
SYSTEM PERFORMANCE AND OPTIMIZATION TECHNIQUES

FOR THE HP3000

JOHN HULME

ApPLIED CYBERNETICS, INC.

H3 1

SYSTEIv: PERFORr-iANCE AND OPTIMIZATION TECHNIQUES
FOR THE HP/3000

John Hulme
Applied Cybernetics, Inc. ,

Los Gatos, California
(408) 356-7296

INTRODUCTION

The purpose of this paper is to introduce the reader to certain
techniques which can imorove system performanc~ throughput, and
run-time efficiency o~ HP/3000 computers. These improvements will
typically reduce response time substantially and generally increase
=ata processing productivity.

This paper will not simply tell yOU what to do and what not to do.
In many cases there are trade-offs involved and it is more important
to understand the principles behind the techniques than the techniques
themselves. And because analogies often help us to learn by giving
us a ne~J perspective, we will make use of a non-data-processing
illustration.

SO~E BASIC PRINCIPLES

The first thing to understand is that any given computer can execute
a finite number of instructions in a fixed amount of time. When
that theoretical limit is reached, no amount of tuning can "squeeze"
extra instructions into the computer. For the most part'. however,
computers do not bog down because we ask them to do too much, but
rather because we cause them to trip over themselves 1n the process
of doing it.

This leads to the second important principle: At any moment the
computer is either 1) doing productive work. 2) getting ready to do
productive work, or 3) waiting on some external action before it can
proceed with productive work. As a program is initiated, thereby
causing a certain sequence of instructions to be executed, we will
call the execution of those instructions· "oroductive work". Whether
the "productive work" is really necessary or not, and whether it is
efficiently or inefficiently organized, are issues to be addressed
later. But a more significant fact of computer life is that usually
only a small percentage of the computer's time is spent executing
application program instructions.

A CRUDE MODEL

To illustrate these principles, imagine a "library for the blind".
The librarian sits behind the desk waiting for a blind person to
walk into the library. This is the "wai~ing period". When the
blind person arrives, the "getting ready Iperiod begins. The blind
person tells the librarian which book to retrieve and by one method
or another the book is retrieved. The librarian now begins the
"productive work" phase, reading to the blind person from the selected
book. When the reading is completed, the librarian may return the
book to the shelf or leave it on the desk. Then a new waiting
period begins.

113 2

SLOW-MOTION PERFORFiANCE SIMULATION

'*"

~_I

_I

,,-I

)

____I

The librarian eventually verifies that you are a qualified user of
t~e library and sends you back a standard message which allows you to
proceed. This process may require the librarian to send his assistant
to the book shelves several times, e.g., to get a procedures manual,
index of users, table of passwords, welcome message, etc.

Visualize this scenario from the patro~s point-of view (refer tc
figure 1): You walk into the library, find an empty cubicle (terminal),
and make yourself comfortable. You begin to formulate and transmit
you~ library card number and password (log-on) at the rate of no more
than 5 characters per hour. (If it will relieve the agony, you may
imagine that you spend the time drawing very large, very elaborate
block letters). Depending on the facilities available in the
cubicle, you will either transmit each letter as it is formulated
or accumulate several characters (maybe even hundreds) and transmit
them in a burst. In either case, you transmit each letter separately
by ringing a bell, and, when you have the librarian's attention,
holding up the card with the letter on it. The librarian records
each character of your message on a notepad corresponding to your
cubicle, then continues with his other business. Finally you'send
a character which means "that's the end of what I'm sending you".

At the risk of distorting the human situation, let me suggest four
refinements which make our model more nearly resemble the actual
computer processes:
1. The "library" should be regarded as a collection of

a) read only instruction manuals and reference tables (pro
grams and constants) and

b) numerous loose leaf volumes (files) containing sheets of
current figures and data (recorqs) which may be periodically
replaced, revised, removed, or added to.

2. The "librarian's" job should be generalized to include any type
of service that can be performed on the basis of preprinted
instructions and supplied data.

3. 7he computer always deals with a CODY of whatever is stored on the
disc, and usualLy just a few recoras-at a time. So let's imagine
that instead of asking a library assistant to fetch a particular
book, the librarian will specify a limited number of paragraphs
or data sheets and will ask the assistant to bring a photocopy
of the desired paragraphs (colored paper for instructions;
white paper for data).

4. Because the processing speeds of a co~puter are so great, our model
operates in slow-motion by comparison. Allowing that tne librar
ian can do in one hour what an HP/3000 can do in one second (i.e.,
usina the scale of one hour for each second), the assistant could
handle 20 to 50 requests per hour, and the equivalent of a 60-word
per-~inute typist could enter one character every 12 ~inutes. A
2~C2-~aud rate would be equivale~t to a maxi~ur of 5 c~aracte=s

trans~:tted per minute, and a 6JO-line-per-minute printer would
correspond to one line every 6 minutes.

THE MODEL REFINED

In this analogy, the librarian represents the computer's central
processing unit (CPU), by which all the productive work is acc~mplished.

Like our imaginary library, the HP/30GO has only one CPU. To 1mprove
t~roughput we must ~aximize the CPU's productive time.

2ach patron represents a log-on session or joe. T~e librarian's desk
represents the computer's main memory. It is cf a limited size,
merel" a workspace, in comparison to the stacks ·:>f book shel ves which
corre~pond to the mass storage devi~es. Finally, each as7istant
re~resents an i/o channel transferr1ng data to and from d1SC, for
example.

While illustrating some important concepts, this analogy does not
accurately model the run-time e~vironment of the HP/30~O, or any .~.?
other computer. How could we refine the model tc make 1t more real1s~~c.

If the library is a bUsy one, we can imagine that one or more .
assistants might be hired to transport the books between the l~brar

ian's desk and the book shelves. Let's imagine that there is one
assistant for each wing of the library. The librarian can do more
prod~ctive work (reading to the patrons), spending less time get~ing

readY (still lo~king things up in the card catalog, but now dea11ng
~the assistants instead of transporting books). A new type of
waiting is introduced, however: waiting for assistants to brin~

:,ooks back.

H3 3 H3 4

Next, you painstakingly tell the librarian the na~e of an instructio~

ma~ua] (proqra,,) you want him to follow in perfor~ing so~e service
for you. He has the assistant get him a copy of t~e first para~rap

(se~~ent) of the instruction manual (unless a copy happens to be
sitfing so~ewhere on the desk already). He also gets a copy, your
own personal copy, of a worksheet (your data stack) associated wit~

the specific instruction manual you have specified.

I~ case there is not enough empty space on the desk for these papers~

the librarian first clears some space by either a) throwing away one
of the instruction sheets, b) having his assistant put the worksheet
for some other patron in a special holding file (virtual me~ory), or
c) having his assistant take one of the data sheets back to the
loose-lea: it was copied from and replace the original with the nevi
version.

The libraria~ now goes to work following the instruct:ons you have
resuested. This will continue until a) he comes to a poirL in the
instructions w~ich specifies he is to send certa~n infor~ation to
you and/or ask you for additional input; b) he comes to the end c~

the page or is otherwise instructed to refer to another page, one
whicr. is not currently on the desk; c) the instructions reqGire
that information be fetched from the book shelves, taken there
to be filed, or sent to some output device; d) a predefined lengtr: cf
time elapses (a SOC microsecond quantum corresponds to one-half
ho~r in our model); or e) the librarian completes his assignffient and
c:sposes of your worksheet.

In any of these cases, the librarian will go back to work ror one
of the other patrons, provided he ha~ all the resources necessary
to do so. If ~ot, he will wait (until the necessary information is
fetched by the assistant or transmitted by one of the patrons).
Depending on what you've asked the librarian to do, and how busy
he is doing things for the other patrons, it may take hours or even
days before he gets back to you. But then again, ~t ~ay take days
for you to formulate the equivalent of one screen of input, too
(at the rate of 5 characters per hour).

T~ROUGH THE EYES OF THE CPU

Now let's reverse roles and look at the situation from the librar
ian's perspective. Try to imagine yourself as a calm, unemotional,
purely methodical being who is never responsible for mistakes bec3use
he does precisely as he is told. You couldn't care less if someone
gets poor response time; you aren't to blame, because you only rest
when there's nothing for you to do. In fact, you purposely set
things aside during peak demand periods to do in your spare ti~e.

But you can't take credit for that either-- you're only following
directions from the MPE handbook.

2:08:17 Ring! There's the bell in cub~cle five. He's holding up
the letter "R". "Jrite it down on memo pad #5 (line buffer).

H3 5

2:08:20 Here's t~e library assistant with the record session #12
requested. OOpS! The worksheet for session #12 has b~2n

set aside (swapped out to the syste~ di5c). Send the
assistant for it and wait a minute.

2:J~:24 A ring from cubicle #8. That's a carriage return. Ti~e tu
reinitiate session #2. Make a note to send the assisiant
for the worksheet when he gets back.

2:2E:2~ ~ait some.

2:C9:0C Wait some more.

2:~~::~ Oh good. something to do (the observer's feelin~s, not
yours). A ring fror.~ cubicle #3. A ""7". ~oJrite it do\o:n.

2:J?:2C Here's the assista~t. Put worksheet #12 on the desk. Send
~im back for worksheet #8-- no, there's not room for it~

Give him the worksheet for session #5 and send him to file
it (we'~e waiting for i~put from cub~cle #5). We'll send
~ir. for worksheet #8 next time.

2:~?:~~ Okay, r.o~ to get to work on task #12. Fir~t set the ti~E~

for 30 minutes. Now add I to J end put the res'..:l:' in r~.

2:J~:2E ~ove W6 to W2. Move ••• hold it, there's another ring fro~

#3. SaY, that's only a few seconds ••• must be a block-mode
terminai. vJri te dow~ the "9" and 00 back to work. r':ove
X to Y. Call the procedure "XFORl<'-;. Oh, it· s on the de.s ':
already-- it hardly ever gets t~rown out, that's because
nearly every program uses it.

2:C?:~: Another ring from cubicle #3. This time it's a ~inus sign.
Continue wi th "XFORr·~". Conve!"t the first letter of Y to
upper-case. Now the second letter. Now ~he t~i~d. Nc~

the fourth. That's all. Return to the ~ain progra~. ::'s
still in ~emory. ~ove the new Y to F3.

Z:JJ:52 Another ring from cubicle #3. A field separ3to~. Resu~e

task #12. Perform FLAG-SST subroutine. !~'s in anct~er

.3c---e:t, O:'1e that's not in memory. r-:ake a note to senj :or
~:. 3~spe~d task #12 for a mi~ute.

2:12:C4 Cubicle ~3 aaain. Just a blank, but write it down anyway.
Tha t' s "7-?-~inus-f ield separa tor-space", so far.

2::J:14 The assistant has finished filing worksheet #5. Se~d hi~
now for worksheet #6.

2:18:16 Cubicle #3. Another space.

2:10:19 Interrupt from the printer saying the last line has orintec
successfully. Now reactivate t~e spooler job-- it's' instr~c
tio!1s are still on the desk and so is t~e buffer containing
the print-line. Initiate i/o transfer.

2:10:26 2-second wait.

H3 6

2:10:28 Cubicle #3. A third space.

12-second wait.

2:10:40 Cubicle #3. A fourth space.

12-second \olai t.

2:10:52 Cubicle #3. A fifth space.

12-second wait.

2:11:04 Cubicle #3. A fielj-separator.

5-second wait.

2:11:C9 Worksheet #8 is here. Send assistant to get a copy of
FLAG-S2T routine. Now to process this input fro~ cubicle #S.

Edit first field. OK. Edit second field. OK. Kove first
field to R1.

2:11:!5 Cubicle #3. The letter "H".

Move second field to K2. Edit third field. Isn't nu~eric

but should be. Transfer to error handler in sa~e seg~ent.

2:11:2E. Cubicle #3. The letter "0".

Prepare output to tell cubicle #E about error. Comment: ltis
a shame, but since he's in block-mode, he'll have to retrans
mit t~e whole screen again, after correcting the error i~

field 3. And who is to say other errors might not be detected
after that? And you, the librarian, can receive t~ose 873
characters, one every 12 seconds for nearly t~ree hours.
But you don't mi~d. It's only a joe.

2:11:4~ Cubicle #3. The letter "V".

Finish putting error message in the output buffer. Initiate
transfer to cuticle #8. ~ark task #E eligible to be swapped
out.

2:11:47 Cubicle #11. The letter "P".

2:11:52 Cubicle #3. The letter "E".

FLAG-SET routine is here. Continue with task #12. ~ove
1 to FLAG. Add 1 to COUNT. Exit back to mainline. What!
The assistant had to fetch a separate segment just so we
could do that?

2:11:59 Cubicle #11. Oh, oh. Two block-mode devices transmitt~ng
at once! Record the letter nIne

2:12:04 Cubicle #3. The letter I!R".

Comment: Stop, I've had enough of dinging bells! This place sounds like
a. hotel lobby, not a library!

113 7

OBSERVATIONS

As this analogy indicates, there are three factors which reduce
overall system performance:

a. unnecessary disc i/o (most serious),
b. unnecessary terminal i/o (too com~on), and
c. unnecessary CPU usage (rarely the problem in an on-line environ

ment.

EXCESSIVE DISC I/O

The primary cause of excessive disc i/o is inadeguat~ main ~emory

to hold the required work space (stack and data segments) for each
concurrent process, plus all frequently refrenced program segments,
plus a reasonable mix of infrequently referenced program segments.

The HP/3000 is very good at ~andling multiple concurrent users, even
when they won't all fit in memory together. In fact, the use of
virtual memory, combined with a well-designed algorithm for selecting
which segment to overlay, allows the system to operate efficiently
even in cases where a single program exceeds the limits of main memory.

The thing to remember, however, is that code segments put a relatively
small load on the system while data segments put a potentially disas
trous load on the system. In the first place, code segments can be
split up and made as small as the programmer wants them t~ be.
Secondly, they do not have to be rewritten to virtual memory when the
main memory space is to be re-used; they are simply overlaid. Data
segments, en the other hand, tend to expand, and car. be split only
with difficulty. Since their contents may change, they must be
rewritten each time the process is swapped out, and reread each
ti~e it is swapped bacl~ in. Finally, whatever data space is required
must be repeated for each process that is active. ThereforG, if
you are supporting 20 terminals, any reduction in data requirerr.e~ts

would produce 48 times the benefit that an ecuivalent red~cti0n in
cede re'::'J iremer:ts wou ld produce. .

,:"3 :'de fror. up~ r=d':' no to a 1:rger mach ine, a sr--.or-ta ~e 8: :':"'ai ~ :neT'".~=-:

C3n ~e avertea ~y: -
a. reduci~g the nu~ber of concurrent processes (not an attract:ve

option) ,
t. reducing the average stack or data seg~ent size,
c. reducins the size of the average prcgram seg~ent,

d. organizing progra~ segments better so that out-of-se~~ent

transfers occur less often to non-resident segments and so
that often-used code is collected in co~pact seg~er.ts that
are likely to stay in memory, or

e. some combination of the above.

When adeq~ate main me~ory is available, swapping is unnecess3ry,
and disc accesses (w~ich are very expensive in terms c~ ti~e) will
be expended strictly for data retrieval and storage. Once swap~:n~

be;:: ins , the computer's "productive" activities :re at t~e :.:ercy of
"waiting". In the worst case, "threshing" occurs, v/r.icr. means t:-:at
every time a session gets a turn at execution, eit~er t~e progru~

seffien~ has been overlaid or the session's work space has bee~ swa;~ed

out.

H3 8

It is worth noting that the use of I~AGE (or of KSAE) causes the

allocation of extra data segments. Specifically, each I~~GE data

base th~t is open requires a data segment large eno~gh to hold one

copy of the root file plus four complete ~ata base ~uf~ers. If a

progra~ accesses multiple data bases, or ~f the roo~ f~le or ~uffers

are large, the memory requirements wi~l b~ substant~al, and W~~h

many terminals running data base appl~cat~ons, the memo~y re~u~rements

can add up very quickly. Granted, the advantages of us~ng a powerful

access method may outweigh the costs of addition~l ~emo~y.deman9s,

but such tools should be used carefully and not ~nd:scr~~~nantly.

It should also be noted that 'the use of block-mode re~uires extens:'ve

buffers in the stac~ (at least as large as t~e largest screen to

be trans~itted). The use of VIEW/32J2 may add another 6J00 bytes

of buffer in each user's stack, not to mention the extra data seg~ents

created ~\' its use of KEAL. If you have 20 users, this amounts to

1201< extra bytes of memory or more.

EXCESSIVE TER~INAL I/O

Major causes of excessive terminal i/o include t~e.following: . ~

a. Transmitting unnecessary characters (tralilng spaces, leadln~

zeroes insignificant digits, etc.) to the computer,.u

necess~ry consequence of fixed-format or block-mode lnput.

b. Transmitting the same data to.the computer m~re than on~e~

as occurs in block-mode w,en a w~ole screen ~s retransmlt~ed

to correc~ an error in a single field.
c. Retransmitting to the computer data which ha~ not b 7en changed

since it was received from the computer. ThlZ too ~s t~e

result of block-mode transmission. .._

d. Repeatedly displaying prompts at the term~nal ~nstccd of

using protected bac!~ground forT:1s.. . . c: every

Since each character of input consumes cr~t~ca~~~esource~,

effo~t should be made to ensure that only s~gn~.lcant da_3 is

tran~mitted (no extraneous zeroes or space~ and only those fields t~=t

are new or have been modified).

It is not only wasteful of computer power, but also destructive of

o erator morale, to wait until a whole screen of.duta h~s~bee~

e~tered and trans~itted to the computer before d~scoverl~~ ~h~t
the screen is i~valid due to a duplicate key or a~ unreco;nlzed

search-item value, etc.

~ tha~ is) ~o dis~'a'"

It is e~·.J~lly inefficient (for the compu,-er, ~. - - I ... '-I ~!,,",..;"':

a cre-::-: of d5t3. have the operator update a s_ngle Value c .. ·..

~~ ns-~~ t~e w~c e scree~ back to the co~puter. :~ an.extre:e c~se.

t~ s c=~ld a~0un tc over a t~ous~~d characters tra~s~ltted Just

t~ c~ange o~e or two c~aracters.

H3 9

EXCESSIVE CPU USAGE

Besides the costly i/o overhead, it is altogether possible that a

retransmitted screen will be completely re-editted, values packed and

unpacked, and fields reformatted even though only a single field

was updated, and maybe even if nothing was updated. This is one

cause of unnecessary CPU usage.

Most editting and reformatting done in COBOL subroutines requires

excess usage to begin with, and it is far better to allow such work

to be done in SPL SUbroutines, where it can be done efficiently.

Including such subroutines in the COBOL programs also causes bul~:ier

segments, which is likely to increase the need for swapping. The

best solution is to incorporate all editting within the terminal

handling module itself, since it is already being shared by all

on-line programs and is therefore likely to remain constantly in

main memory. There are a multitude of factors which can unnecessarily

increase the so-called "productive work" which the CPU has to so.

Because computers are seldom CPU-bound in an on-line environment,

few people exert the effort to truly optimize CPU performance any~ore.

Whenever it is a problem, more careful analysis of the prograrr.(s)

in question 'will usually yield a more efficient method of solving

the application problem.

Often, more careful analysis will also yield a better solution from

the point of view of disc i/o as well, both in terms of swapping,

code-segment SWitching, and data retrieval and storage. One word

of warning, however: more efficient solutions (CPU-wise) are very

often more complex, and to the extent t~at they increase stack space,

or code-segment size, or they require more transfers from one

code-segment to another, they may prove counter-productive.

One situation in which heavy CPU usage can be very detrimental is

w~e~ on-line processes are competing wit~ batch applications for

CPU resources. This can be vividly illustrated b·... running a COBOL

compile, an Editor GATHER ALL, a sort, or the BASIC interpreter at

t~e same time on-line programs are running. Block-mode applications

exhibit many of these same tendencies and can severely impede

response-time for character-mode applications When both types are

running concurrently.

SPECIfIC OPTI~IZATION TECHNIQUES

1. Resegment programs so that no segment exceeds %5000 words.

2. Set the blockmax parameter on I~AGE sche~as as low as possible.

3. Use extra data segments where'possible and free t~e~ u~ ~he~ fir.ished,

rat~er than increasing stack space for :arge te~porary tuffers.

4. Don't keep files open unnecessarily.
5. Don't abuse I~~SE:

a. eliminate sorted chains Where poss:.tle.

~. carefully evaluate tradeoffs of increasing or eli~inating

seco~da~y paths ir. detail data sets.

c. use "@:;" or at least ,q;" for i te:r lists ,·.::-.erever possi::~le.

d. only use binary keys (in master file) when overlapping

keys can be avoidid.

H3 10

e. don't let synonym chains get very long.
f. when loading master data sets, store only primaries on

the first pass, making a seccnd pass for secondaries.
g. keep master data sets less than 85% filled.
h. periodically reorganize detail data sets that have long

c~ains associated with a frequently-accessed path (puts
consecutive records in the same physical block).

i. keep the number of data sets in a data base as small as
practical without requiring many programs to open multiple
data bases.

j. keep I~AGE record lengths to a minimum.
6. Have operators exit programs when not in use.
I. Use a field-oriented terminal handler whicn performs standard

edits for you.
~. Use for~atted screens with protected backg~ound whenever the

application is appropriate to such use.
~. Keep terminal i/o buffers small; if possible, eliminate block-mode

i/o altogether. (Don't use block-mode and character-mode i/o at
the same time.)

1:. Don't use VIE~ without a lot of memory.
11. Don't use DEL at all.
12. Run CPU-intensive jobs (including compiles, preps, and Editor

GATHER ALL) when on-line applications are not running, or at least
run them in a lower-priority sub-queue.

13. Set the syste~ quantum for a shorter period than recommended in the
~PE manual (but don't overdo it-- some experimentation may be
necessary) •

*APPLIED CYBERNETICS INC.
Information Management Specialises

ll4Caminodei Ceno. LosGMos. CA. 95030
408 35().7296

H3 }]

	System Performance and Optimization Techniques for the HP3000

