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1.

1.1

INTRODUCTION

Scope

This paper discusses general principles and specific

techniques for making SPL and FORTRAN programs use less

CPU time on HP3000 computers.

There are three things which affect the CPU speed of a

program:

(a) Hardware: Once one has purchased a particular

machine, nothing can be done to increase its CPU

speed.
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(b) Manufacturer-supplied compilers and run-time

libraries: The quality of compiler-generated code

can have a potent effect on the speed of a program,

as can the efficiency or otherwise of the library

routines it calls. Later sections of the paper

highlight language features and compiler features

which necessarily execute slowly, in order that the

programmer might avoid them, where
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possible. Other features, where the necessity is

improbable or dubious, are listed for temporary

avoidance by the programmer until the suggested

compiler enhancements are implemented.

(c) User-written code: Given that suitable algorithms

have been chosen, the way in which the user

pr.ograms them can be of considerable consequence.

1.3

3

Basis

statements made in this paper in relation to code

emission by the compilers are based on the Athena (1918)

software release.

Timings were obtained on an HP3000 Series III.

1.2 Terminology

1.4 Background: The Machine Architecture

To avoid much repetition, abbreviations are used for the

names of the four main numerical data types, as shown

below:

Abbreviation Expansion SPL FORTRAN
Equivalent Equivalent

SI short integer integer integer[*2]

LI long integer double integer*4

SR short real real real

LR long real long double precision
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1.4.1

1.4.2

It is of course stating the obvious to say that the

HP3000 architecture, at the "machine instruction" level,

is scarcely traditional. Many of the features of the

machine ease considerably the task of generating machine

code for medium-complexity languages such as SPL and

FORTRAN. Some features however cause difficulty in

emitting code, and this difficulty sometimes lead to

suboptimal code.

The low limits on direct data addresses (e.g.

OB+255,Q+127) can cause problems with programs requiring

many variables. This leads to an extra level of

indirection in FORTRAN programs (see "MORECOM" and

"Indirect Indirection" later) and surgery in SPL

programs.

K4 6
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1.4.4

1.4.5

4

The BR (branch) instruction post-indexes (like all other

memory-reference instructions) when it should pre

index. The code generated for computed GO TO, CASE and

SWITCH statements is cute but is about 3 times as much

as would otherwise be necessary.

The elegant simplicity of the stack machine is rudely

violated by the instructions which handle long reals.

Far from the zero-address "stackops" used for arithmetic

on other data types, these instructions operate on the

addresses of one operand (negate), two operands

(comp~re), or three operands (add, subtract, multiply,

divide). Given this startling departure from

orthogonality, together with the fact that there are no

specific instructions for loading or unloading the stack

four words at a time, the number of references to long

reals in later sections of this paper should cause

little surprise.

The low limits on direct code addresses (e.g.

P-255,P+255 for LOAD,BR,MTBA etc and P-31,P+31 for the

test-and-branch instructions) cause two problems in code

generation:

(a) Is a branch to be direct or indirect?

If indirect, where should the indirect word be

placed?

•
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1.5

5

(b) Where should constants be placed?

Some solutions to these problems are good; occasionally

however, an indirect branch is used unnecessarily, and a

constant is dumped immediately (with a branch around it)

instead of being carried forward.

Background: The Compilers

Neither the SPL compiler nor the FORTRAN compiler is

represented by Hewlett-Packard as being an optimizing

compiler. However, on perusing a check list of

optimization techniques described in the literature, one

finds that some of these are used (at least partially)

and that the use of others is obviated by the machine

architecture.

It is generally accepted that of the languages available

on the HP3000, SPL is the most "efficient", closely

followed by FORTRAN. Looking at directly comparable

features of the two languages, it is found that

sometimes SPL generates better code, and other times

FORTRAN does. Both compilers would benefit from a

cultural exchange.

K4 8
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GENERAL OPTIMIZATION PRINCIPLES
2.2

7

Do it only as often as needed

Do it at compile-time

While it may look better to code:

2.1

PARAMETER PI 3.14159 •••

2.2.1 Both compilers perform limited elimination of common

sub-expressions within a statement. This is done only

with respect to subscripted array references. The

seemingly wider scope stated by Splinter [1]

(expressions in parentheses) does not prevail.

CIRCUM = 2.0 * PI * RADIUS

(or the SPL equivalent)

it will run faster if you write

PARAMETER TWOPI = 6.28318 •••

CIRCUM = TWOPI * RADIUS

Neither compiler will simplify expressions involving

constants; if you write

A:= 1 + 1;

that is exactly what you get.

K4 9

The method used is to load the index register once only

with the value required for the offset into the

array(s).

Three qualifications must be met for the compilers to

perform this optimization:

(a) The subscript expressions must be lexically

identical.

(b) The array(s) must not be long real.

(c) (SPL only) The subscript "expressions" can only be

simple variables or constants.

K4 10
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0(1 + 3, J + 5) = E(l + 3, J + 5)

Examples of FORTRAN statements where the elimination is

done are:

A(I + J) B(I + J) + C(I + J)

2.3.2 The index (X) register has a limited arithmetic

capability, and may also be used as temporary storage.

Of course the X register is used for several things

other than array subscripting, and so it is dangerous to

merely equate some name to the X register and write code

as though an ordinary variable was involved.

No elimination is done in:

A(I + J) = B(J + I) (not lexically same)

In particular the use of the X register in and around

statements involving long reals is perilous.

2.2.2

2.2.3

K = (1 + J) * (1 + J) (not in array reference)

Where there are common sub-expressions not fitting the

above criteria, time and code-space can be saved by

using a temporary variable.

Invariant expressions can be moved outside loops. This

seems obvious, almost too trivial to mention, but such

E.g. LONG A, B;

LONG ARRAY C(O:lO), D(0:10);

INTEGER X = Xi

A:= B; «SETS X TO 1

IF B IS A PROCEDURE ARGUMENT BY

REFERENCE»

cases can be "hidden" by the high level language: see

section 3.1.1. C(X):= D(X): « CHANGES VALUE OF X »

2.3

2.3.1

Do it in the registers

The HP3000 architecture does not offer quite the same

scope (or the necessity!) for optimizing the use of

registers as does a machine of the "umpteen general

purpose registers" variety.

K4 1J

2.3.3 The assignment operator can be used in SPL to replace a

load from memory with a faster stack-duplicate

operation.

K4 12



2.4

2.4.1
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Instead of

c:= 0 + Ei

A:= B + C;

write

A:= B + (C:= D + E)i

Warning: for long reals, the compiler generates worse

code for the latter case.

Don't do it at all

When you write

FOR 1:= J STEP K UNTIL L DO .....

the SPL compiler must generate code which checks whether

the loop is to be entered at all.

When you write

FOR 1:= 0 UNTIL 9 DO .....

K4 13

2.5

2.5.1

2.5.2

11

the loop body must be ent8ced, but the compiler still

goes through the motions.

If this latter loop is nested within others, this is a

waste of time, which can be saved (together with 2 or 3

words of code) b~ writing

FOR* 1:= 0 ....

Don't do it with a procedure call

As is well known, there is a reasonable overhead

involved in a call to a procedure in the current

segment, and a greater overhead in a call to a procedure

in another segment (especially if the called segment is

not present in memory).

While splitting a program into procedures or subroutines

aids greatly in structuring a program, care should be

taken to avoid frivolous procedu~e calls.

The SPL subroutine, although offering a somewhat more

austere environment than a procedure, has the advantage

of faster invocation and faster return.

K4 14



2.5.3
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It may sometimes be worth the waste of code space to

change a procedure into a subroutine and include it in

each calling procedure.

The following "dirty trick" allows a single copy of a

subroutine to be shared by several procedures in the

same segment:

(a) Include the source of the subroutine ("SHARED'SUB")

in an "initialising" procedure.

(b) The initialising procedure should include:

SUB'AOOR:= @SHAREO'SUB;

where SUB'AOOR is global.

(c) Invocation of the shared subroutine is done by

« stack arguments, if required »

TOS:= SUB'AODR;

ASSEMBLE (SCAL 0);

Less obvious than explicit procedure calls (coded by the

programmer) are implicit procedure calls generated by

the compilers.

K4 15
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Usually there is a rationale for an implicit procedure

call: the language feature is not directly supported by

the microcode, and in-line code would take up too much

space.

In Fortran, all "basic external functions" are handled

by procedures. Turning to the "instrinsic functions",

which also look like function calls at the source level,

we find that some of them are in fact handled by in-line

code. Almost all the numerical functions are in this

category; among the exceptions are AINT, JOINT, DDINT,

AMOD, and the MAX/MIN family.

Of course the MAX and MIN procedures cater for a

variable number of arguments; but there is a case for

using in-line code for the frequent case of two short

integer arguments. The code currently generated for

J = MAX (K, L) is

LOAD K

LOAD L

LDI 2

PCAL MAXO'

STaR J

K4 16
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whereas in-line code would take only two more words:

LOAD K

LOAD L

DDUP, CMP

BGE P + 2

XCH, Nap

DEL, Nap

STaR J

This means that, cont~~ry to the advice given by H-P

[3], it is better to ~~ite A**2 than A*A, where A is

short (integer or real). The converse applies when A is

long (integer or real).

It is curious that optimization of the unlikely

expression A**l is done (not very well: B = A**l

generates e.g.

LDD Q + 1, Ii Nap, NOPi STD Q + 2, I)

In a degenerate case such as J

programmer can instead write

IF (J.GT.K) J = K

MAX (K, J), the

whereas no effort is made with the equally unlikely

expression A**O.

2.6 Be wary of long reals

2.5.5

which is better than the in-line code above, especially

if the probability of J exceeding K is low.

In both SPL and FORTRAN, procedures are generally used

for exponentiation. The exception is that FORTRAN emits

in-line code for the exponentiation of short integers

and short reals to the short integer powers 1, 2, 3 and

4.

<4 17

2.6.1

2.6.2

As mentioned earlier, the non-stack nature of the

instructions for handling long reals makes life nard for

compiler writers, occasionally leading to the emission

of rather peculiar code.

In the code generated for A = B + C, the FORTRAN

compiler loads the address of A last instead of first,

then does CAB, CAB to put it into the right place. The

SPL compiler avoids this waste of time and code space.

K4 18



2.6.3

2.6.4

The FORTRAN compiler always uses the MOVE instruction

for simple assignments, and usually achieves reasonable

code, e.g. nine machine instructions for A(J) = B(J).

On the oth~r hand the SPL compiler eschews the MOVE

instruction and in desperately trying to simulate 4-word

loads and stores, requires 22 instructions to encode

A(J):= B(J)!1

As the long real machine instructions work with

addresses, not values on the stack, it follows that when

expressions force the compilers to put temporary results

on the stack (the natural method with other data types),

the results will be sub-optimal.

One way of avoiding this is to use variables to hold

often used constants,

It is better to write

ONE = 100

A= A + ONE

B= B + ONE

than

A= A + 100

B= B + 100

K4 19

2.7

2.7.1

2.7.2

17

Another method is to simulate the code which would be

emitted by a compiler for a 3-address machine:

Instead of

A= B + C * 0

write

TEMP C * 0

A= B + TEMP

Avoid data-type conversions

Unlike SPL where the programmer must explicitly code a

type conversion, FORTRAN automatically emits type

conversions in "mixed-mode" expressions. As these

conversions take time and code-space, they should be

avoided where possible.

Particularly wasteful is the habit common to some

programmers of using short integer constants in an

otherwise real expression. The code generated by

A= A + 1 runs at about 70% of the speed of that

generated by A = A + 1.0.
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2.7.3

2.7.4
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Conversion from long illteger to long real .:ind vice versa

requires a procedure call; all others are done in-line.

Intriguing code is generated by the FORTRAN compiler for

the conversion from long integer to short integer.

The instructions used to do it on the stdck are:

DTST, NOP

DASL 16

DEL, NOP

followed by a test for overflow which is not done in

SPL. The SPL compiler uses only one word of code

instead of the 3 above:

DTST, DELB.

2.8.2

2.9

2.9.1

19

Cd re ':;h:)llld be \..ls·:.?d wht:-n rt-~p inl: i n9 d i vi s ion by

rrtultiplicntion when d const,nt i'; involved. ~or ~xample

10.0 can be represented 2xactly ~s a short real, but 0.1

cannot be. Coding A=B*O.l inst~ad of A=B/IO.O may

result in loss of precision.

Exploit special hardware features

Testing for a true or false value is actually reduced by

the machine to a test for odd or even. Consequently we

may obtain a test for parity in the guise of a "logical"

test.

In SPL, the condition

I MOD 2 1

2.8 Multiply instead of dividing
can be re-written as

2.8.1 Multiplication is faster than division, 50 it should be

substituted where possible.

.<~ It

LOGICAL (I)

and in FORTRAN, the similar condition can be re-written

as BaOL (I).

K4 22



2.9.2
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In SPL the construct I <= J <= K uses the CPRB (compare

range and branch) instruction and it is better to use

this than

I <= J AND J <= K.

2.9.4

21

The CMPB (compare bytes) instruction can be induced to

report the residual count of uncompared bytes, as well

as the addresses of the unequal bytes and the condition

code.

A classic case is scanning off trailing blanks.

Although it is easier and clearer to write

However, when the lower bound is zero, it is much faster

to use WHILE LEN> 0 AND BUF(LEN-l) " " DO LEN:= LEN-I;

2.9.3

LOGICAL (J) <= LOGICAL (K)

than 0 <= J <= K.

The hardware condition code is not affected merely by

testing it, nor by branches. Where a logic path is

required for each of the results of a comparison

(.<, +, », the test does not need to be performed twice.

Instead of

IF I = J THEN

ELSE IF I > J THEN

ELSE

write

IF I = J THEN •••

ELSE IF > THEN •••

ELSE

K4 23

2.10

the following code runs much faster:

IF BUF(LEN-l) = n " THEN BEGIN

IF BUF(LEN-2) = BUF(LEN-!), (I-LEN), 0 THEN;

LEN:= - TOS;

DDEL;

END;

Avoid unnecessary memory references

The standard practice of the FORTRAN compiler and the

normal usage of the SPL programmer is to address arrays

indirectly through a pointer. To obtain the contents of

an array element, the contents of the pointer cell must

first be obtained.

K4 24
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3. OPTIMIZATION TOPICS SPECIFIC TO FORTRAN
2.10.2

2.10.3

The SPL programmer can avoid this, when sufficient

primary address space is available, by coding "=08" or

"=Q" in the array declaration. As only the "zero'th"

element of the array must be in the direct address

range, one large array may use direct addressing.

The FORTRAN compiler makes no attempt to use direct

addressing, even in the simple case when all the local

arrays and variables would fit in the range

(Q+l, Q+127).

Although optimal allocation of addresses might require

n! iterations where n is the number of local arrays and

variables, some optimization would be better than none.

K4 25

3.1

3.1.1

Multi-dimensioned arrays

Given the declaration

DIMENSION A(3, 4, 5), AX(60)

EQUIVALENCE (A, AX)

when the programmer writes

00 100 K = 1, 5

100 T = T + A(I, J, K)

the effect is as though the following had been writ~en:

DO 100 K = 1, 5

100 T = T + AX«(K - 1) * 4 + J - 1) * 3 + I)

Obviously part of the offset calculation need be done

once only, before the loop is entered.

It is possible to recode this as:

IX = (J - 5) * 3 + I

DO 100 K = IX + 12, IX + 60, 12

100 T = T + AX(K)

1<4 26



3.1.2

3.1.3

24

Such rewriting is of course error-prone. Having the

compiler do it would be preferable, but this is one of

the more complex optimization algorithms.

Where one or more of the subscripts is a constant, no

cognisance is taken of this, and the effect is

ludicrous. For example, when the user writes

A(l, 1, 1), the code emitted is as though he had written

AX«(l - 1) * 4 + 1 - 1) * 3 + 1)

instead ofAX(l)!!

There is a glaring need for compiler enhancement in this

case.

The programmer should evaluate carefully his perceived

need for multi-dimensioned arrays. Often such an array

can be replaced entirely by an array of one dimension,

or an array of one dimension can be equivalenced to it

and used for some of the manipulations required

(especially those which operate on every element of the

array).
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3.1.4

3.2

3.2.1

25

One special case is where an array has two dimensions,

but in references to the array, one of the subscripts is

always constant. This array should be split up into

several arrays of one dimension.

For example:

DIMENSION CASH(3, 10)

NET = CASH(l, J) - CASH{2, J) - CASH(3, J)

is better written as:

DIMENSION SALES(lO), EXPENSES(lO), TAX{lO)

NET = SALES{J) - EXPENSES(J) - TAX(J)

This is much clearer as well as much more efficient.

MORECOM

As mentioned earlier, the limit of 255 on direct

DB-relative addressing causes problems with FORTRAN

programs with many variables and arrays in COMMON.

The compiler option $CONTROL MORECOM was introduced to

alleviate this problem.

K4 28



3.2.2
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When this option is in effect, instGad of one word of

primary DB being allocated to point to each variable and

a.rray in COMMON, one word is rillocated to point to each

COMMON block. Consequently indexing must be used to

address variables within:COMMON.

Assume the following declarations:

REAL A, B, C

INTEGER I, J

COMMON/BLK/I, A, J, B

Without the MORECOM option in effect, the statement

C = B will generate code such as:

27

The variable B abov~ is at an 0ven offset (4) from the

start of th~ hlock - this allo~s the usc of double-word

indexiny in the Lon instruction.

Things can be wors~: the variRble A is at an odd offset

(I) from the start of the block - what happens is this:

LDXI 1

LOAD DB + 0, I, X

INCX, NOP

LOAD DB + 0, I, X

OTST, NOP

5'1'0 Q + 1

LDD DB + 3,

To add insult to inJury, the DTST instr~ction above is

quite redur.dant.

STD Q + 1

which is as good as one will ever get.

With MORECOM, however, the same statement will generate:

3.2. 3 A similar l:~ffect is observable wh~n array'; .i:·~ tsed;

however wh~?n the offset is z~ro, t~e (longer) f~( tip. for

the orld c~se is used!!

LOXI 2

LDO DB + 0, I, X

STD Q + 1

K4 29

Timin~~ ~re shown b~low for repeating All)

times, wh~re A and B are REAL arrays.

B(I) 5,000
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3.2.4

3.2.5

28

Addressing for Time Ratio to
(ms) "standard"~

No MORECOM 56 1.00

MORECOM,offset even,>O 90 1.61

MORECOM,offset odd 154 2.75

with one-word variables and arrays (INTEGER*2, LOGICAL)

and four-word variables and arrays (DOUBLE PRECISION),

the parity of the offset is irrelevant: it just takes

more code and more time when the MORECOM option is used.

When the use of the MORECOM option is unavoidable,

considerable time and code space can be saved by

ensuring that the offsets of REAL and INTEGER*4

variables are even. A straightforward way of doing this

is to list all the REAL and INTEGER*4 variables and

arrays first in the COMMON statement. Offset parity in

existing COMMON blocks can be checked by perusing the

output of the compiler MAP option.

A better solution would have been to allocate two

DB-primary words per common block, one pointing to the

1st word in the block and the other to the 2nd word.

Thus any offset in the block would be even with respect

to one of the pointers. Unfortunately this would have

restricted the maximum number of common blocks to only

127 instead of 2541

K4 31

3.3

3.3.1

3.3.2
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$INTEGER*4

As the manual says, this option forces all integer

variables and arrays (other than those explicitly

declared INTEGER*2) and all integer constants to be

INTEGER*4. It is likely to be used in the early stages

of converting a FORTRAN program from another machine.

Use of this option can cause gross waste of code space

and data space and considerable increase in execution

time.

Consider the following example:

REAL A(lO), T

T = 0.0

DO 100 I = 1, 10

100 T = T + A(I)

without the use of the option, the variable I and the

constants 1 and 10 are INTEGER*2, and the loop is

controlled by the efficient MTBA instruction which

increments I, tests it against 10, and branches back to

the start of the loop, all in one hit.
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3.3.3

30

When $INTEGER*4 is in effect, I, 1 and 10 are INTEGER*4,

and the loop is controlled by code which is slow for ~ 0

reasons:

(a) each function of the MTBA instruction has to be

simulated separately

(b) LI arithmetic is slower than S1.

Once a converted program has been made to run correctly,

the following steps should be taken:

(a) Remove the $INTEGER*4

3.4

3.4.1

3.4.2

31

Character Variables

The following declarations are used in the discussion:

CHARACTER A*80, B*1(80), C*(10), D*10

EQUIVALENCE (A, B, C), (S(ll), D)

INTEGER*2 I, J, N

CHARACTER S*(N), T*l, U*l

The code generated for references to. character variables

of constant size (e.g. A), and for references to

constant substrings (e.g. A [11:10]) is generally

efficient. Some special cases are:

Assignment oi character variables of size 1 is done

by the same sort of code as is used for wider

variables.

(b)

(c)

Insert IMPLICIT INTEGER*4 (I-N)

Determine which variables and arrays do not need to

be INTEGER*4 and declare-them explicitly as

INTEGER*2.

(a)

E.g. T U is done by

(d) Determine which constants need to be INTEGER*4 and

append the letter AJ" to them.

K4 33

LOAD Q + 1

LOAD Q + 2

LDI 1

MVB 3

K4 34
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instead of

LOB Q + 2, I

STB Q + 1 , I

and T = " " is done by

LOAD Q + 1

BR P + 2

%020000

LRA P - 1

LSL 1

LDI 1

MVB PB, 3

instead of

LDI %40

STB Q + 1, I

K4 35

3.4.3

33

(b) When a shorte~ string is assigned to a longer

st~ing (e.g. C = T), the balance of the longer

st~ing is blanked by calling the procedure

BLANKFILL'. If one really needs the blanking done,

an alternative is:

C [1:1] = T

C [2:9]

This will run faster, but takes more code, and if

one counts too few blanks, BLANKFILL' will still be

called!

(c) When the position part of the substring is not 1,

code must be emitted to generate the offset from

the start of the variable. Thus it is faster to

use 0 than A[ll:lO]. The offset is calculated once

only (using rather cunning code) in the subprogram

prologue; the trade-off is the extra word taken for

a pointer to the start of D.

If the size of a string is variable (e.g. S), or

variable substrings are used (e.g. A[I:J]), external

procedures are used not only to perform the operation

required, but also for paternalistic e~ror checking

which cannot be turned off.
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3.4.4

3.5

3.5.1

·~4

\"l~er.~ only th~ position prlrt: ~f ..\ 5uh~t(ir'lIJ i:5 .,·trt..lble

(e.g. A [1:10]), it !nay be fJossible to rlvl)i.d th~~ dreaded

peALs by equating to a character array. 8.g. it iB

better to use B(I) than AlI:l].

When reference is made to a character array of more than

one dimension, the element offset is calculated as

described in Section 3.l.1~ then this is multiplied by

the element size to get the byte offset. (The

multiplication uses slow unsigned arithmetic (LMPY,

DELB), because the byte offset could exceed 32K). Thus

offset calculation for a character array of n dimensions

is as complicated as that for an integer (say) array of

n + 1 dimensions. The exception is where the character

element size is 1; multiplication by 1 is avoided.

Indirect Indirection

A Fortran main program or subprogram can run more slowly

than expected if it has many local variables.

All local variables and arrays must be addressed

relative to the Q register, and the direct range is +1

to +127.
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S~rl~e in this range is allocat~d ~ccording to the

ft)llowiny priorities:

(1) One word as a pointer to each array, character

variable or varirlble mentioned in a DATA statement

(Compilation will fail if there are more than 127

words required.)

(2) One word for each INTEGER*2 and LOGICAL variable.

(3) One word as a pointer for each DOUBLE PRECISION

variable.

(4) Two words for each INTEGER*4 and REAL variable.

Once the total of the above allocations exceeds 127, one

locatior. (typically Q + 1) is allocated as a pointer to

an "extension area". Then the remaining variables are

addressed as though·the extension area were an array and

they were elements of the array. The offset into this

pseudo-array is shown in the output from the compiler

MAP option.

The effect on the execution speed is apparent from the

code generated:
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3.5.4
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Variable J's address in the MAP is Q + 23.

The code required for J 0 is

ZERO, NOP; STOR Q + 23.

Variables Kis address in the MAP is Q + 1, I, %11.

The code required for K Q is

ZERO,. NOPi LOXI %11; STOR Q + 1, I, X.

Fortunately the problem does not seem to be compounded

by parity problems with REAL and INTEGER*4 variables (as

it is with MORECOM)i there is no language-imposed

ordering requirement (as there is with variables in

COMMON) and in observed cases the compiler allocates the

two-word variables first, so that they are at even

offsets in the pseudo-array.

Unfortunately when some variables will fit in the

primary area and others would not, the compiler has no

way of knowing which will be used more frequently than

others, so it can happen that a variable used as a DO

index can end up in the secondary area.
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Several things can be done' by the programmer to

alleviate the problem:

(1) Split the subprogram.

(2) Use EQUIVALENCE to equate less frequently used

variables to elements of arrays (one array for each

data-type).

(3) Put some variables into COMMON. If MORECOM is

required, the~ frequently used variables should

be put into COMMON. While this is the easiest to

write, it will typically waste stack space.

$CONTROL BOUNDS

Use this option, if you must, while debugging, but be

sure to remove it for production running.

This option generates a procedure call for each

subscripted array reference.
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3.7.1

3.7.2

3.7.3

3.8

3.8.1

38

The Formatter

We have the authority of Splinter [1] saying that the

implementation of the Formatter is inefficient: on top

of this it should be realised that each READ or WRITE

statement involves an overhead of two procedure calls,

together with one procedure call for each variable, each

array, and each iteration of a DO-implied list.

Unformatted I/O merely avoids the conversion ·to external

form: it does not avoid all those procedure calls. It

is often worth the effort involved in using the file

system instrinsics instead of unformatted I/O.

Further details on the diseconomy of using the Formatter

are given by Green [4].

$CONTROL INIT

Use of this compiler option causes all local variables

and arrays to be cleared to zero during the subprogram

prologue. The code used to do this is quite

efficient: one block move is done to clear variables

and arrays with fixed bounds, and another is done if

there are any arrays with dynamic bounds, to clear them.
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3.9

3.9.1

3.9.2
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It follows that if any arrays, or more than a few

variables, are to be cleared at the start of a

subprogram, it is much better to use $CONTROL INIT than

to write explicit statements, especially for the arrays.

Use of SPL Routines

SPL allows access to all the features of the machine,

and can thus be used to perform operations which can be

expressed onty clumsily, if at all, in FORTRAN. As

access to an SPL routine from FORTRAN necessitates a

procedure call, the time saved within the SPL routine

needs to be worthwhile.

As recommended in [3], a frequent choice for an

excursion into SPL is usage of the MOVE and MVB

instructions for initializing or assigning arrays en

masse. Appendix A shows an example of how to obtain

leverage from the investment in a PCAL by allowing many

arrays to be cleared at once.
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4.1

4.1.1

4.1.2

4.1.3
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MISCELLANEOUS

Slow programs: prevention

Ensure that the best data structures and algorithms have

been chosen; it is pointless to ~bit-twidd1e" with the X

register if you are bubble-sorting a 10,000 element

array.

When writing the program, bear in mind the language

features which can cause a problem, and avoid them in

frequently executed code.

Draw a diagram showing which procedures call which other

procedures, and arrange the segmenta~ion to minimize

calls which cross segment boundaries.

4.2.2

4.2.3

41

However procedures whose names contain an apostrophe are

likely to be called implicity by the compiler. The

Compiler Library Manual will give you an idea of what

the procedure is for. The PMAP will tell you one

subprogram in each segment which is calling the

procedure. If you still cannot match up the procedure

name with the language feature it encodes, it is

possible to decompile the calling segment, find the

actual references, and tie these back to the source (via

the PMAP and the LOCATION output of the compiler).

Then, if desired, the source can be modified to avoid

the procedure call.

If the problem cannot be traced to one or more external

procedure calls, several options are open:

(a) Review the segmentation

4.2 Slow programs: cure

(b) Read your source again carefully.

4.2.1 Obtain a PMAP of the program and establish the reason

for each external procedure reference. This should be

easy for procedure names which do not contain an

apostrophe: you explicitly coded the procedure call.
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(c) Ensure debugging statements are in-operative.

(d) Re-run the program with calls to e.g. PROCTIME

inserted at salient points.
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4.4 F'l1t.url~ shock

4.3. 1

4. J. 2

For high-l;vr~l-l.:lni.Jll-:lq{~ pro':J('i;ilmt~rS i(1Lt?rl~st.~d in

lenrning In:)r(~ ~blYlt "lh;-\t hapP8ns bc-~hinli th(~ scenes, :l

s t ~ r ting po i "1 tis t l) r e;.\d s r~ eLi c) nS 0 f the S}'3 t :~ In

Hef(~cence i'1anu.:\l.

This will giv~ an overview of how the m~chine works at

the machine code level. Th~~ !-1ilchine InstrLlct ion Set

Manual should be used as a reference for p~rticuldr

machine instructions~

Specific details as to the i'nplt~mcntntion of langua<J2

features can be obtained by compiling sample source

programs wi th the MAP opt ion (and, for FOR'rRAN, the

LOCA'rrON option), prepping with th~~ PMAP option, ann

then decompiling the object program. The programs

DECOMP (in the contributed Library) and EPwtI)!SASM (on th(~

Orlando swap tape) may be used for this purpose.

The INNERLIST opt inn in the SPL compiler is often

useful; however ~s its output is produced before code

generation is complete, the result can occasionally be

misl€ading.
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4.4. 1

4.4.2

As :)t-lt~~l in Sl~Ct. ion 1.3, this papel- is basp.d on

t)i)s'.~r'J·-ltion of th,~ behaviour of th(~ Athena versions of

the SPL and FOH'r~{AN cOtnpi lers. It is hoped that future

versions of the compilers will generate better code. It

.i'3 likely that '..-lhen an t?nhancement is made, the code

gen8rnted by the compil~r for a pnrticular language

feature will be better than that generated Eor the

"work-around" the programmer has used in the interim.

It may be found useful for the programmer to set up a

jobs t realn to compi le, prepa re, and decompi le a program

(or suite oE programs) which exercise the language

features and their work-arounds. This jobstream may

then be run after a software update and its output

comp~red with previous results.
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A.2 Calling seguence

Given that n arrays are to be cleared:

The (2i-l)th argument is the address of the ith array.

The (2i)th argument is the number of words to be cleared

in the ith array.

The (2n+l)th argument is n, the number of arrays.

Limits: I <= n <=29

Example:

INTEGER*2 SIA(IOO), SIB(M)

DOUBLE PRECISION LR(IO,IO)

CALL CLEARMANY (LR,400,SIB,M,SIA(51),50,3)
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W~r111 ne1:

The FOR'r:{AN cornpi ll~r wi 11 r:ornpLl in i f tht~r..~ are two or

.nore ca ll~ in OI1(~ ~ubpro(.:Ir('1R ~nd tht.~ ~r<Jllmef'1t8 <10 n~t

a9r~e in type and nUMber.

A.3 Source

Procedure clearmany (n);

integer n;

begin

integer fence, i;

integer point~r arg, len, block;

instrinsic quit;

«start of argument checking»

if not (1<=[ <=29) then quit(l);

pus~, (Q);

fence:= tos-S-2*n;

@ar9:= @11;

for* i:= 1 until n do begin

@arg:= @arg-2; @len:=arg(l)i

if logical(arg) > logical(fence) then quit (2);

if logical(@len) > logical(fence) then quit (3);

if not (1<= len <= (fence-arg-l» then quit (4);

end;

«end of argunent checking»
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@:trg:=@n;

for. * i:= 1 until n do begin

@arg:=@arg-2;

@block:= arg;

@len:= arg (1);

block:=O;

move block(l):=block,(len-l);

.~nd;

tos:= %31400 + 2 * n + 1;

assembl~ (XEQ 0);

end;
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