SYSTEM PERFORMANCE AND OPTIMIZATION TECHNIQUES

FOR _THE HP3000

Joun HuLMe

AppL1ED CYBERNETICS., INC.

H3 1

SYSTEM. PERFORMANCE AND OPTIMIZATION TECHNIQUES
FOR THE HP/3000
John Hulme
Applied Cybernetics, Inc.
Los Gatos, California
(408) 356-7296
INTRODUCTION

The purpose of this paper is to introduce the reader to certain
techniques which can improve system performance, throughput, and
run-time efficiency on HP/3000 computers. These improvements will
typically reduce response time substantially and generally increase
data processing productivity.

This paper will not simply tell you what to do and what not to do.

In many cases there are trade-offs involved and it is more important
tc understand the principles behind the techniques than the techniques
themselves. And because analogies often help us to learn by giving

us a new perspective, we will make use of a non-data-processing
illustration.

SOME BASIC PRINCIPLES

The first thing to understand is that any given computer can execute
a finite number of instructions in a fixed amount of time. When
that theoretical limit is reached, no amount of tuning can "squeeze"
extra instructions into the computer. For the most part, however,
computers do not bog down because we ask them to do too much, but
rather because we cause them to trip over themselves in the process
of doing it.

This leads to the second important principle: At anv moment the
computer is either 1) doing productive work. 2) getting ready to do
productive work, or 3) waiting on some external action before it can
proceed with productive work. As a program is initiated, thereby
causing a certain sequence of instructions to be executed, we will
call the execution of those instructions® "productive work". Whether
the "productive work"™ is really necessary or not, and whether it is
efficiently or inefficiently organized, are issues to be addressed
later. But a more significant fact of computer life is that usually
only a small percentage of the computer's time is spent executing
application program instructions.

A_CRUDE MODEL

To illustrate these principles, imagine a "library for the blind".

The librarian sits behind the desk waiting for a blind person to

walk into the library. This is the "waiging period". When the

blind person arrives, the '"getting ready period begins. The blind
person tells the librarian which book to retrieve and by one method

or another the book is retrieved. The librarian now begins the
"productive work" phase, reading to the blind person from the selected
book. When the reading is completed, the librarian may return the
book to the shelf or leave it on the desk. Then a new waiting

period begins.

I3 2

If the library is a busy one, we can imagine that one or more
assistants might be hired to transport the books between the librar-
ian's desk and the book shelves. Let's imagine that there is one
assistant for each wing of the library. The librarian can do more
productive work (reading to the patrons), spending less time getting
readv (still looking things up in the card catalog, but now dealing
with the assistants instead of transporting books). A new type of
waiting is introduced, however: waiting for assistants to bring
books back.

In this analogy, the librarian represents the computer's central
processing unit (CPU), by which all the productive work is accomplished.
Like our imaginary library, the HP/3000 has only one CPU. To improve
taroughput we must maximize the CPU's productive time.

cach patron represents a log-on session or jor. The librarian's desk
represents the computer's main memory. It is cf a limitecd size,
merely a workspace, in comparison to the stacks of book shelves which
correspond to the mass storage devices. Finally, each assistant
represents an i/o channel transferring data to and from disc, for
example.

While illustrating some important concepts, this analogy does no:
accurately model the run-time environment of the HP/3000, or any
other computer. How could we refine the model tc make it more realistic?

THE MODEL REFINED

At the risk of distorting the human situation, let me suggest four
refinements which make our model more nearly resemble the actual
computer processes:

1. The "library" should be regarded as a collection of

a) read only instruction manuals and reference tables (pro-
grams and constants) and

b) numerous loose leaf volumes (files) containing sheets of
current figures and data (records) which may be periodically
replaced, revised, removed, or added to.

2. The "librarian's " job should be generalized to include any type
of service that can be performed on the basis of preprinted
instructions and supplied data.

3. The computer always deals with a copy of whatever is stored on the
disc, and usually just a few records at a time. So let's imagine
that instead of asking a library assistant to fetch a particular
book, the librarian will specify a limited number of paragraphs
or data sheets and will ask the assistant to bring a photocopy
of the desired paragraphs (colored paper for instructions;
white paper for data).

4. Because the processing speeds of a computer are so great, our model
operates in slow-motion by comparison. Allowing that tne librar-
ian can do in one hour what an HP/3000 can do in one second (i.e.,
using the scale of one hour for each second), the assistant could
handle 20 to 60 requests per hour, and the equivalent of a 6C-word-
per-rinute typist cculd enter one character every 12 minutes. A
24CC-raud rate would be equivalent tc a maximur of S characters
transmitted per minute, and a €3C-line-per-minute printer would
correspond to one line every & minutes.

H3 3

SLOW-MOTION PERFORNMANCE SIMULATION

Visualize this scenario from the patron's point-of view (refer tc
figure 1): You walk into the library, find an empty cubicle (terminal),
and make yourself comfortable. You begin to formulate and transmit
your. library card number and password (log-on) at the rate of no more
than 5 characters per hour. (If it will relieve the agony, you may
imagine that you spend the time drawing very large, very elaborate
block letters). Depending on the facilities available in the
cubicle, you will either transmit each letter as it is formulated

or accumulate several characters (maybe even hundreds) and transmit
them in a burst. 1In either case, you transmit each letter separately
by ringing a bell, and, when you have the librarian's attention,
holding up the card with the letter on it. The librarian records
each character of your message on a notepad corresponding to your
cubicle, then continues with his other business. Finally you ‘send

a character which means "that's tne end of what I'm sending you".

The librarian eventually verifies that you are a qualified user of

tne library and sends you back a standard message which allows you to
proceed. This process may require the librarian to send his assistant
to the book shelves several times, e.g., to get a procedures manual,
index of users, table of passwords, welcome message, etc.

“book SWuives

Fious 4. The loca(y

H3 4

Next, you painstakingly tell the librarian the name of an instruction
manual (procrar) vou want him to follow in performing some service
for you. He has the assistant cet him a copy of tre first paracrag:
(segment) of the instruction manual (unless a copy happens to be
sitting somewhere or the desk already). He also gets & copy, ycur
own personal copy, of a worksheet (your data stack) associated witn
tre specific instruction manual you have specified.

In case there is not enough empty space on the desk for these papers,
the librarian first clears some space by either a) throwing away one
of the instruction sheets, b) having his assistant put the worksheet
for some other patron in a special holding file (virtual memory), or
c) having his assistant take one of the data sheets back to the
loose-leaf it was copied from and replace the original with the new
version.

The librarian now goes to work following the instructlons you have
rezuested. This will continue until a) he comes to a poirt in the
instructions which specifies he is to send certain information to
you and/or ask you for additional input; b) he comes to the end of
the page or is otherwise instructed to refer to another page, one
which is not currently on the desk ; c) the instructions require
that information be fetched from the book shelves, taken there
to be filed, or sent to some output device; d) a predefined lencth cf
time elapses (a 5CC microsecond quantum corresponds to one-half
hour in our model); or e) the librarian completes his assignment &nd
disposes of your worksheet.

In any of these cases, the librarian will go tack to work for one
of the other patrons, provided he has ali the resources nacessary
to do so. If not, he will wait {until the necessary information is
fetched by the assistant or transmitted by one of the patrons).
Depending on what you've asked the librarian to do, and how busy

ke is doing things for the other patrons, it may take hours or even
days before he gets back to you. But then again, it may take cays
for you to formulate the equivalent of one screen of input, too

(at the rate of 5 characters per hour).

THROUGH THE EYES OF THE CPU

Now let's reverse roles and look at the situation from the librar-
ian's perspective. Try to imagine yourself as a calm, unermotional,
purely methodical being who is never responsible for mistakes because
he does precisely as he is told. You couldn't care less if someone
gets poor response time; you aren't to blame, because you only rest
when there's nothing for you to do. In fact, you purpcsely set
things aside during peak demand periods to do in your spare time.

But you can't take credit for that either-- you're only following
directions from the MPE handbook.

There's the bell in cubicle five. He's holding up

2:02:17
Write it down on memo pad #5 (line buffer).

Ring!
the letter "R".

H3 5

2:08:20

18}
0
s

)

2:10:26

Here's the library assistant with the record session %12
requested. Oops! The worksheet for session #12 has been
set aside (swapped out to the system disc). Send the
assistant for it and wait a minute.

A ring from cubicle #8. That's a carriage return. Tire to
reinitiate session #&. Make a note to send the assistant
for the worksheet when he gets back.

v'ait some.
Wait some more.

Oh good, something to do (the okserver's feelingz, not
yours). A ring frorm cubicle #3. A "7". vrite it down.

Here's the assistant. Put worksheet #12 on the desk. Send
him back for worksheet #€~- no, there's not room for it.
Give him the worksheet for session #5 and send him to file
it (we're waiting for input from cubicle #5). We'll send
him for worksheet #8 next time.

Okay, now to cet to work on task #12. Firct set the ti
for 30 minutes. Now add I to J &and put the result in
i‘'ove W5 to W2. Move...hold it, there's anotner ring fron
#3. Say, that's only a few seconds...must be & block-mode
terminal. Write down the "9" and go back to work. FMove

X toe Y. Call the procedure "XFfORNM". Oh, it's on the des*
already-- it hardly ever gets tirown out, that's because
nearly every program uses 1it.

Another ring from cubicle #3. This time it's a minus sion.
Continue with "XFORM". Convert the first letter of Y to
upper-case. Now the second letter. Now the third. Now
the fourth. That's all. Return to the main progranm.
still in memory. Move the new Y to F2.

Another ring from cubicle #3. A field separator. Resure
task #12. Perform FLAG-SET sukroutine. It's in ancther
sa-—2nt, cne that's not in memory. lMake & note to sen1 for
it. 3Suspend task #12 for a minute.

Cubicle #3 again. Just a blank, but write it down anyway.
That's "7-2-minus-field separator-space'", so far.
The assistant has finished filing worksheet #5. Send him
now for worksheet #6.

Cubicle #3. Another space.

Interrupt from the printer saying the last line has printed
successfully. Now reactivate the spooler job-- it's instruc-
tions are still on the desk and so is the buffer cocntaining
the print-line. Initiate i/o transfer.

2-second wait.

H3

2:10:52

2:11:04

2:11:2€

2:11:4°

2:11:47
2:11:52

2:11:59

2:12:04

Comment ¢

Cubicle #3. A third space.
12-second wait.

Cubicle #3. A fourth space.
12-second wait.

Cubicle #3. A fifth space.
12-second wait.

Cubicle #3. A fielj-separator.
S-second wait.

Worksheet #8 is here.
FLAG-SET routine.

Send assistant to get a copy of
Now to process this input from cubicle #G&.
Edit first field. OK. Edit second field. OK. Iove first

field to R1.

Cubicle #3. The letter "H".

Move second field to K2. Edit third field. 1Isn't numeric
but should be. Transfer to error handler in same segment.

Cubicle #3. The letter "O".

Prepare output to tell cubicle #& acout error. Comment: I
a shame, but since he's in block-mode, he'll have to retra
mit the whole screen again, after correcting the error in
field 3. And who is to say other errors might not be detected
after that? And you, the librarian, can receive those €73
characters, one every 12 seconds for nearly three hours.

But you don't mind. 1It's only a jot.

Cubicle #3. The letter "V".

Finish putting error message in the output buffer. Initiate
transfer to cukicle #8. Mark task #E eligible to ke swapped
out.

Cubicle #11. The letter "P".

Cubicle #3. The letter "E".

FLAG-SET routine is here. Continue with task #12. [ove
1 to FLAG. Add 1 to COUNT. Exit back to mainline. What!
The assistant had to fetch a separate segment just so we
could do that?

Cubicle #11. Oh, oh. Two block-mode devices transmitting
at once! Record the letter "I".

Cubicle #3. The letter "R".

Stop, I've had enough of dinging bells! This place sounds like

a hotel lobby, not a library!

137

OBSERVATIONS

As this analogy indicates, there are three factors which reduce
overall system performance:

a. unnecessary disc i/o (most serious),

b. unnecessary terminal i/o (too common), and

C. unnecessary CPU usage (rarely the problem in an on-line environ-

ment.

EXCESSIVE DISC I/0

The primary cause of excessive disc i/o is inadeguate main memory

to hold the required work space (stack and data segments) for each
concurrent process, plus all frequently refrenced program segments,
plus a reasonable mix of infrequently referenced program segments.

The HP/3000 is very good at handling multiple concurrent users, even
when they won't all fit in memory together. 1In fact, the use of
virtual memory, combined with a well-designed algorithm for selecting
which segment to overlay, allows the system to operate efficiently
even in cases where a single program exceeds the limits of main memory.

The thing to remember, however, is that code segments put a relatively
small load on the system while data segments put a potentially disas-
trous load on the system. 1In the first place, code segments can be
split up and made as small as the programmer wants them to be.
Secondly, they do not have to be rewritten to virtual memory when the
main memory space is to be re-used; they are simply overlaid. Data
segments, cn the other hand, tend to expand, and can be spli: only
with difficulty. Since their contents may change, they must be
rewritten each time the process is swapped out, and reread each

time it is swapped back in. Finally, whatever data space is reauired
must be repeated for each process that is active. Therefore, if

you are supporting 20 terminals, any reduction in data requiremerts
would produce 40 times the benefit that an ecuivalent reduction in
ccde recuirements would produce.

Aside fror upzrading
c3n he averted by:

a. reducing the
option),

b. reducing the average stack or data segment size,

c. reducing the size of the average prcgram segment,

d. organizing prograr segments better so that out-of-segment
transfers occur less often to non-residen: segments and so
that often-used code is collected in compact segments that
are likely to stay in memory, or

e. some combination of the above.

to a larger machine, a shortazs of main mercry

number of concurrent processes (not an attractive

When adegjuate main memory is available, swapping is unnecessary,
and disc accesses (which are very expensive in terms of time) will
be expended strictly for data retrieval and storage. Once swapging
bezins, the computer's "productive" activities are at the mercy of
"waiting". In the worst case, "threshing" occurs, which means that
every time a session gets a turn at execution, either :he preogras
sement hzs been overlaid or the session's work space has been st
out.

H3 8

It is worth noting that the use of IMAGE (or of KSAL) causes the
allocation of extra data segments. Specifically, each IMAGE data
base that is open requires a data segment large enough to hold one
copy of the root file plus four complete data base buffers. If a
program accesses multiple data bases, or if the root file or buffers
are large, the memory requirements will be substantial, and with

many terminals running data base applications, the memory reguirements
can add up very quickly. Granted, the advantages of using a powerful
access method may outweigh the costs of additional memory demands,

but such tools should be used carefully and not indiscriminantly.

It should also be noted that the use of block-mode recuires extensive
buffers in the stack (at least as larce as the largest screen to

be transmitted). The use of VIEW/3230 may ada another 8300 bytes

of buffer in each user's stack, not to mention the extra data segments
created by its use of K3Al.. If you have 20 users, this amounts to
120K extra bytes of memory or more.

EXCESSIVE TERMINAL I/C

vajor causes of excessive terminal i/o include the_following: .

a. Transmitting unnecessary characters (trailing spaces, leading
zeroes, insignificant digits, etc.) to the computer, a
necessary conseguence of fixed-format or block-mode input.

b. Transmitting the same data to.the computer more than once,

as occurs in block-mode when a whole screen is retransmitted
to correct an error in a single field.

Retransmitting to the computer data which has not been changed
since it was received from the computer. Thiz too is thre
result of block-mode transmission. i

d. Repeatedly displaying prompts at the terminal instead of
using protected backcround forms.

Since each character of input consumes critical resources, every
effort should be made tc ensure that only significant data :Is
transmitted (nc extraneous zeroes Or spaces and only those fields that
are new or have been modified).

It is not only wasteful of computer power, but also destructive of
operator morale, to wait until a whole screen of data h§s been
entered and transmitted to the computer before discovering that
the screen is invalid due to a duplicate key or an unrecognized

search-item value, etc.

t is e~uzlly inefficient (for the computer, that is)ito display
of data, have the operator update a single value o]
ne-i+t the whcle screen back to the computer. In &n extrere crse.

c could amoun:t tc over a thousand characters transmitted just

change ore or two characters.

EXCESSIVE CPU USAGE

Besides the costly i/o overhead, it is altogether possible that a
retransmitted screen will be completely re-editted, values packed and
unpacked, and fields reformatted even though only a single field

was updated, and maybe even if nothing was updated. This is one
cause of unnecessary CPU usage.

Most editting and reformatting done in COBOL subroutines requires
excess usage to begin with, and it is far better to allow such werk

to be done in SPL subroutines, where it can be done efficiently.
Including such subroutines in the COBOL programs also causes bulkier
segments, which is likely to increase the need for swapping. The
best solution is to incorporate all editting within the terminal-
handling module itself, since it is already being shared by all
on-line programs and is therefore likely to remain constantly in

@ain memory. There are a multitude of factors which can unnecessarily
increase the so-called "productive work" which the CPU has to so.
Because computers are seldom CPU-bound in an on-line environment,

few people exert the effort to truly optimize CPU performance anymore.
Whenever it is a problem, more careful analysis of the proqram(s)

in question will usually yield a more efficient method of solving

the application problem.

Often, more careful analysis will also yield a better solution from
the point of view of disc i/o as well, both in terms of swapping,
code-segment switching, and data retrieval and storage. One word

of warning, however: more efficient solutions (CPU-wise) are very
often more complex, and to the extent that they increase stack space,
or code-segment size, or they require more transfers from one
code-segment to another, they may prove counter-productive.

One situation in which heavy CPU usage can be very detrimental is
when on-line processes are competing witn batch applications for

CPU resources. This can be vividly illustrated by running a COBOL
compile, an Editor GATHER ALL, a sort, or the BASIC interpreter at
the same time on-line programs are running. Block-mode applications
exhibit many of these same tendencies and can severely impede
response-time for character-mode applications when both types are
running concurrently.

SPECIFIC OPTIMIZATION TECHNIQUES

1. Resegment programs so that no segment exceeds %5200 words.
2. Set the blockmax parameter on IMAGE schemas as low as possible.
3. Use extra data segments where possible and free them up when finished,
rather than increasing stack space for large temporary cuffers.
4., Don't keep files cpen unnecessarily.
S. Don't acuse IMAGE:
a. eliminate sorted chains where possikle.
b. carefully evaluate tradeoffs of increasing or eliminating
secondary paths in detail data sets.
c. use "E;" or at least "*;" for itam lists wherever possitle.
d. only use binary keys (in master file) when overlapping
keys can be avoidid.

H3 10

e. don't let synonym chains get very long.

f. when loading master data sets, store only primaries on
the first pass, making a seccnd pass for secondaries.

g. keep master data sets less than 85% filled.

h. periodically reorganize detail data sets that have long
chains associated with a frequently-accessed path (puts
consecutive records in the same physical block).

i. keep the number of data sets in a data base as small as
practical without requiring many programs to open multiple
data bases.

j. keep INAGE record lengths to a minimum.

Have operators exit programs when not in use.

Use a field-oriented terminal handler whicn performs standard
edits for you.

Use formatted screens with protected backgrcund whenever the
application is appropriate to such use.

Keep terminal i/o buffers small; if possible, eliminate block-mode
i/o altogether. (Don't use block-mode and character-mode i/o at
the same time.)

Don't use VIEW without a lot of memory.

Don't use DEL at all.

Run CPU-intensive jobs (including compiles, preps, and Editor
GATHER ALL) when on-line applications are not running, or at least
run them in a lower-priority sub-queue.

Set the system guantum for a shorter period than recommended in the
MPE manual (but don't overdo it-- some experimentation may be
necessary).

APPLIED CYBERNETICS INC.

Information Management Specialists

224 Camino dei Cemro. LosGatos. CA. 95030
408 3567296

H3 11

	System Performance and Optimization Techniques for the HP3000

