
A Comparison

of

Relational and Network

Data Base Management Systems

as Implemented on

the

HP/3000

by

Thomas R. Harbron

and

Christopher M. Funk

July 1981

Christopher M. Funk & Co., Inc.
22 North Second Street, P. O. Box 1249
lafayette, IN 47902
(317) 423-2644

L3 1

INTRODUCTION

Motivation

The "software crisis", which has been generally recognized in the last
ten years, has created the need for tools that allow programmers and users
of computers to be more productive. The traditional tools (compilers,
editors, file systems, etc.) are not adequate to keep pace with the grow
ing power of computers and the expectations of those who use and pay for
them.

Consequently, the past few years have seen a multitude of products
introduced which claim to improve programmer productivity or, in a few
instances, eliminate the need for programmers, or at least coders. Spec
ifically, in the HP/3000 product line, Image, Query, DEL, KSAM, and V/3000
have been introduced by HP. Outside vendors have added to this list with
products which, while frequently improving on the HP products, are more
imitative than inovative. For example, there are several "Query like"
products available from independent vendors which extend the functions
of Query and remedy several of its obvious deficiencies, but do not offer
a fundamentally different kind of tool.

More recently, several inovative tools have appeared on the market.
Among these are two relational database management systems,' Relate/3000 1

and Rel*Stor. The inovative aspect of these products is that th~y are
based on the relational model rather than the network model of Image.

Objec tives

The purpose of this paper, and the study on which it is based, is to
compare these products with Image both in concept and implementation to
determine the strengths and weaknesses of each. The goal is to select one
of the three as the basis of further development of software tools.

The authors do not presuppose that one of these products will be
clearly superior to the others or that one would be the best choice under
all circumstances. However, this study should serve as the basis for a
rational decision.

To do a thorough analysis of these products, one should probably use
each for a year or more in a variety of applications. Since this is not
feasible, the authors have elected to evaluate them on the basis of:

1. The published specifications and user manuals;

2. The mapping of a small, but demanding database onto each system;

3. Performance on the HP/3000 as indicated by carefully ci.)St<'" ~~sts.

L3 2

The adjective "logical" will be applied to the terms field, record, key,
and file when discussing the corresponding parts of the models.

Relationship - a logiaal connection between entities. For example,
be~een a parent and children, or between a vendor and
purchase orders to that vendor.

This analysis is further complicated because:

1. Both Rel*Stor and Relate/3000 are still under development with modules
and features not yet implemented;

2. Their manuals are likewise under development, and not always in step
with the product;

3. One product (Rel*Stor) was not made available for testing.

File - the physical representation of a group of similar
entities consisting of the records representing
those entities.

Therefore, the reader should be cautioned not to accept this study as
the last word on these products.

A "standard" database problem will be used as an example throughout the
remainder of this paper. This problem is a simplified accounting system.
The entities and their attributes are as follows:

BACKGROUND
Entity

Department

Attributes

Dept n - a unique number assigned to each department.

Da tabase Models Dept name - the common name of the department.

Attribute - a characteristic of an entity. Only attributes
of an entity can be stored, not the entity itself.

These three models are known as the network model, the hierarchical
model, and the relational model. Virtually all database systems are based
on one of these three models. Moreover, an important step in designing a
specific database is modeling it in one of these three forms.

Most authors 2 - 7 list three different models for databases. These are
idealized models of how data is naturally structured and do not consider
questions of implementation or efficiency. Rather, the models are based
on mathematical principles.

Each form has its own peculiar strengths and weaknesses. These are
discussed briefly below. One problem found in discussing models and data
base systems is that each, generally, has a unique vocabulary. This is
confusing enough when considering them one-at-a-time. When three models
and three systems are discussed in one paper, it is hopeless. Therefore
a "generic" vocabulary will be employed here as listed below. The authors
apologize to those who may find these terms imprecise or contrary to
standard usage:

CR Account 0 - the number of the account to which this
transaction is credited.

Amount - the dollar amount of the transaction.

YTD debit amount - the total dollar amount of all
transactions debited to this account.

YTD credit amount - the total dollar amount of all
transactions credited to this account.

Expense description - a descripti~n of the expense
type.

Exp g - a unique number assigned to each expense type.

DB Acoount , - the number of the account to which this
transaction is debited.

Budget amount - the dollar amount budgeted for this
account.

Date - the date of the transaction.

Account 0 - a unique number assigned to each account,
consisting of a dept g concatenated with an expense
number.

Dept head - the name of the manager of the department.

Expense

Account

Transactions

- the physical representation of an attribute.

- the physical representation of an entity consisting
of the fields that hold the attributes of that entity.

- an object or "thing" about which information
is stored in a database.

Field

Entity

Record

Key - a set of attributes that distinguishes one entity
from other similar entities.

Reference - the account reference of the transaction.

-2-
L3 3

-3-

Network Model

The network model is characterized by logical files, each of which
represents an entity type. The logical files are connected by relation
ships that show how entities in one logical file are related to entities
in other logical files.

The relationships are usually restricted to one-to-N or l:N types.
This means that exactly one entity in one logical file is related to
N(zero or more) entities in another logical file. This is customarily
noted by an arrow pointing from the "111 entity to the "N" entity. For
example, a department entity may be related to many accounts while an
account entity must be related to exactly one department.

More than one relationship may exist between two entities. For
example, each transaction is related to exactly one account as a IIcredit
account" and to exactly one account as a "debit account." This is done as
two l:N relationships from account to transaction.

A convenient way to represent a network model is by a "data structure
diagram. II Such a diagram is shown in Fig. 1 for the accounting problem.
Note that entities are usually_~inked together by a shared attribute value.
The name of the shared attribute is shown on the arrow in the diagram.
The underlined attributes are keys.

Notice that some of the attributes appear in parentheses. These are
the same attributes that are used for the relationship linkage. Thus,
it is redundant to show them as attributes; however, this is done in
parentheses for logical completeness.

The network model.is probably the most general of the three models.
The network formed by the relationships can take on any topography and
the links show the entity relationships. The other models are more
restrictive.

Hierarchical Model

The hierarchical model is, structurally, a subset of the network model;
i.e. any hierarchical structure can be built under the rules of the network
model. The difference is that additional constraints are imposed on the
hierarchical model. These have to do with the relationships between enti
ties and are as follows:

1. There is a unique entity type called the "root" where the hierarchical
network begins.

2. Each entity, except those in the root, has exactly one "parent." A
parent is another entity of a different type at a higher level.

Automobile

Figure 2

The account example does not map easily into the hierarchical model
because both the lIaccount" and "transaction" entities have multiple parents.
A better example is the bill of materials problem shown in Figure 2:

3. Each entity, except those at the lowest level of the hierarchy, may
have multiple "children." A child is another entity of a different
type at a lower level.

Block

- -- -- .- _.._-
Dept 0, Deptname, Exp II,

Depthead Expense description

i ept

--

rxp j

(Account 0), Budget amount,

YTD credit amount,

YTD debit amount

,nt 01
Transactions

lDB j

(CR Account #),(DB Account 0)

Amount, Date, Reference

Figure

-4- L3 4
-5- l3 5

The hierarchical model is rightfully popular in situations where the
data is naturally hierarchical. Otherwise, most of its usage seems to
result from the dominance of several early database management systems
based on this model. Many problems, including our elementary accounting
example, would require unnatural restructuring to fit this model.

Relational Model

Normalization

This is one of the most important and poorly understood steps in
designing a database. Normalization is essentially the process of dis
covering and isolating the entities represented by the data. There are
three levels of normalization and the topic is discussed by most authors 2 - 7

with varying degrees of clarity. Atre 2 present~ ~n unusually lucid dis
cussion of normalization.

A simple list of the attributes of each logical-record type, with an
indication of the keys is sufficient to describe a model. For example,
the following describes the relational model of the accounting problem:

While the network and hierarchical models are similar to each other,
the relational model is totally different from them. The database con
sists of multiple logical files (called relations). Each logical file has
one or more keys by which the logical records may be retrieved. There are
no entity relationships of any kind connecting the logical files. The
entity relationships can only be determined by comparing values of attrib
utes of different entities. 8

Logical File

Department

Expense

Account

Transaction

Attributes

Dept 0, Deptname, Depthead

~, Expdesc

Acct il, Budamt, YTDCR, YTDDS

CRAcct 0, DBAcct H, Arnt, Date, Ref

Normalization is nearly always presented in mathematical terms which,
unfortunately, discourages some from investigating it further. A complete
discussion is beyond the scope of this paper. However, normalized data
will have the following advantages over intuitively designed, or unnor
malized data:

1. Numerous types of insertion and deletion anomalies will not occur.
These anomalies are of the type where the insertion or deletion of one
entity has an unexpected or undesirable effect on another entity.

2. All entities will be readily accessible. Functions thought of after
the database is designed will not require restructuring of the data
base.

3. A higher degree of data independence is possible. Programs are less
likely to need change as the database is changed.

Neither the models nor the database systems have any way to enforce
normalization. However, failure to normalize the data will inevitably
create serious problems.

Notice that transaction has two keys. Multiple keys are allowed i~ the
relational model.

This model is unquestionably the simplest in appearance, and that is
probably its greatest strength. It also has a firm mathematical founda
tion. Some authors 9 regard it as the most fundamental of the three models.
However, it is probably the least implemented model because of two problems.

The first is a flaw in the model - the lack of explicit entity rela
tionships. This can lead to what are called "insertion anomalies" and
"deletion anomalies." For example, if a transaction is inserted~ in our
accounting problem, for which no credit account exists in the account
logical file, the model will accept it. Likewise, a dep~rtment could be
deleted, thus "orphaning" the accounts associated with that department.
Thus the rules necessary to avoid tbese anomalies must be imposed extern
ally to the model.

The second problem is not so much with the model as with the implemen
tations. The model makes it easy to request operations which are logically
simple, but which require considerable resources and time to execute.
Thus relational systems have earned a reputation for inefficiency.

Mapping is a series of transformations on the structure of the data
base from its inception to the 'final, physical, database: There are five
states in which the data is structured:

1. Initial data description

2. Normalized data description

3. The database model

4. The schema

5. The database

The mapping from the initial form to the normalized form is called
"normalization" as described earlier. Normalization actually includes
three separate transformations.

The mapping from the normalized form to the model is frequently accom
panied by some compromises. If, for example, a hierarchical model is used,

-6-
-7- L3 6

and the data is not inherently hierarchical, an artificial constraint is
placed on the structure. Likewise, it may be necessary to "unnormalize"
the data to some degree to fit the model.

Mapping from the model to the schema is really two activities that
are done in parallel. First, the model must be mapped to the actual
database systems. Some systems will be very close to the model and present
little difficulty. Others may impose either structural or efficiency con
straints which cause the structure to be altered significantly from that
of the model. For example, the two-level limitation of Image requires
compromises from the ne~ork model.

Second, the data structure must be expressed in a form acceptable to
the database system. The form is called a "Data Description Language"
or DOL. All database systems have a DOL. Some have a formal syntax, such
as Image, while others may be conversational, such as Relate/3000. The
data structure description expressed in a DOL is called a "schema."

The final transformation, of the schema into a database, is done by the
database system. In most systems it is automatic with feedback in the form
of error messages, status reports, and statistics.

Implementation Considerations

The following items are factors to consider in judging the merit of a
particular database system. Until the perfect system is developed, some
will always be better than others on specific points. Different users will
weigh these factors differently. However, all should be considered before
~ selection is made.

1. Mapping: What constraints are imposed when mapping from the model to
the schema? Do significant changes have to be made? Are some things
allowed, but not done because of performance considerations?

2. Data Manipulation Language (DML): The DML is the form in which requests
are transmitted to the database system. Is the DML powerful? Is it
easy to understand? Is it flexible? Can it be used from an applica
tion program? Is there a "stand-alone" mode?

3. Performance:

a) Run efficiency: Are efficient search algorithms used? Is response
time good? Are (logically) unnecessary accesses to secondary
storage required?

b) Storage efficiency: Is most storage SP3C~ used for data? Do
indexes, pointers, or other "non-data" items use up excessive
space?

4. Concurrency: Has adequate thought been given to th~ problem of multiple
users updating the database? What penalties or complications arise
from shared access?

5. Restructuring: What needs to be done to change the database structure?
What resources are required? What effect does restructuring have on
eXisting applications? What must be done to initially load the data
base?

6. Security: How well protected is the data from unauthorized access?
At what level or levels is security imposed: database, file, record,
or item?

7. Integrity: Is the database prone to develop internal inconsistencies
(broken chains, missing records, etc.)? Do aborts or crashes cause
problems? What provisions are there for checkpointing (back-up copies)
and journaling (transaction logging) and recovery?

8. Data Independence: Are application programs isolated from the physical
storage considerations? Can changes be made in the physical or logical
structure of the database without changing existing programs?

These implementation considerations, together with the strengths and
weaknesses of the model on which it is based, will be used to judge each
of the systems considered in the next section.

Three Implementations

This section of the paper will consider three database systems: Image,
Relate/3000, and Rel*Stor. For each of these systems, the strengths and
weaknesses of the model and the implementation considerations will be dis
cussed. Finally vendor information will be provided.

Image/Query

Image
10

is based on the network model. As such it enjoys the benefits
of explicit entity relationships of the I:N variety, and even extends the
concept by allowing the N entities to be ordered by the value of an attrib
ute of that entity.

The DOL uses a formal, but concise, syntax. The mapping is straight
forward with one glaring exception: a logical file (called a "set" in
Image) cannot both be on the "1" side of some entity relationships and on
the "N" side of others. This limits the system, physically, to two levels.

The problem is caused by the distinction between two kinds of files:
masters and details. Masters are direct access files where a record is
located by hashing on a single key. The hashing algorithms arc effectively
implemented and work with good efficiency. Detail files are essentially
sequential-chronological files. Entity relationships are implemented using
pointers to form a linked list or "chain" linking all related record~.
Each chain starts and ends on one record in a master set. The chain links
any number of records (64K maximum) in a detail set. One master record
may originate up to 16 different chains. One detail record may be linked

-8-
l3 7

-9-

l3 8

into as many as 16 differe~t chains. Detail records are normally accessed
by following a chain from a master record. Sequential access is possible
for both master and detail records.

<<DEPT fJ»
«EXP 11»
<<DEPARTMENT NAME»
<<DEPT HEAD'S NAME»
«EXPENSE DESCRIPTION»
<<BUDGET AMOUNT»
<<YEAR-TO-DATE CREDIT TOiAL»
<<YEAR-TO-DATE DEBIT TOTAL»
«ACCT n• DEPTDEXPO»
«CREDIT ACCT I»
<<DEBIT ACCT 0»
<<TRANSACTION AMOUNT»
«TRANSACTION DATE»
<<ACCOUNTING REFERENCE»

X4;
X4;

X20;
X20;
X20;

12;
12;
12;
X8;
X8;
X8;
12;
12;
X6;

The schema for this data base is 8S follows:

required to circumvent the two-level problem. This requires redundant
storage and additional access to secondary storage.'

BEGIN DATA BASE ACCTOB;
PASSWORDS: <<NONE»
ITEMS:

DEPT,
EXP,
DEPTNAME,
DEPTHEAD,
EXPDESC,
BUDAMT,
YTDCR,
YTDDB,
ACCT,
ACCTCR,
ACCTDB,
AMT,
DATE,
REF,

Expense

Expensedesc.

I Exp iJ,
Depthead

fI, Deptname

Department

The two-level structure causes difficulties, and requires compromises
when mapping from model to schema. For example, the following data struc
ture diagram represents the Image implementation of the accounting problem.
Trapezoids are used to represent master sets while rectangles represent
detail sets. Chains are represented by solid arrows while logical rela
tionships (implemented programatically) are shown by broken arrows.

]J§'8.t_l! .. j:~e. J~
Budgetamt, YTO CR amt,

YTD DB amt

I Acct 0

SETS:
NAME: DEPARTMENT, MASTER;

ENTRY: DEPT(l),
DEPTNAME,
DEPTHEAD;

CAPACITY: 23;

Account Indx
NAME: EXPENSE, MASTER;

ENTRY: EXP(l),
EXPDESC;

CAPACITY: 23;

NAME: ACCOUNT, DETAIL;
ENTRY: DEPT (DEPARTMENT),

EXP (EXPENSE),
BUDAMT,
YTDCR,
YTDDB;

CAPACITY: 100;

Date, Ref NAME: ACCOUNTINDX, MASTER; «LOGICALLY PART OF 'ACCOUNT'»
ENTRY: ACCT(2);
CAPACITY: 101;

Figure 3

The broken underlines indicate that the underlined data item is a key
only via the associated master. Image, however, requires that such fields
be physically present in spite of the logical redundancy.

The ACCOUNT and ACCOUNTINDX sets are logically the same, but two are

NAME: TRANSACTION, DETAIL;
ENTRY: ACCTCR (ACCOUNTINDX),

ACCTDB (ACCOUNTINDX),
AMT,
DATE,
REF;

CAPACITY: 6000;

«CREDIT ACCT #»
«DEBIT ACCT #»

END.

-10-
l3 9

-11-

L3 10

A variety of data types may be defined in the DOL. These are:

16 bit signed integer
32 bit signed integer
64 bit signed integer
16 bit unsigned integer
32 bit floating point
64 bit floating point
Character string
Zoned decimal
Packed decimal

No provision is made to add user defined data types.

Image's DMl consists of procedure calls which are compatible with all
the standard languages. A summary of the procedures and their functions
appears in Figure 4. An application program called uQuery" is supplied
with Image. II This program can be used interactively to access a database.
It also serves as a report generator. Its usefulness is limited by its
inability to look at more than one file at a time. However, it works very
well otherwise and is simple enough to be used by non-programmers. Manip
ulations such as sorts and totals may be specified.

The run efficiency of Image is generally good. Performance problems
are usually the result of design errors. For example, adding a detail
record to a long ordered chain requires a sequential search of the chain.
If there are 1000 detail records on the chain, 500 of them will (on the
average) have to be read to determine the logical placement of the new
record. Normally this would require 500 disk accesses! Thus, long ordered·
chains should be avoided.

Another source of performance problems can be record-level locking.
Image uses dynamic locking to handle the concurrency. The locking may be
done at the database level, file level, or record level. The lower the
level, the greater the complexity12 and the greater the overhead involved.
The overhead at the database level is negligible; at the record level it
is considerable.

Much of the time, blocking of records does not help reduce disk accesses.
There is a provision to store detail records, that share a chain, in the
order in. which they occur on the chain.. This physical ordering can only b...:
done 3S part of restructuring and is not dynamically maintained. Thus
there is usually a requirement for one physical access for each logical
access.

Insertions and deletions require considerably more than one access.
To insert a detail requires a minimum of four ac~~sses for each chain in
volved as well as the \.,rit~ to put the record Ollt. A deletion will usually
require six accesses per chain.

The designer can consider these factors in mapping the schema and the
resulting Image implementations can be as efficient as corresponding
non-database applications.

PROCEDURE

DBOPEN

DBLOCK

DBFIND

DBGET

DBBEGIN

DBMEMO

DBPUT

DBUPDATE

DBDElETE

DBEND

DBUNlOCK

DBClOSE

DBINFO

DBEXPLAIN

DBERROR

DBCONTROl

FUNCTION

Initiates access to a data base. Sets up user's access
mode and user class number for the duration of the process.

Locks one or more data entries, a data set, or an entire
data base (or a combination of these) temporarily to
allow the process calling the procedure to have exclu-
sive access to the locked entities.

locates the first and last entries of a data chain in
preparation for access to entries in the chain.

Reads the data items of a specified entry.

When logging, designates the beginning of a transaction
and optionally writes user information to the logfile.

When logging, writes user information to the logfile.

Add new entries to a data set.

Updates or modifies the values of data items that are
not search or sort items.

Deletes eXisting entries from a data set.

When logging, designates the end of a transaction and
optionally writes user information to the logfile.

Releases those locks obtained with previous calls to
DBLOCK.

Terminates access to a data base or a data set, or resets
the pointers of a data set to their original state.

Provides information about the data base being accessed,
such as the name and description of a data item.

Examines status information returned by an IMAGE pro
cedure that has been called and prints a multi-line
message on the $STDlIST device.

Supplies an English language message that interprets the
status information set by any callable IMAGE procedure.
The message is returned to the calling program in a
buffer.

Allows program operating in exclus!'/e mode to enable or
disable the "deferred update" option.

Figure 4

-12-
L3 11 -13- L3 12

The storage efficiency of Image is generally good, but again there
are exceptions. Each chain requires 10 bytes for chain information in
each master record, and 8 bytes in each detail record. \lliere several
chains are involved this can become significant. Where the amount of
data per record is small and the number of chains is high, the total stor
age required can be several times that required by the data. However,
this is not typical. A modest "root file" is required to contain the
schema and statistical information, but this is negligible in size.

As nbted above, concurrency is handled by dynamic locking at several
different levels. As with any dynamic locking situation, care must be
exercised to avoid lockouts or deadlocks. Experience has shown that a
dozen or so interactive users can share access to a database locking at
the database level without serious contention problems. Hore can probably
be accommodated with lower levels of locking.

Restructuring of an Image database is awkward at best and nearly im
possible at worst. Essentially, fields may be added to records, and
existing fields may be redefined. The maximum capacity of files may be
changed, and chains may be added or deleted. Sometimes, but not always,
new files may be added.

Restructuring is done with the utilities DBUNLOAD and DBLOAD. DBUN
LOAD dumps records from the old database to magnetic tape. The old data
base is then purged and the new one is created from the revised schema.
DBLOAD then loads the data from the tape to the new database. All poin
ters and chains are built anew by DBLOAD and the process can be very slow.
The new database must be very similar to the old as no structure infor
mation is carried on the tape.

Security is very good with Image. In addition to the MPE file security,
Image has an internal security mechanism that is very flexible. Up to
63 user classes, with associated passwords, may be defined. For each file
and/or field, it is possible to specify which classes are allowed read
access and which are allowed read/write access. All other user classes
have no access. Image files are "privileged files" and cannot be accessed
except through Image or by a privileged mode user.

The integrity of Image is unusually high. Crashes seem to cause a
problem only when caused by a catastrophic hardware failure. Even then
the problem can usually be fixed by deleting and replacing the record(s)
involved. At worst a DBUNLOAD/DBLOAD will repair all structural damage.

Checkpointing can be done easily by using the utilities DBSTORE/
DBRESTOR. These dump the files, with pointers, to tape and from tape to
disk. Since no restructuring is done, they are very fast and efficient.

Journaling may be done with the transaction logging feature of Image.
A utility is available to process the logged transactions to a check
pointed version of the database to recover all processing.

The degree of data independence can vary widely depending on the
application programs themselves. At the low end of the spectrum, a pro
gram can, on a DBGET, request a physical record. At the other end, it can

request the specific fields wanted and the order in which they are deliv
ered. A useful option is that of asking for the same list of variables
used on the previous access of that file. This permits a logical "view"
to be defined by the initial access(es). Thereafter the program sees this
same view.

Image is structured as a set of user-callable procedures and several
utilities plus Query. The utilities are only needed to restructure or
recover the database and are not used for routine functions. All proced
ures are part of the application program's process. However, an extra
data segment is created for each database that each process has open. In
addition, all processes using a database share an extra data segment that
serves as a common buffer and locking mechanism.

Image is a well established product and is nearly error free. It is
available from:

Hewlett-Packard Co.
19447 Pruneridge Avenue
Cupertino, CA 95014

Relate/3000

Relate is based on the relational model. Thus it enjoys the benefits
of s'implicity at the expense of losing the explici·t entity relationships
found in the other models. It is an unusually faithful implementation.
with all standard features.

The DDL is conversational and informal. No "database" per se is defined.
However, files (called relations in this model) are defined along with the
name, and internal and external description of each field. These descrip
tions are stored in the "user label" area of each file. Thus the files
are independent of one another. A database consists of those files a user
has open at any given time.

Host relational systems provide for two types of relations or logical
files. A "primary relation" is a permanent part of the database and is
usually implemented as a physical file. A "derived relation" is one
created during the run of an application and is usually not permanent.
These derived relations are of two kinds: a "snapshot" is usually created
by copying data from a primary relation to a new file. Thereafter it is
independent of the original data. An "evolving view" is a rule that says
how the derived relation is formed from the primary relations. The data
remains in the primary relation.

Relate allows snapshots to be created at any time. In addition, evolv
ing views may be created in two ways. A temporary, core resident view may
be specified with the SELECT command. A permanent evolving view may be
specified by the CREATE VIEW command. These are stored in separate, short
files which contain the definition of the view, but no data.

-14- L3 13 -15- L3 14

A file (or relation) is created by the CREATE FILE command while keys
are specified by the CREATE INDEX command. Examples of these commands are
perhaps the most concise way to describe the DDL. The accounting problem
will be used in these examples. Note that file names are limited to seven
characters. Comments are enclosed in brackets { } but are not part of the
session dialog; computer output is underlined:

{Create the department file}
> CREATE FILE DEPART; RECORDS=23
ENTER FIELD NAME, TYPE, LENGTH{.DECIMALS}
? DEPT, ALPHA, 4
? DEPTNAME, ALPHA, 2~
? DEPTHEAD, ALPHA, 2~
"1 !! '
THE "DEPART" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3"~" FILE.

{Create the expense file. Here the description for each field is contained
in the CREATE command}

> CREATE FILE EXPENSE;RECORDS=23;FIELDS~(EXP,ALPHA,4)(EXPDESC,ALPHA,2")

THE "EXPENSE" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3",," FILE.

{A command may extend over multiple lines as follows}
> CREATE FILE ACCOUNT;RECORDS=I"";FIELDS=&
&> (DEPT,ALPHA,4),&
&> (EXP,ALPHA,4),&
&> (BUDAMT,DOUBLE,13;COMMA=YES),&
&> (YTDCR,DOUBLE,13;COHMA=YES),&
&> (YTDDB,DOUBLE,13;COMHA=YES)
THE "ACCOUNT" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3""~ FILE.

{Finally the transaction file is created}
> CREATE FILE TRANS;RECORDS=6"""
ENTER FIELD NAME, TYPE, LENGTH{.DECIMALS}
? DEPTCR,ALPHA.4

"1 EXPCR, ALPHA, 4
? DEPTDB,ALPHA,4
"1 EXPDB,ALPHA,4
? AMT,DOUBLE,13,COHMA=YES
l' DATE,REAL,8;FORMAT="MM!DD/YY"
If REF,ALPHA,6
"1 !I
THE "TRANS" FILE HAS BEEN CREATED AS A PERMANENT RELATE!3""" FILE.

{Next the keys are defined with the CREATE INDEX command. The SET PATH
command defines the "current" file for indexing}

> SET PATH DEPART
> CREATE INDEX BY DEPT;UNARY
TThe "unary" specifies that keys must be unIque}
> SET PATH EXP
>' CREATE INDEX BY EXP; UNARY
TThe following index contains one key formed by concatenating two fields}
> SET PATH ACCOUNT
~ CREATE INDEX BY DEPT,EXP;UNARY

{The following indexes each have ~o keys, each of which is the concaten-'
ation of two items; neither key must be unique}
> SET PATH TRANS
> CREATE INDEX BY DEPTCR,EXPCR
~ CREATE INDEX BY DEPTDB, EXPDB

Each data file has one index file associated with it. Up to nine
indexes may be defined for each data file. All indexes for one data file
are stored in the one index file. The indexes are structured as "B_trees. tt14

The B-tree is a tree structure which neatly solves the problems of making
additions and deletions to the index, and is very efficient for retrieval.
Appendix B of the KSAM manual 15 has a good presentation on B-tree indexes.

Eight different data types may be specified for the fields. These are:

Character String
16 bit unsigned integer
16 bit signed integer
32 bit signed integer
32 bit floating point
64 bit floating point
Packed decimal
Zoned decimal

There is currently no provision for user defined data types, but this
feature is under c~nsideration.

An external format is also specified which has several options and
some nice features. It is not as flexible as the PICTURE clause of COBOL
or the FORMAT statement of FORTRAN, but better than the facilities found
in Query.

The DML consists of ~o parts: commands and procedure calls. By far
the greatest power and flexibility is in the commands. The procedures
provide a better interface for application programs, in some cases, and
somewhat more flexibility. Both commands and procedures may be accessed
from an application program. The commands can also be used with Relate
running as an interactive program as in the examples above.

The diagram in Figure 5 illustrates the program structure of Relate.
The program Relate is the workhorse of the system. It is all that is
needed when Relate is run as an independent program. When Relate is used
from an application program, the "host language interface" library pro
cedures are called by the program. These procedures, in turn, create a
son process which runs the Relate program. All calls to these procedures
are passed to the son process "(Relate) for execution.

-16- L3 15 -17- L3 16

Application
Program

Relate
Procedures

c=J,

Relate
Program

Command

DISALLOW

ENABLE SECURITY

END

EXIT

EXECUTE

HELP

LABEL*

LET*

MODIFY

Function

Inverse function of ALLOW.

Turns on Relate security.

Terminates Relate program.

Terminates Relate program.

Causes Relate commands in a file to be executed.

Displays information about commands.

Prints records in label format.

Makes arithmetic or alphabetic assignments.

Changes the field formats or descriptions for the
current file.

Figure 5

The following table lists the Relate commands with a brief description
of the function of each. These commands may be used in the stand-alone
mode or from an application program.

NOTE

OPEN [~:~~base]
File

PRINT*

The note command begins a comment line.

Opens the named database (Image) or file. "Path" is
an alternate name for a file.

Displays selected data from current file on $STDLIST.
Command

ADD

ALLOW

CHANGE*

CLOSE

COMPARE

CONSOLIDATE*

COPy*

CREATE FILE

CREATE INDEX

CREATE VIEW

DELETE*

DISABLE SECURITY

Function

Adds a record to the current file.

Sets the capabilities of different users.

Modifies record(s) in a file.

Closes files or databases.

Compares contents of two files and selects either
matching or unmatched records.

Creates a subset of the current file.

Copies the current file to another.

Creates a Relate/3~~~ file.

Creates an index for the current file.

Creates an "evolving view" and stores its descrip
tion in a file.

Purges selected records from current file.

Releases Relate security.

-18- L3 17

PURGE INDEX

PURGE VIEW

RECOVER*

REDO

REORGANIZE

SELECT*

SET INDEX

SET PATH

SHOW

SORT*

SUM*

Purges an index from the current file.

Purges the named view.

Restores records that have been logically, but not
physically deleted.

One line edit function for previous command.

Physically removes logically deleted records and,
optionally, changes file capacity.

Creates an "evolving view" and holds it in main memory
for use by subsequent command(s).

Specifies which index is to be used.

Specifies which file is to be used.

Displays information about open files and indexes.

Copies selected records from the current file to
another file in order specified by sort key(s).

Totals one or more fields in selected records.

-19- L3 18

Command Function ways to do this, but the following sequence worked. It was necessary to
create a temporary file similar to ACCOUNT but with different field names.}

will print the records for all people whose names are in the range A-G.

The selection may be further qualified by a "FOR" clause. For example:

~ "A"/"G" PRINT FOR DEPT = "SALES" AND SALARY > 25~~0

> SET FILE PEOPLE
> SET INDEX NAME
> "A"/"G" PRINT

Space does not permit a more complete display of the use of the com
mands. A rather nice demonstration package is available from CRI that
shows more of the commands. A few hours "playing" with the system is also
very instructive.

The programmatic interface consists of the eleven procedure calls listed
in Figure 6. Notice that any of the commands may be used through the RELATE
procedure. A "cursor" is a file control block. Multiple cursors may be
used allowing multiple files to be processed concurrently.

> CREATE FILE TEMP; STRUCTURE=ACCOUNT
tThis creates a file of the same size and with the same field definitions

as ACCOUNT.}
> SET PATH ACCOUNT
'> COpy TO TEMP
TTEMP now contains the same data as ACCOUNT.}
> SET PATH TEMP
>' MODIFY DEPT; NAME:::::DEPTDB
>' MODIFY EXP; NAME=EXPDB
TThe field names in TEMP have been renamed.}
> SET PATH ACCOUNT
'> MODIFY DEPT; NAME:::::DEPTCR
'> MODIFY EXP; NAMEgEXPCR
TThe field names in ACCOUNT have been temporarily renamed. Names of fields

in ACCOUNT and TEMP now correspond to those in TRANS. Next, an evolving
view will be defined as the product of account numbers in these two files,
excluding cases where the two account numbers are identical. These 5112
transactions will then be created with the copy command.}

~ SELECT ACCOUNT.DEPTCR,ACCOUNT.EXPCR,TEMP.DEPTDB,TEMP.EXPDB WHERE&
&> ACCOUNT.DEPTCR <> TEMP.DEPTDB OR ACCOUNT.EXPCR <> TEMP.EXPDB
~ COPY TO TRANS

Blocking factors are automatically chosen, and again, seem to be nearly
optimal. Disk accesses appear to be the minimum possible in most cases
tested.

The other source of low efficiency has been the indexing system. The
B-tree structure has solved this nicely and this particular implementation
is nearly optimally efficient. For example, a new index was ,created for
the TRANS file of 5112 records in 78.5 seconds of CPU time. This works
out to 15.4 milliseconds per record which is excellent.

The big problem with relational systems has always been run efficiency.
Part of the problem comes from the apparent simplicity of the model - it
is very'easy to give a logically simple command that requires enormous
resources. One of the authors, while experimenting with Relate, inadver
tently gave a command that required 723 = 373,248 logical file accesses.
It required about 40 minutes to execute and, but for good blocking effic
iency could have required much longer. A better way was found to do the
same function in a few seconds.

Merges selected files.

Specifies terminal characteristics.

Sets global parameters.

UPDATE

TERMINAL

SYSTEM

Again referring to the accounting problem the following dialog illus
trates the power of some commands. As before, comments are in brackets,
computer output is underlined.

Those commands marked with an asterisk in the table above allow subsets
of the records in the current file to be selected in either or both of two
different ways. The first is by a range or ranges of values of fields that
are indexed. For example:

will print the records for all people whose names are in the range A-G, who
work in the sales department, and whose salary is greater than 250~~. Both
ranges and FOR conditions may be compounded.

{Next, a SELECT command is used to define an evolving view that combines
data from two different files. The COPY command then copies this view to
another file.}

> SELECT DEPART.DEPT,EXPENSE.EXP
TThis will select the dept n from the department file and the exp n from

the expense file. There are 8 records in the department file and 9 in
the expense file. A total of 8x9=72 combination& are possible, and that
many records will be copied by the next command.}

> COPY TO ACCOUNT
TWe now have 72 accounts in the ACCOUNT file. We would next like to

create one transaction for each combination of credit aect # and debit
acct II except that the same account number may not appe:ir in both places.
This will give 72x72-72=5112 transactions. There may be more elegant

{Open department file and add entries to it}
> OPEN FILE DEPART
>' ADD
ENTER DEPT, DEPTNAME, DEPTHEAD
DEPT? {Here the one field, or all three fields, may be entered. If
----- fields have been specified in a hierarchical form, only fields

that differ from record-to-record need be entered.}
DEPT? // {Returns control to command interpreter.}

-20- L3 19 -21- L3 20

Procedure

RELATE

RDBADD

RDBBIND

RDBCLOSE

RDBDELETE

RDBERROR

RDBINFO

RDBINIT

RDBPOINT

RDBREAD

RDBUPDATE

Function

Passes a command to the RELATE/30~~ data base management
system.

Adds a new record to the file associated with the passed
cursor.

Binds a memory location for a return value or a substi
tution variable.

Closes a cursor.

Deletes the current record from the file associated with
the passed cursor.

Returns information on an error condition that exists in
a cursor.

Returns information on the current file or status of the
system.

Initializes a cursor.

Positions a pointer to a specific record for reading.
This call does not function on views or selections.

Reads the next record from the associated cursor.

Updates the current record on the file associated with
the passed cursor.

Figure 6

Security is defined with the ALLOW command. Essentially this speci
fies which users or groups of users can execute various groups of commands.
For example use of the CREATE and PURGE commands can be restricted to one
user. However, these security features only are effective for users going
through the Relate system. Only the MPE file security is effective for a
user who goes into a Relate file through the MPE file system.

An option exists to considerably strengthen the security by making th~

Relate files privileged files as Image does. However, this presently in
volves giving PM capability to the account and to the database administrator.
Other options are under study to improve the security including encryption.

The integrity is similar to Image except that journaling (logging to
a tape) and recovery from the log tape are not presently implemented.
They could be done through application programming.

Data independence is also similar to Image. The user may accept all
fields in the record as they physically occur or specify the fields and
their order.

Relate/3~~~ is a new product and, as with any new product of this com
plexity, can be expected to have some bugs in it. However, it appears to
be soundly conceived, efficiently implemented, and a very effective tool.
It is available for a one-time fee of $18,500 which includes the first
year's maintenance. Maintenance after the first year will be 15% of the
(then) current selling price. Relate is available from:

Computer Resources, Inc.
2750 EI Camino Real
Mountain View, CA 94040
(415) 941-4646

In short, both storage and run efficiencies seem to be very close to
the ideal. Where performance problems arise, they can likely be traced
to the ease with which some very awkward operations can be requested.

Concurrency is handled by dynamic locking of files. It may be enhanced
beyond the file level in subsequent releases. Even at the file level,
experience with Image indicates that it should be effective.

Restructuring is certainly one of the strong points. of Relate. New
files are easily defined and data from one or more files can readily be
copied to the new file, with undefined fields zeroed or h1anked. More
over, Relate may be used with Image, KSAM, or MPE files as well as Relate
files. Many of the commands including OPEN, COPY, PRINT, and CLOSE will
work with these other file types. Not only does this give the user the
option of combining these other file types into a Relate database, but it
also makes the task of converting from the other file types to Relate files
a trivial exercise. After one has struggled with restructuring Image,
Relate seems almost too good to be true!

-22- L3 21

Rel*Stor

Rel*Stor is also based on the relational model and, with Relate,
shares the particular strengths and weaknesses of that model. Unlike
Image and Relate, which were created specifically for the HP/3~~~, Rel*Stor
is implemented on other systems.

The DDL for Rel*Stor is slightly more formal than that for Relate, but
closer to Relate's than Image's. The DEFINE command is used to create a
file (relation or "table" as it is called in the Rel*Stor manual 16

). A
database is created using the DEFINEDB command. This command specifies
the name of the database and gives upper limits for the number of data
files and users. Three directories are then created to store information
on the database and its users, but no data files are specified or created.

Derived relations can be created as snapshots through the RETRIEVE
command. The RANGE command allows the data for the snapshot to be gathered
from more than one file. There is no provision for "evolving views."

-23- L3 22

The DEFINE command is functionally and syntactically similar to the
CREATE command of Relate. For example. the ACCOUNT file would be created
by tne following:

STRING 4.
STRING 4.
INTEGER l~.

INTEGER l~.

INTEGER l~.

Terminal
Interface
Processor

Library
Procedures

Application
Program

DEFINE ACCOUNT
DEPT
EXP
BUDAMT
YTDCR
YTDDB
PRIHEc:2
SIZEg 23;

There are only three data types specified. and data is stored in ex
ternal (ASCII) form rather than internal (Binary) form. Data type appears
to matter only when arithmetic operations are performed. The three types
and the upper and lower limits on their "width" are:

The PRIMEg2 clause indicates that the first two fields (concatenated)
constitute a unique key for each record. There is no provision for files,
such as the transaction file, where no combination of fields yields a
unique key. (Two transactions could be identical in all respects.) Like
wise there is no provision for multiple keys. The single key may include
several fields (in order of declaration starting with the first). The
indexes are structured as B-trees with the advantages of ease of chanRe
and efficient retrieval.

These widths would allow both 16 and 32 bit integers, but only 32 bit
floating point. No formatting capability is included.

The DML is quite rich and nearly as complex as a programming language such
as Basic. This richness could be seen as Rel*Stor's strongest point. Its
complexity could be a weak point.

Relational
Data

Handler

Figure 7

4 to 12 bytes
8 to 12 bytes

Integer
Real
String

TIP serves as a conversational interface. te},~ edi t~r. and other m1.s
cellaneous functions. It operates in three diff~r.ent modes: control mode,
edit mode. and administrative mode. The control mod~ ~;lows the user to
formulate queries. send them to the RDH, and see the results. The edit
mode allows the user to compose. edit. modify and saY'.' qll~rles. The admin
istrative mode allows qualified users to define new databases, grant users
access to databases and retrieve data base statistics. There are 45 TIP
commands altogether as shown in Figure 8.

Before proceeding to the DML it is necessary to understand the program
matic components of Rel*Stor and how they function. A program called the
Relational Data Handler or RDH is the main workhorse of the system. The
RDH is run as a son process of the user's process. The user's process
may either be an application program or a program called the Terminal
Interface Process or TIP. See Figure 7.

-24- L3 23 -25-

APPEND

BYE

COMPILE

CONTll~UE

EDiT

ENil

GO

HELl.O

totarulO

SEND

SETPAGE

SETRR

SETWSR

SHOWHE

STATISTICS

SYSTEM

TIP Control Commands

append, insert, or change data in a relation

terminate a session with a aatabase

translates Buffer to code and checks syntax

continue query to retrieve next page of data

switch from Control to DBA mode

switch from Control to Edit mode

return control to the operating system

COMPILE and RUN the Textual Buffer

initiate a session with a database

list relo' ions and their data attributes

change aucomatic PRINTRR mode

pt'int the number of disk accesses in your last
request

print the Result Relation

send the COMPILED Buffer

save the Result Relation, formatted for a LOAD
command

send a canned query for processing

set the maximum rows per page in the Result
Relation

reset the size of Result Relation file

reset the size of workspace relation file

shows the filenames and parameters of present
session

print the statistics associated with your last
query

print the system configuration parameters

Figure 8 (contd)

-26- l3 25

TIME

II

\

ADD

DELETE

END

JOIN

KEEP

LIST

PURGE

REPLACE

TEXT

II

ABORT

ALTUSER

COOL

DEFINEDB

DEFINEI

END

LISTDBS

TIP Control Commands

print th~ time required to complete last query

terminates APPEND command

terminates APPEND command

TIP Edit Commands

add l1ncIJ to the Buffer

del~te l1neK from the Buffer

retllrn re, r(tntrol mode

JOIN tog(~thf'T th~ Buffer and a KEEPed file

save thp ,'ontN,tn of the Buffer in a permanent file

11ul JJ,uou uf th~ BuffE'r

r~p}~h'\e tin",'u of t L~X.t 1n the Buf fer

brJu~ & perwa~wut file into the Buffer

tel~inate ADD or REPLACE command

TIP Administrator Commands

set query control point to inactive

change or add to the capability of a user

to be implemented

define a new data base

initial installation of RELATE

return to control mode

list data base statistics or all data base names

Figure 8 (contd)

-27- L3 26

TIP Administrator Commands The programmatic interface to the RDH consists of four library pro
cedures:

Name

LISTUSER

NEWUSER

PURGEUSER

REMOVEDB

RESTRICT

list directory for one user or all users

enter a new user with RETRIEVE capability

remove a user from a data base directory

remove a data base

to be implemented

Procedure

STARTRDH

TXTBFMGR

PROJECT

GETDESC

Function

Creates the RDH process

Sends a query to RDH

Returns one field at a time from the result of
the query

Returns a description of the result of a Query

WARM to be implemented

Figure 8

-28- L3 27

Queries are processed in a "batch" mode by the RDH; i.e. a query is
passed to the RDH, the result of the search is placed in a temporary file
called the "result relation." The results may then be interrogated or
even saved as a new, permanent file.

Thus, in spite of the numerous TIP commands, it is the RDH commands
that constitute the true DML, and even include most of the DDL. Figure 9
lists the RDH commands and operators which may be combined in the usual
ways.

The RETRIEVE command is the primary read verb and the WHERE clause the
qualifier. For example, the following query would retrieve all transac
tions debited to department #42 for expense categories 10-29 if the amount
exceeds $100.00.

RANGE X = ACCOUNT
RETRIEVE X.DEPTDB, X.EXPDB, X.DEPTCR, X.EXPCR, AMT, DATE, REF
WHERE

X.DEPTDB = 42 AND X.EXPDB >=1~ AND X.EXPDB < 3~

AND AMT > 1~~.~~

The LOAD command may be used to load data to a Rel*Stor file from an
MPE file. It also may be used to add new records to a Rel*Stor file.
There is no update verb in the RDH commands. The APPEND command in the
TIP control mode will update. The only other option is to copy the entire
file, modifying the necessary records. This seems to reflect a strong
"batch" orientation rather than an on-line orientation.

Little can be said about performance since the product was not avail
able for testing. The batch orientation of the DML, however, makes it
likely that interactive processing, for any but a read only mode, would
be awkward at best and could be very inefficient.

Storage efficiency is likewise less than optimum due to the storage of
external rather than internal forms of the data.

Concurrency is not implemented at the present time. There are plans
to add it in 1982. At present only one user at a time may access a data
base.

-29- L3 28

Name

AND

AVG

BUT

COLLECT

COUNT

DEFINE

DELETE

DELETEQ

LOAD

MAX

MIN

NOT

OR

RANGE

REMOVE

RENAME

RETRIEVE

SAVE

SUM

WHERE

+, - * , /

()

:-

RDH Commands and Operators

Meaning

logical (Boolean) operator

COLLECT function - averages real or integer

logical (boolean) operator - same as AND

perform function (COUNT. SUM, MIN, MAX, AVG)

COLLECT function - counts rows

create a new data base table

delete rows from a data base table

DELETE but save DELETEd rows in Result Relation

bulk load data into a table

COLLECT function - finds maximum in column

COLLBCT function - finds minimum in column

logical (Boolean) operator

logical (Boolean) operator

specify table and assign relation variable(s)

purge a data base table

rename a data base table

get information from a data base

save the Result Relation as a data base table

COLLECT function - adds real or integer column

introduce qualification clause to query

arithmetic operators - plus, minus, times, divided by

parenthesis - determine order of operation

value of expression is assigned to variable

Security is defined by the NEWUSER and ALTUSER commands. These allow
the administrator to control the users having access to each database,
and the commands that each user may use. However, these security pro
visions are only effective for users going through the Rel*Stor system.
Only the MPE file security is effective for a user who goes into~a Rel*Stor
file through the MPE file system.

Integrity is similar to Image except that there is no provision for
journaling (logging transactions to tape) and recovery from the log tape.
This could be implemented by application programs, however.

Data independence is also similar to· Image. The user may accept all
fields in the record as they occur, or specify the fields and their order.

Rel*Stor is a new product, with some features not scheduled for imple
mentation until next year. As with any new product of some complexity,
it can be expected to have some bugs. It was designed to work on a variety
of computer systems and this may well cause some compromises in its design
for example the "batch" orientation o! the RDH.

Rel*Stor is available for a one time fee of $20,000 which includes
delivery, installation, three copies of the doc~entation, maintenance/
update service, and hot-line consultation for 12 months. Maintenance/up
date service. and hot-line consultation costs $3000 per year after the
fir9t year. Rel*Stor is available from:

GTE Products Corporation
P.O. Box 188
Mountain View, CA 94042
(415) 966-2371

SUMMARY

Any time that complex sye~ems are compared, it is·difficult to be
totally objective because the designers of the systems had different goals
and viewed various features with differing importance. Likewise, users
of these systems will have varying needs. Thus it is not possible to
rank these systems - anyone of them might be the best choice for some
applications. The grading chart, shown following~ is an attempt to objec
tively assess salient features· of each system. Even here, however, each
individual grade must be a subjective judgment made after considering a
variety of dissimilar factors.

<, <a, a, >a, relational operators
>

II

%

relational operator - is not equal to

relational operator - is included in - string only

Figure 9

-30-
L3 29 -31- l3 30

Bibliography

In the table below, the features of each of the three systems have
been graded in ten categories. These grades are solely the judgment of
the authors. The grade meanings are as follows:

A - excellent, outstanding
B - above average
C - average
D - below average but useable
F - essentially useless or non-existent
X - unable to determine

1. Newsletter of the UP General Systems Users Group, p. 24, April, 1981.

2. Atre, S., Data Base: Structured Techniques for Design, Performance,
and Management. New York: John Wiley & Sons, 1980.

3. Date, C.J., An Introduction to Database Systems. Reading, Mass.:
Addison-Wesley Publishing Co., 1977.

4. Kroenke, David, Database Processing. Palo Alto: Science Research
Associates, Inc., 1977.

12. Image, op.cit., p. 4-17.

15. KSAM/3000 Reference Manual. Hewlett-Packard Co., Cupertino, CA,
Part No. 30000-90079.

7. Wiederhold, Gio, Database Design. New York: McGraw-Hill Book Co.,
1977.

11. Query Reference Manual. Hewlett-Packard Co., Cupertino, CA., Part
No. 30000-90042.

GTE Products Corp., MountainUser Reference Manual for Rel*Stor.
View, CA, March 1981.

5. Tsichritzis, Dionysios C., and Lochovsky, Frederick H., Data Base
Management Systems. New York: Academic Press, 1977.

6. Ullman, Jeffrey D., Principles of Database Systems. Potomac, Md.:
Computer Science Press Inc., 1980.

8. Date, op.cit., p. 53.

9. Atre, op.cit., p. 130.

10. Image Data Base Management System Reference Manual. Hewlett-Packard
Co., Cupertino, CA., Part No. 32215-90003.

16.

14. Comer, Douglas, "The Ubiquitous B-Tree," Computing Surveys, Vol II,
No.2, June 1979, pp 121-137.

13. Relate/3000 Database Management System Reference Manual. Computer
Resources, Inc., Mountain View, CA, July 1, 1981.

The time has come for a centralized data dictionary. The dictionary
would necessarily be complex enough to require a database to store it.
Systems could share the information and the data conversion procedures
instead of each having its own (different) version. The authors plan to
do future work in this direction.

This paper is the result of one small step in a project to bring to
gether a cohesive and effective set of program development tools. The key
stone of this project is a data dictionary which would be shared by all
components. At present each system (Image, Relate/3000, Rel*Stor, V/3000,
etc.) has its own data dictionary (or fragment thereof) contained within it.

Image Relate/3000 Rel*Stor

1. Mapping to system D B B

2. DDL and data types B B C

3. DML C A D

4. Run performance B B X

5. Storage efficiency C A D

6. Concurrency
(\

B C F

7. Restructuring D A B

8. Security B D D

9. Integrity A B B

10. Data independence C C C

Future Developments

-32- L3 31 -33- L3 32

	A Comparison of Relational and Network Data Base Management Systems as Implemented on the HP/3000

