
8..llI~I!liJilll~_P ..__~11f1f:YI~! .. ~Y~IEM-.l~If.B-(ON~CT IJiG HP2.QQQ1.

HLIOOQ_BmtJ1I~fR._~lNL: __COMPuT~R~

BJORN DREHER, HANS VON DER SCHMITT, RAIMOND SCHOECK

INSTITUT FOR KERNPHYSIK DER UNIVERSITXT D-6500 MAINZ

WEST GERMANY

14

Fig. 1: Overview of our distributed computer system (the CDC1700
will be replaced by a PE3220 system).

E x per i men t s
I I
1 I

+---------+ +---------+
1 1 I 1
1 HP1000 1 1 CDC1700 1
1 1 I 1
+---------+ +---------+

1 I
1 /

I /
1 /

1 /
\ I /

+---------------------------+
1 I
I H P 3 000 I
I I
+---------------------------+

M i c rot ron
1 1
1 I

+---------+ +---------+
1 I 1 1
1 BP1000 1====1 HPIOOO 1
1 I I 1
+---------+ +---------+

1
\

\
\

\

At that time 053000/051000 was not yet available, but HP had available
a product called "Programmable Controller", which was an BP2100 (or at
that time already an HP21MX) computer connected to the BP3000 via a
16-bit parallel link using Universal Interfaces at both ends. With
this product came cross software that enabled the user to generate
RTE-e operating systems, to assemble HP1000 Assembler programs, bring
it into an absolute form using a Cross Loader (XL2100) and download it
to the front-end computer. There existed also an (unsupported) Cross
FORTRAN compiler that was compatible with those days' FTN-IV compiler
of RTE-III. Our final configuration is shown in· figure 1. The two
interconnected HPIOOO systems are today running RTE-IV operating
systems, the third one used to work with RTE-C and we are currently in
the process of rewriting our applications to be compatible with
RTE-IV. For the CDC1700 we built an interface to let it appear to the
BP3000 like an BP1000 computer, so that we could connect it to a third
Universal Interface card.

The Institut fUr Kernphysik der Johannes Gutenberg-Universitat at
Kainz, West-Germany, is a medium size institute for basic research in
the field of Nuclear Physics. We have an 340 MeV linear accelerator
for electrons to perform research in the nuclear structure area using
electromagnetic interaction. Currently an 175 MeV two stage c.w. race
track microtron for electrons is under construction, which is con
trolled and operated with the help of two BP1000 computers. The first
of the two stages is operational since 1979.

A Distributed Computer system Interconnecting BP3000, BP1000,
and other Mini-eomputers

Bjorn Dreher, Bans von der Schmitt, Raymond Schoeck
Institut fUr Kernphysik der Universitat

0-6500 Mainz, west-Germany

1. Introduction and early history

Until 1976 the control of experiments and the data acquisition was
performed by a (today still operational) CDC1700 "minicomputer". In
addition a substantial part of the data analysis was also done on this
system. By that time we noticed that the computing power and the tools
for program development of the CDC1700 were no longer adequate for our
tasks. Therefore we decided to purchase a new powerful minicomputer
system (BP3000) for the data analysis part of the work and to connect
to' it several smaller systems (BP1000) as front-ends for the real-time
applications.

Since at that time the cost for disc memories was higher than today
and memory-resident operating systems were still around, we wanted to
be able to perform the program development to a large extent on the
BP3000, even for the front-ends. operating systems were to be genera
ted on the BP3000 and then ~ownloaded to the small system.

In addition, to reduce t~e cost for the front-ends, these should be

equipped only with experiment related peripherals, such as CAMAC
interfaces, and not necessarily with expensive magnetic tape trans
ports or line printers. A concentration of those devices at the BP3000
would promise a much higher utilization and availability to all front
end computers.

There existed already some communications software for a similar, but
in some essential points different, distributed system at the Techni
cal University in Berlin. This had been written jointly by HP
Frankfurt and the Technical University of Berlin. It was kindly made
available to us and constituted the basis for our current communi
cations system between the front-end computers and the HP3000.

14 1
14 2

2. The curren~ sys~em

In the process of ge~~ing ~he ini~ial sys~em running i~ ~urned ou~

~ha~ both communica~ion drivers in ~he BP3000 (IORENO) and in ~he

BP1000 (DVR63) were not sui~ed for our problem. Therefore we 'had ~o

modify bo~h, especially the BP1000 side. Now the communication between
~he ~wo compu~ers is really interrupt driven on bo~h sides without the
need to loop on a s~atus request to see whe~her ~he o~her side is
willing to send, ~o receive, or to do no~hing a~ all.

Today three compu~ers are connected in a star configuration to the
BP3000 and a forth one will be added in the near future. The peri
pherals of the BP3000 are accessible to the small computers through
the file sys~em or directly via special communica~ion drivers in the
BP1000 in the case of magnetic tape uni~s, line prin~er, and plot~er.

Direct program to program communication between a program on the
BP1000 and one on the BP3000 is also available.

In ~he following we give an overview abou~ ~he possibili~ies a user on
one of ~he front-end computers has in ~he curren~ system:

a. Access ~o the en~ire file sys~em of the BP3000

- Read and write sequentially or in direct access

Position ~o records, write filemarks, space fi1emarks, rewind,
etc.

- Ob~ain ~he s~a~us of a device

A supervisory program in ~he BP3000 (CENTRAL) keeps track of all
files opened by programs in the front-end computers. so that only
those programs in the fron~-end computers may access the files who
"own" i~. When a program closes the connection to the BP3000, all
files opened by it are automa~ically closed. In addition there is
the option to open files globally, so that they can be accessed by
more than one program simultaneously.

b. Initiate batch jobs

c. Create and ac~ivate processes

d. Program to program communication between programs in the front-end
computer and programs in the BP3000.

14 3

e. Perform MPE commands

f. Generate an Rl'E-e operating sys~em on the BP3000 and download it
in~o the target machine. Develop application software in
PORTRAN-IVor HP1000 Assembler, bind i~ into the target system and
download i~ dynamically in~o ~he target machine.

9 • Transparen~ use of peripherals of the BP3000. Magne~ic ~ape uni~s

and the lineprinter are accessible from the front-end processors
as if they were connected direc~ly to them, e.g. through PORTRAN
READ/WRITE statements or EXEC-calls. The plotter is available
through s~andard (Calcomp-) calls. This concep~ is easily expanded
to o~her peripherals.

According to the ini~ial demands to the system, communication is
normally initiated by one of the front-end computers. Each request
consists of a pair of messages of variable length. The firs~ message
contains ~he request type and the necessary data. The second (return)
message contains possible error codes and the resulting data. The
interface on the HP1000 side is a se~ of subrou~ines (SATTL) ~hat

allow ~he programmatic execution of all features mentioned above, or a
direct EXEC call to the drivers of the (virtual) peripheral devices
a~tached ~o the HP3000. An interactive program (XOPPL) allows to exer
cise all requests ~o the BP3000 and to transfer files from one machine
to the other.

The receiving process in ~he BP3000 is one program (CENTRAL), which
performs all necessary operations to satisfy the individual requests.
This process runs· as an always present batch job (in the CS queue),
one job per link ~o a front-end computer. Each front-end compu~er can
have up to 5 programs communicating with the BP3000 a~ ~he same ~ime,

each of which may have up to 10 files simultaneously open. Those
numbers are more or less arbitrarily chosen and can be easily
increased when ~he need arises. Requests from different programs can
be freely intermixed.

3. Need for additional functions

As one can see from the previous chapter, the current system con
stitutes a fixed master/slave re1a~ionship between two communicating
cbmputers, where the fron~-end processor is ~he master and ~he HP3000
is always the slave. This was satisfying for the first few appli
cations, but soon it turned out that a dynamic establishment of the
master/slave relationship and a more direct communication between

14 4

programs/processes in the vaxious machines would make many appli
cations easier to implement. In particular , it should be possible to
start an exchange of messages from any computer.

A general process to process communication across the entire distri
buted system seemed to be the most attractive solution. Of course, the
existing higher-level functions of our current system should not be

touched.

4. The BPIOOO message system

Portunately a system that fulfilled many of those needs had been
implemented in 1978/79. It was developed in our institute for the
inter-process communication (IPC) among the various on-line control
programs which are distributed within the two BPIOOO computers that
control the new microtron mentioned in chapter 1.

The communications protocol of the process-to-process layer is based
on the exchange of messages via just two operations: SEND and RECEIVE.

Messages have the same form whether beeing exchanged locally in one
computer or between the two computers. The participants of the com
munication are addressed by lO-bytes symbolic names. These are mapped
to target computer and process by the system.

Messages axe transmitted as sequences of fixed-length packets in a
store-and-foreward fashion. Each packet is 64 bytes long consisting of
a header (essentially sender and receiver addresses) and the data. The
packet transmission constitutes the computer-to~computerprotocol,
which is thus very simple and easy to standardize.

In addition, I/O requests to devices attached to remote computers are
transparently handled by using IPC between I/O drivers.

In summary, this message system enabled us to build a modular distri
buted control system. The modules (programs) axe explicitly portable
between the two computers by using the symbolic addressing scheme and
by the transparent I/O system. Thus programs can be freely redistri
buted on demand in a growing system, as our microtron control system
is.

14 5

5. The second generation communications system

Based on these ideas, we are currently in the process of implementing
a second generation of our communications system uniformly throughout
our distributed system. It will interconnect one BP3000 with three
SPI000's and one PE3220 computer.

The new system will also be an IPC system transmitting messages decom
positioned into packets. However as compared to the above application,
the system must be capable of higher data flows since the number of
data bytes per message will be laxger on the average. Therefore the
packet size will be increased to 128 bytes. On the other side there is
less need for a fUlly symbolic addressing capability and other over
head-generating features of the BPIOOO message system. Thus a higher
data throughput may be achieved. Some essential features of the new
system will be given below.

Prom an architectural viewpoint, messages between two processes will
be transmitted in our system by a store-and-forewaxd packet SWitching
mechanism.

splitting messages into a number of sma1ler packets has important
advantages:

a. Long messages do not necessarily monopolize a communication line.
They can be interleaved with packets from other (more urgent)
messages.

b. By using fixed length packets as the vehicle of message transfer,
it is easy to buffer messages prior to the actual transmission and
incoming messages before they are collected by their recipient.
Buffering space will be taken from a global packet pool common for
all ports of a particular computer.

c. Buffering separates nicely the lower communications layer, that
controls just the traffic of incoming and outgoing packets, from
the next higher layer, that consists essentially of the decom
position of messages into a series of packets (SEND operation),
the reconstruction of messages from a series of packets (RECEIVE

operation), and the mapping of symbolic addresses.

d. ~ store-and-foreward capability comes as a by-product from the
buffering.

14 6

7. Conclusion

In summary, even the current (first generation) system and the
dedicated HP~OOO message system have proved very valuable in many
daily applications. The second generation system, that will be avail
able on all our in-house (mini-)computer systems, will have an even
higher impact on man~ current and future applications. After 4 years
of experience with an own, custom designed, communica~ions system, we
feel that in our case this was the right way to go. Even today, there
is no communica~ions s~em commercially available ~hat would fulfill.
exactly all our needs. Having all the knowledge about the system in
house allows us quite easily to add new required function to the
system, as they arise. The fact that most modules of the system are
written in a high-level portable language makes it easy to put the
system on o~her computer families and integra~e them into our distri-

buted system.

Besides packe~ing/de-packe~ing, packe~ ~ransmission, and buffer
managemen~, ~he sys~em has ~o perform addi~ional moni~or func~ions on
~he participa~ing processes.

i. Processes mus~ be suspended and re-ac~iva~ed in ~he course of
SEND and RECEIVE reques~s.

ii. Time-out conditions may arise in RECEIVE as well as in SEND

requests; the former when an expected message is no~ received in
~ime, the latter when a transmitted message is not consumed by
the recipient in ~ime.

Prom the hardware point of view we will still have point-~o-point con
nections between ~he various computers in a s~ar configura~ion (with
~he exception that two BP~OOO sys~ems are connected directly with each
other), the BP3000 being ~he inner node. We will use ~he eXis~ing

hardware (~6 bi~ parallel plus some con~rol. l.in~s) wi~h Universal
Interfaces in the BP-compu~ers on both sides. However, as can be seen
from point c above, the kind of hardware is not that important for ~he

designed function of ~he whole system.

6. Implementation

To reduce programming time and to improve main~ainabili~y and
documen~ation of ~he system as well as portability we decided to write
as many as possible rou~ines in a high-l.evel language. Por ~he

non-BP3000 sys~ems we decided to use RATFOR [~], which is a PORTRAN
dialect that adds s~ruc~ured elements ~o FORTRAN-IV. The output of the
RATFOR preprocessor is s~andard FORTRAN-IV, which serves for the
portability of RATFOR programs. only few routines on the HP~OOO

systems are written in BP1000 Assembler.

The same approach will be taken for the PE3220 system, which will
replace the CDC~700 computer.

Since it is expected ~hat the HPjOOO will have ~he highes~ message
~raffic of all computers and since several routines have to perform
~heir tasks in privileged mode, we decided to write the BP3000 side in
SPL, a~ least ~he inner kernel with ~he mos~ time-critical parts of
~he system. This allows us ~o make ~he best use of the HP3000 archi
~ecture and its instruction set, thus lowering ~he time overhead
introduced by the ,packet SWitching architecture.

14 7

[~] B.-W. Kernighan, P.J. Plauger:
Publishing Co. ~976

Software Tools, Addison-wesley

14 8

	A Distributed Computer System Interconnecting HP3000, HP1000 and other Mini-Computers

