s~'mpt.oms of much deepPl' t !'oublL's and sincp

most ('fCopt,s d i r'pcted at ,'emcdy i ng thp symptoms do not cu r'e

the sicktH'ss lhat. causes them, even if t.;tken jointly, all

prescr'ipt.ions for' amp] ior'ating par'ticulal' aspecls of thp

softWill'(' ('I'i sis do not seprn to apJH'('c i ab I y i mpl'ove the st.ate

of aCrai 1'-";. Even though the {'xpr'('ssion "soClwar'c cr'isis" is

by now (1('at'ly for'gotten, almost all thl.' complaint.s made

f i ftpl'n)'PiH'S ago ('ou I d bp r'ppeat,ed today, ppr'haps more

str'ongly. There is, however', one notable and very important

except ion: we have I car'ned how to wr'i l.c correct pr'ogr'ams

given pr'ecise specificatiolls.

am fu 11 y aware that the ab iIi ty to make correct pr'ograms

given precise specifications is but a small consolation for

someone faced with the full scope of issues involved in

prov i dt ng the software par't. of a computeri sed sys.tem,

nevertheless I am going to spend some time analysing this

achievf'ment. I am going to do so for' several reasons:

be

scene: at a computer-e)l'i en Lcd gathe-I'i ng on the

a very articulate, but clearly not vpr'y

industrial programmer' addressPd a profpssol' of

science with a question he obviously thought

when at long last, would the universities

recognise the existence of software engineering, accept. the

and start doing something useful in this

direction. The object of this tirade was the person who can

called the spiritus mavens of the 68/69

conferences, one of the authors of the phrase "software

justly

(i) because it shows what it takes to solve a problem

in the area of softwarE' cngi neeri ng,

(ii) because it bares some fundamental deficiencies of

the common sense approach to software problems,

techniques involved in solving a methodological

problem if software construction,

engineering that

scientific terms.

the intellectual

the only part of software

can be completely discussed in

demonstrates

is

it

it

because(iii)

(iv) because

The software crisis of the 60's was very rcal. The qual it.y

of most computer programs was very poor, their documentation

at the very best - sketchy, the reusability of software

components - practically unheard-of, software systems in use

were growing patchier and patchier, software projects were

notoriously behind schedule and above budget. The shortage

of skilled programmers was crippling, good people were hard

to get and once gotten would very often be soon bribed away.

Programming languages were just about the only facet of

programming sufficiently well-understood to have a

comprehensive and consistent theory (even in this case the

theory covered only part of the problem, i.e. syntax,

leaving out the perhaps more important subject of

programming language, which is semantics).

QO 3 QO 4

rhus \'iC' consider' a pr'o~I'''1I\ and a sp.'cifi<.:at i(HI. FOI' somt'

We leave aside, for the moment, t.he objections that one

se I dom is interested in actuall y ver i fy i ng if an ar'b i trary

progr'am Pis correct wi th I'espcct to spec if i cat ion S, that

our main interest is in producing pr'ograms that enjoy this

property vis a vis given specification. After all, unless we

have a better procedure, a thorough quality assurance test

is a purchaser's best friend!

('Ol",(,("t with re!'->pect. t.u thl' sIH·cifi<.:ation S. Th('

v (' I' i r i it C t ion 0 f whe t h <.' C' a p a "t i c u] a r' pit i r (P. S) entit I ('.';; us

to make th i s slatem('nt d('pends. of COlu'se. on a gr'cat many

Cl d d i t. ion a I cons i de rat ion s. (I n c i did f' n t a I I y, 1 am a f r' aid t. hat

s om(' r' e ade r s art'" beg inn i n p: t. 0 S II S P e c t t hat. I am 0 v l~ r I y

pedantic, that I indulge in an academic nitpicking; let me

hasten to assure them that me concern is very practical: it

is precisely because I am int.er'est.ed in useful programs t.hat

am rather particular about expressing my objectives quite

clearly and opt for writing a watertight warranty thaL the

pc'ogr'am wi II indeed sal i sfy my goal s as expressed by thc'

specifications.)

Lpt u:-; f i r'st cons i <h' r~ why i nst ead of Cl ::i imp I ('r' (" pl'('s ...d OJ)

"cor'r'('ct. pr'ogl'am" we ar'(' using Cl longer' (and. aclmittf'clly,

c 1ums i l't'" on •.': "'PI'o~t'am cor'r'pct. wit h ('(':->IH'('(l () i t ~

specification".

The only rational interpr'etation of the shor't('I' tprm­

"correct program" could relate to the internal <.:orr'ectncss

of a piece of code, i.e. to its syntact.ic correct.ness. For a

reasonable grammer the question of syntactic correctness can

be solved quite mechanically: every acceptable compiler does

it all the time. On the other hand, if the syntactic

correctness of a program cannot be resolved mechanically, we

are dealing with a programming languagr too ambiguous for

any semantic interpretation, with a text too vague to be

considered meaningful. (A more puritan viev would be to

state that syntactic unresolvability precludes semantic

modelling and thus such texts are meaningless.) Since it is

safe to assume that we are willing to restrict our

considerations to programs that are guaranteed to be

mean i ngful , i • e • to such programs tha t a r'e gua ran teed to

have a nontrivial semantic model, we assume that programs we

are considering are g~aranteed to be syntact i call y cor'rect.

~ll('h pa i ('S w(' ar'f' Pllt it I ('d t.o st alp t.hat pt'ogr'am Pis

As soon as we decide that we wish t.he term "corrpctness" to

express more than just syntactic correctness, we must look

for an externa 1 frame of reference. (Not.h i ng .~upr i sing ill

it: in a scientific sensf.', correctness, just as

truthfullness - in a slight depat~tur{' from common lISilgP - is

always a dyadic relation that holds, or docs not. between

two ent i ti es rather' than be i ng a property pnjoyed, or not,

by an entity taken in isolation.) For a meaningful,

purposful, useful program, the frame of reference that seems

most natural for establ ishi ng th£' program's cot'rect ness is

its specification, i.e., a stat~mcnt of the pr0gram'~

purpose.

QO 5

Pf>r'haps thp simp 1est form a p('ogram spec if i cat i on can take

is a pai r' of statements, IN and OUT, each of wh i ch can be

t.'ith<:>r true or false, depending on the envir'onment in which

it is to be evaluated. (Some srntcnces, tautologies, are

t. I' U e (0 r' fa 1s e) rega r'd Je s s 0 fan envir 0 nme n t; i f we fan c y

it, we may introduce the statement TRUE hhich - by

def i nit ion - is true in l'v('r'y env i ('onment, and the statement

FALSE - fa I sC' in cver'y env ironment, t.hese two statement.s arc

supr is i ngl y usef'u I !) Us i ng an IN/OUT pa iI' wc express the

fo II ow i ng I'('quest: we want a program P such that if its

exc'cut. ion star'ts in an ('IlV ironment in wh i ch IN is true then

aft£'r i t.s t.'xecut ion is comp 1et.ed we sha II g<'t, an env i r~onment

in whi<.:h OUT will be true. This request can be writ~en as a

QO 6

formula: for £'xample, with IN and OUT as before, and

in which P is an unknown, or desired, program. Thus this

formula may be considered as an equation that defines

program P.
we get the conjecture

(IN) P (OUT) (x) P if x>"'y -=) m::.x

y):: x ::. =) m: -= y u.

For example,

(integers x, yare' defined) P (integer's x,x,m are d£'fincd

and m = max(x,y»

(integers x,y are defined)

if. x>-:.y =~> m:;-x

y>~x ==) m:::y ti
(integers x,y,m are defined and m max(x,y»

is a specification for a (small) program P that culls the

maximum of two given integers.

Now, how do we proceed to verify that a given program P is

correct with respect to its IN/OUT specification? There are

several ways of doing it, depending on the particular

fashion in which semantics of the programming language

employed for coding P is formulated. If we are to proceed at

all, however, the semantics of this language should bv

expressed in such a way as to permit calculations of the

environment transformations effected by the execution of the

language instructions. Knowing how the execution of each

instruction transforms its inherited environment into the

environment for its successor, we can ascertain if the

execution of P, starting from its first executabl~

instruction initiated in the environment satisfying IN, will

lead, transformation by transformation, to an environment

satisfying OUT. Thus we can establish the correctness of P

with respect to IN/OUT by proving the conjecture that arises

when the text of program P is substituted in (x). Note that

the ability to carry out this proof depends on thp abi lity

of a rigorous definition of the programming semantics.

QO 7

There are two varieties of thus understood correctness:

partial and total. The distinction relates to the fact that

some programs are known to contain endless loops, or - what

is more realistic - to contain instructions which initiated

in some environments may loop forever. Partial correctness

amounts to saying: it is guaranteed that provided the

execution of P comes to a normal end the conjecture ~x)

holds. Total correctness amounts to a stronger: it is

guaranteed that the execution of program P will come to a

normal end and that conjecture (x) holds.

The investigations into the extent of the notion of program

correctness led to many useful programming techniques.

Methods of composing programs in such a way that their

correctness with respect to given specifications would be

guaranteed by virtue of construction steps taken were

developed and made quite practical. The key to the success

of these developments was the appreciation of the

calculability of environment transformations effected by the

execution of programming language instructions with

well-defined senantics. This in turn led to a considerable

effort in formulating calculable semantics of programming

languages, and - in due course - to certain preferences in

programming languages themselves.

QO 8

Th~ intuitive approach to programming language design

(wouldn't it be nice if we had such and such feature in our

language) was replaced by a more somber attitude: let's have

in our language only such constructs which have calculable

semantics, and preferably select those whose definitions

make semantic calculations easy.

In recent years, many techniques based on calculable

semantics and on the principle of provable program

correctness with respect to its specification emerged and

found practical applicaton. Even if the practiced version of

a programming technique is not explicitly calculational

(structured programming, stepwise refinement, Jackson method

etc.), their origin is unmistakable and their soundness

depends on the firmly established mathematical theory of

program correctness.

It is often said that the formal methods of program

verification and/or program derivation from specifications

are applicible to small problems only, or less kindly

spoken, toy problems. Two justifications are put forward in

support of this thesis. The first one points out that the

volume of formal manipulations needed to verify a program is

usually an order of magnitude larger than the volume of the

program text itself, which makes this approach impractical

for large problems. The second one questions the basic

premise of the method - the availability of precise

specifications. Both objections are well-founded; the second

one is however much more serious and will be dealt with

somewhat later, in a broader context.

As far as the length of the verification proofs is concerned

we should in all fairness observe that the verification of

an existing program against an existing specification is a

relatively infrequent event. A much more realistic approach

is to use the calculable semantics for deriving the program.

(JO 9

The length of formal manipulations involved is still quite

impressive, but in this case the effort spent on "formal

manipulations" should not be considered as an addition to

the cost of program development. If a programmer develops a

habit of formally deriving programs from specifications,

then all his activities related to program construction,

indeed, the whole problem-so~ving process is carried out by

these formal manipulations. Starting with the necessary

problem analysis and derivation of auxiliary facts, through

structutal analysis, decomposition and linguistic

interpretation (stepwise refinement), and ending with final

expansion (coding) - all these steps, which one way or

another must be present in program derivation, are combined

into a formal derivation of a program. Seen from this point

of view the length of the derivation is a measure of the

effort needed to properly construct the program. As usual,

the derivation may be more or less detailed, some people

learn to perform in their heads longer transformations than

others, but the fact remains: formal derivation of programs

is not any longer than an informal one. It is, however, more

explicit, provides a better documentation and is a whole lot

less vulnerable to a chance mistake or oversight. In a

sense, it is a pity that the published examples of formal

derivations of programs - for dydactic purposes - refer to

very simple problems only: because it is so easy to derive

the specified programs in one's head, an explicit formal

protocol of the derivation seems too long and, perhaps,

unnecessary.

The relationship between a specification and a program is

not a function: given a specification there may be a great

many different programs that satisfy it, i.e. are correct

with respect to this particular specification. If the

specificaliull i~ luu vague, i.e. if it does not capturc !!!
important requirements, a correctly constructed program may

turn out to be not quite satisfactory. This raises'a very

QO 10

specifi cati ons? And if so, what is t.he fr·aml.... of r·pference to

be usedin sue h a ve r i fie a t jon? Wit h t. his p r' 0 b I (' m, howe v e r' ,

we are leaving that part of softwar'e £->ngin{'cring which could

be conveniently called programming methodology, the only

part in whi ch sol i d progress over' the I ast decade can be

reported.

Contrary to a popular bel ief, thC' completeness of

specifications - at least the mathematical completeness _

would not necessarily be an unconditional blessing. Fir'st of

all, it would be very difficult to achi('ve, secondly, it.

would almost invariable amount to overspecification in terms

that matter for the ultimate use of the program.

it COVPI' a vCI'ificat.ion of the

specification must encompass notions quite alien to the

the IN/OUT style of

very naturally to such

initial one: the extended

but this is a relatively minor

bC' formulated in a language much

sorting. (Incidently,

does not lend it.self

specifications,

ri cher' t han that nef'dcd for thp

the specification must

additional

po i nt.)

problem of

specifications

Tn aiming for completeness of specifications great care must

bp excercised that their consistency be preserved.

excluded; simi lal'ly, if it was sppcifil'd that. th(' pr'ogr'ams

shou I d not. USE" more t. han I 01~ ex t ra rnt'mory on top of t.ht> N

c €' I I s n f> e d (' d for t h {' V E' <.: t 0 I' A. 0 b s e r v e, howe v e r', t hat i n

order t.o pxpr('ss such add it i ona I const.ra i nts on thp program,

of pr'ogrammf'rs'extentt.heof

does

issuecontroversial

responsibility:

Deriving a program to meet a giv~n specification, a

programmer is free to use his judgement, r'ely on his

expertise, draw upon available knowledge and recources, make

decisions in all issues that are left unspecified. For

example, a specification may read as follows:

IN: AI, ••• , AN .i s a defi ned sequence of i nteger·s.

OUT: (i) Bl, ••• ,BN is a sequence of integers and

(ii) Bl, ••• ,BN is a defined per'mutation of

AI, ... AN and

(.iii) i<:j ==> Bi =Bj for all 1<:i,j~~N

The inconsistency of spl"'cification is much more harmful than

its incomplvtcness. An incomlete specification can be

satisfied by many different programs, the only danger b~ing

that the one actually df'rived would not meet some

unspecified requirements (while being in full accord with

the specified ones!) An inconsistent specification cannot be

met by any program! (In our example, it suffices to extend

the given specificatjon by the request that the cost of

expcuting the program be less than kN, for fixed k and N, to

make the thus extended specification inconsistent.)

Thus a modicum of incompleteness of the specification is

harmless (and in practice unavoidable), whereas the

inconsistency must be categorically avoided.

The abi 1 i ty to produce corr'ect programs gi ven consi stent

specifications, the ablilit.y gained through caclulable

formalisation of semantics of pr'ogramming languages, has

caused a marked shift of research interests away from issues

specification.

This is, of course, a specification for a sorting program.

The choice of the sorting algorithm is left unspecified, the

programmer' may explore this freedom as he wishes - provided

the program he produces satisfies the given specification.

If the specification wa:s a bit "mor'c complete" and asked,

for instan c e, t hat the cos t 0 f the IJr' 0 g I' am ex c c u l ion s h 0 u 1 d

not exceed kNlogN, a large class of algorithms would be

of programming languages, towards the issues of

QO 11 QO 12

(i) syntactic rules,

(ii) semantic equations.

jhere are several ways in which this relatively new research

topic is likely to produce results important for practical

work. (In some 6f these directions considerable progress has

already been made, and practically significant results and

techniques are available.)

The directions closest to the traditional programming

activity is that of formalisation of program-objects

specification (such as data types, modules, monitors etc.).

In fact, the methods of specifying these objects are so

closely related to programming techniques, that frequently

they are considered simply as parts of programming

methodology. Yet, it is worthwile to observe that the same

techniques may be applied to specification of objects not

necessarily related to programs.

In the briefest possible exposition, one

an abstract data type is specified by two Several projects are currently under way trying to combine

various specification techniques into specification

languages, or more precisely, into software specification

languages.

Similarly, the techniques used for specifying active

software components, such as modules, monitors, and classes,

can probably be used for specification of simulation

software. In fact, since most of the work in this direction

is based on the original contributions of SIMULA 67 - a

language initially intended for programming simulation

computations - using these techniques for specification of

simulation software would in a sense complete a full cycle

of development, which is always intellectually pleasing!

bases can be used to faithfully (well, sufficiently

faithfully) represent almost anything of interest in

buisness data processing, I see no reason whatsoever why the

abstract data type specification techniques could not be

applied to specification of software, e.g., for management

information systems. (Indeed, some experimental results in

this spirit have been reported in research publications.)

typedataabstracttheexample,

sets of formulae:

Consider, for

specifications.

could say that

The syntactic rules describe the morphology of objects of

the type being defined and the syntax of spectfied

operations acting on these objects; the semantic equations

express - in calculable fashion - the properties of objects

and operations. The publicised examples relate to well-known

program objects (stacks, queues, tables, etc.) but the very

same technique can be applied to specification of any

objects that can be abstractly viewed as many-sorted

algebras. In fact, since there is no fundamental reason why

this technique could not be applied to, say, data base

specification and since (as we are repeatedly told) data

The most important advantage of specification languages

based on formal specification techniques would be the

availibility of an extensive calculable apparatus enabling

the verification of software produced according to the

specifications expressed in such languages. Let me once more

stress the importance of such an apparatus. Unless the

notation of satisfaction is formalized, it cannot be made

calculable. And unless we have a calculable means of

establishing whether a piece of software satisfies the

specification, we are on the very shaky ground of debugging,

test-case verification etc., which never leads to foolproof

assurances. Recall that it was the introduction of

calculable semantics of programming languages ~hat made

QO 13 QO 14

possible a satisfactory interpretation of the program

correctness problem, and, as a consequence, led to

programming methods that guarantee the program correctness.

Another - and in a way no less important - advantage of

formalized software specification languages rests in the

ease with wich they permit the construction of assorted

aids, facilitating the process of programming by performing

a host of clerical functions (cross-referencing, indexing

etc.), by executing various checks (inconsistency of

interfaces, use/define matches etc.) and - in some instances

by simulated "execution" of specified, but not yet fully

programmed, software. Especially in large software projects

such aids reduce the burden of ancilary functions on

programmers and thus increase their productivity by allowing

a less diluted concentration on main tasks. Again it should

be stressed that the formalisation of the specification

language (both of its syntax and semantics) is the crucial

factor in determining how extensive a set of aids can be

constructed.

Another direction of research on specifications concerns

operation on specifications, such as extending a

specification by additional requirements and joining two

specifications into one. Such operations closely correspond

to situations frequently encountered in practice; in fact,

as we shall see in a moment, manipulations with

speci~cations are about the most important tool in software

engineering. In order to attach meaning to results of

formally defined operations on specifications, a suitable

formal view of specifications had to be established. This

was accomplished by considering specifications as algebraic

theories, in which case the theory of categories provided

the necessary framework. Burstall's language CLEAR has been

explicitly designed for describing sp~cifications as

theories and for programming operations on them.

QO 15

All the so-far discussed research directions on

specification issues implicitly assume that the

specifications are the ultimate source of inspiration for

software. This view is clearly inadequate for practical

applications, where the utimate source of inspiration is a

need felt by the customer, a need usually poorly articulated

and nearly always expressed in terms far removed from

program-oriented terminology.

Theoretically, we could argue that the steps necessary to

convert such a nebulously formulated need into a

specification for a software (system) do not belong to

software engineering. Personally, I do not subscribe to this

view. First of all, if the pre-specification steps are

excluded from the scope of software engineering we shall not

have any rea] control over their quality, and there is very

little sense in making an effor·t to produce high quality

software hanging on low quality specifications. Secondly, it

is in the link between the customer's needs and

specifications that the most troublesome aspects of software

engineering have their roots (as we shall see in a moment).

Thirdly, an interface between the pre-specification problem

analysis and the specification must be established: if we

admit that the former is quite informal and the latter ­

formal, the interface could be extremely akward.

One way of extending the software engineering towards the

analysis of customer's needs consists in providing

semi-formal tools (such as, e.g. SofTech's SADT) to be

applied to the analysis of customer's requests expressed in

his language. The use of such tools imposes certain

discipline on thp formulation of the need, mostly syrlLactic

and structural, thereby establishing syntactic r'plationships

between various structural entities. Roughly speaking, on

sucessful application of such various tools we get a

(JO 16

counterpart of syntactic rules of algebraic specification,

albeit sometimes expressed in a form much less convenient

for subsequent manipulations (in the case of SADT we get a

pictorial presentation of syntactic rules). The semantic

equations are not so easy to obtain by semi-formal analysis.

One can point out an analogy of a sort between the

semi-formal requirements of analysis and flowcharting as a

means of program design. It certainly is a step forward with

respect to totally informal (unstructured) analysis, but

without formalisation of corresponding semantic notions we

are still left without means to verifiably establish the

correctness of our proceedings. It should be observed that

the commercial success of semi-formal techniques in

customers' problem analysis provides an empirical proof of

the practical recognition of advantages extending software

engineering outside the specification/program bracket.

An alternative approach to the analysis of customer's

problems has been motivated by considerations of software

evolution. It is a well-known fact that software systems in

continuous use over extended periods of time evolve. The

causes of evolution fall roughly into two categories:

internal and external.

Internal causes of software evolution include two major

classes:

- corrections

- improvements.

Corrections are such software changes that remove discovered

errors~ i.e. violations of the satisfaction relationship

between an existing specification and an existing program.

Theoretically, if the software is correct with respect to

QO 17

its specification, no corrections are necessary. In

practice, they do occur, just as errata are occasionally

necessary to texts of mathematical proofs.

Improvements are such software changes that leave the

satisfaction relationship ~etween the existing specification

and program intact and exploit the freedom left by the

specification in order to bring about advantages that cannot

be described in the linguistic system employed for the

specification. A typical improvement is the replacement of

an algorithm be a less complex one or by a "faster" one.

External causes of software evolution may be also classified

into two groups:

related to the change of programming environment,

- related to the change of specification.

A change of programming environment occurs e.g. when the

hardware system is extended by a new component or a new

hardware facility is added that extends the repertiore of

programming means of expression. A more radical change of

programming environment is caused by replacement of

hardware, in which case (all or some) programming means of

expression lose their hardware interpretation. An extreme

case of programming environment change is a switch over from

one programming language to another, or from one operating

system to another, or from one manufacturer's hardware to

another's. It should be observed that:

(i) a change in programming enviromnent does not

necessarily involve a change in software (e.g. we

may ignore an added hardware fa~ility), in which

case the situation is roughly similiar to that of

internal improvements,

QO 18

(i i) if the change of programming environment is

forcing a change in software, such change is to

be effected under the invariance of

specification, excepting the somewhat ludicrous

cases where the specification contains the

explicit request that products of ABC company are

to be used.

modification activities are constantly

wasteful and poorly managed. It would be

speak of specification maintenance in the

internal causes of software evolution and in

change in programming environment, and to

spade in case of specification changes.

challenged as

much better t.o

presence of

the case of a

call a spade a

Thus we have isolated the only kind of software change that

is caused by an as it were spontaneous change in

specifications. Why should a specification change at all?

Well, there are several rea~ons:

Two symmetrical errors, commonly committed, contribute to

the bad reputation of software evolution:

(i) forgetting to maintain the specification when

software is changed for internal reasons,

(i) the original specification

customer's needs,

poorly captured the (i i) specifying

certain that

consistent.

software changes without making

the resulting specification is

(ii) the customer changes his mind,

(iii) the use of the system changed the customer's

environment in such a way that his needs have

materially changed.

In the professional jargon, the activity of changing the

software is circumstantially called "software maintenance".

It is a particularly absurd choice of terminology to speak

of software maintenance when we mean software changes;

unfortunately it is being done all the time! The use of this

mi snomer is also exceptionally har·mfl.ll from the

psychological point of view: it is subconsciously expected

that any maintenance should be relatively inexpensive (in

comparision with the original investment). Software

"maintenance" being anything but inexpensive~ the software

All, who ever participated in a

developent project, are well familiar

these, more often - with all.

significant software

with at least one of

An often encountered variation of the second error constists

in making software changes when the customer's needs have

changed, without bothering to modify the specification at

all. This practice is supported by the befief that "software

models the application", hence if the application changes,

the software should change accordingly. In fact, the

software is related to an application through the

specifiction, and if the verb "to model" is to be used in

its technical sense, then software models its specification.

Thus if we want to stabilize the software evolution, we must

jealously maintain the specification-software relationship,

and allow such software changes only which either werifiably

preserve this relationship under invariance of the

specification, or re-establish this relationship when the

specification has been modified in a consistent way.

The relationship between the specification and software

being thus promoted to the role of main concern of the

programmer, how do we envisage the pragmatically important

QO 19 QO 20

The ensuing change of the specification must be effected in

a formal system in which the specification is written and

the modified specification must be checked for consistency.

At this stage some changes may be rejected, others may cause

us to think very seriously if it is really worthwile to

introduce them (if the resulting modifications of the

specification are massive, the work involved in changing the

software may be expected to be similiarly extensive.)

When the specification is changed and thus the satisfaction

relationship between the specifications and the application

domain model is re-established , a crucial decision must be

taken: to modify the software (because it does not model the

specification any more) or to construct a new software. This

unavoidable decision is in the considered arrangement

somewhat less arbitrary than in other set-ups because it is

prededed by a full-scale formal modification process

In addition to the methodological advantages, the proposed

arrangement may be used as a framework in which stable

evolution of software may be clearly monitored, and thus at

least some calamities may be prevented. Indeed, assume that

the customer feels a need to modify the software. This need

must be expressible as a change in the application model (no

other means of articulation is admitted, or to put it

bluntly: all other means of articulation of the customer's

wishes are simply dangerous and should be disregarded). Thus

a modification of the application'model is considered as the

only possible source of the initiative for software change.

We may safely assume that such modification violates the

existing relationship between the specification and the

application model. (Even if the specification/application

relationship is not broken there may be a valid reaso~to

change the specification - it just has been demonstrated

modifications!)

to application domaininsensitivetooisitthat

link between the customer's needs and the - necessarily

formal specification? In order to achieve a pleasing

symmetry and a simple, conceptually unifying treatment of

both considered environments (the program environment in

which a program models a specification, and the application

environment) I suggest that the particular application be

considered a model of the specification in the application

domain. In this way, formally at least, the relationship

between the particular application and the specification is

exactly of the same kind as the relationship between

specification and software.

The major advantages of such an arrangement come from the

obligation to prove that the application satisfies the

specification. This means that the application must be

presented S6 precisely that such a proof would be possible.

At the same time, it does not mean that the application must

be described in programming terms. The choice of the

language used for application description is left entirely

to the applicatio~ experts, the only requirements being that

it has a calculable semantics, just as the programming

language has one.

Naturally, in the temporal sequence of events, the

specification hardly precedes the application model. In

practice it will be somehow abstracted from a description of

the application, but the abstraction process (present in all

system design methods) is now verifiable.

Just as there may be m~ny programs satisfying any given

specification, many applications may fit a given

specification. The freedom left by the specification in the

application domain is now a measure of how precisely the

specification captures the customerl~ needs. If, with a

given specification, one g~~~ coo unrestricted application

models the specification has to be tightned.

gO 21 QO 22

performed on the specification.

Most importantly, if the specification changes are expected,

the construction of software may be subject to certain

rigours, making subsequent specification-directed

modifications of software easier. (Modularity, seperation of

concerns, splitting a specification into covering

"subspecifications".) A particularly promising technique

consists in anticipating (at least some) changes in

specification, cataloging them and providing - a priori ­

algorithms for changing the software so as to incorporate

any of the catalogues specification changes.

QO 23

REFERENCES

(The references listed here are recommended as "further

reading" on topics discussed here in this paper.)

Berg, H.K. and Giloi, W.K. (Eds.): The Use of Formal

Specifications of Software. Informatik-Fachberichte ~

(1980), Springer-Verlag.

Bjorner, D. (Ed.): Abstract Software Specifications. Lecture

Notes in Computer Science~ (1980), Springer-Verlag.

Floyd, C. und Koptez, H. (Hrsg.): Software Engineering ­

Entwurf und Spezifikation (1981), Teubner.

Jones, C.B.: Software Development - A Rigorous Approach

(1980), Prentice-Hall.

'Lehman, M.N.: Programs, life cycles, and the laws of

software evolution. Proc. IEEE ~ (1980), 1060.

Turski, W.M.: Software Stability. 1lLSystems Architecture,

Proc. 6th ACM European Regional Conf. (1981), London.

QO 24

	Some Problems of Software Engineering

