
GREG GLOSS

HEWLETT - PACKARD INFORMATION NETWORKS DIVISION

HI 1

ANSI COBOL 198x: The Story behind the Headlines

Greg Gloss
Hewlett-Packard Information Networks Division

ABSTRACT

The ANSI (American National Standards Institute) X3J4 technical
committee is in the final stages of its work on the next version
of the COBOL standard. This paper will discuss some of the major
new features which are expected to be included such as structured
programming constructs together with those items which will no
longer be allowed in the next standard. Some background
explaining the reason the committee chose to make some of the
changes will be included. In addition, the standardization
process will be covered briefly.

BACKGROUND

The current version of ANSI COBOL was adopted in 1974. Since
1977, the ANSI X3J4 committee has been working on the next
version of the COBOL standard. Since it is not clear how 1 ~ng

this process will take, I will refer to the next standard as
COBOL 18X.

OVERVIEW

The next standard will have changes in the following categories:

a. New Features
b. Transitional Features
c. Deleted Features
d. Specification Changes
e. New Reserved Words

A significant effort has been put into incorporating structured
programming constructs into COBOL. In addition, other new
facilities have be0n added to make programming in COBOL easier.
Some current features have been flagged for deletion either in
the new standard or in the subsequent standard. Those features
which are in the new standard, but which are not expected to be
in the subsequ~nt standard are called transitional. There have
also been some changes to the rules and additional reserved words
includ d which may affect existing programs.

STRUCTURED PROGRAMMING

The new structured programming constructs which have been defined
for COBOL include Scope Terminators, nested programs, PERFORM
statement enhancements, the EVALUATE statement, and the CONTINUE
stateiHt'nt.

HI 2



Statements]
EVALUATE HOURS-WORKED EXEMPT

WHEN 0 ANY PERFORM NO-PAY
WHEN 1 THRU ijO ANY PERFORM REG-PAY
WHEN 41 THRU 80 "N II PERFORM OVERTIME-PAY
WHEN 41 THRU 80 lIy lI PERFORM REG-PAY
WHEN OTHER PERFORM PAY-ERROR.

Scope Terminators

Under COBOL '74, conditional statements could not be included
with the statement group following a conditional phrase such as
AT END or ON SIZE ERROR. New reserved words have been added such
that any conditional statement can be turned into an imperative
statement and used as part of the conditional statement group.
For example,

READ FILE-IN AT END
ADD A TO B ON SIZE ERROR

PERFORM OVERFLOW-ROUTINE
END-ADD
MOVE SPACES TO REC-IN.

Under COBOL 174, it is not legal to specify the ON SIZE ERROR
phrase in the above example because it turns the ADD statement
into a conditional statement and only imperative statements are
allowed following the AT END phrase. However, with the scope
terminator, END-ADD, the ADD statement with the SIZE ERROR option
becomes an imperative statement and is legal in this situation.
The MOVE statement is the second imperative statement to be
executed if the AT END branch is taken and the period terminates
the READ statement. If the READ itself were nested under a
conditional such as an IF, it would be terminated by an END-READ
instead of the period.

Nested Programs

The nested program facililty allows programs to be contained
within other programs so that global data may be easily shared
and the program structure and relationships-specified. In the
following example, program B is contained within program A.

IDENTIFICATION DIVISION.
PROGRAM-ID. A.
ENVIRONMENT DIVISION.
DATA DIVISION.

[Global Data Declarations]
PROCEDURE DIVISION.

[Program A Procedure Division
IDENTIFICATION DIVISION.
PROGRAM-ID. B.
ENVIRONMENT DIVISION.
DATA DIVISION.

[Local Data Declarations]
PROCEDURE DIVISION.

[Program B Procedure Division Statements]
END PROGRAM B.
END PROGRAM A.

HI 3

Program A may call program B; however, program B cannot call
program A. Program B can access data in program A which is
declared as GLOBAL unless program B contains a local data item
of the same name.

PERFORM Statement Enhancements

The PERFORM statement has been enhanced to allow a list of
imperative sta~ements to be embedded within the statement instead
of paragraph names and to allow the programmer to specify whether
the UNTIL conditions are to be tested before or after the
specified set of statements has been executed.

An example of an in-line PERFORM is shown below:

PERFORM 10 TIMES
ADD A TO B
ADD 1 TO A

END-PERFORM.

The two ADD statements will be executed 10 times.

Under COBOL 174, the UNTIL conditions are always tested before
executing the specified paragraphs. The new specifications will
allow the test to be made afterwards. For example,

PERFORM READ-LOOP
WITH TEST AFTER
UNTIL EOF-FLAG.

Control will always transfer to READ-LOOP at least once. The
test option may also be specified with an in-line PERFORM.

EVALUATE Statement

The EVALUATE statement adds a multi-condition CASE construct to
COBOL. The EVALUATE statement causes a set of sUbjects to be
evaluated and compared with a set of objects. If the comparisons
are all true, a specified group of statements is executed. For
example,

The above example evaluates two data items, HOURS-WORKED and
EXEMPT. If HOURS-WORKED is 0, any value for EXEMPT will
be true and NO-PAY will be performed. If HOURS-WORKED is between
1 and 40, REG-PAl will be performed. If HOURS-WORKED is between

Hi 4



41 and 80 and EXEMPT contains "N", OVERTIME-PAY will be
performed. If HOURS-WORKED is between 41 and 80 and EXEMPT
contains a lIy", REG-PAY is performed. If none of the above
conditions are true, PAY-ERROR is executed.

CONTINUE Statement

The CONTINUE statement is a no operation statement which
indicates that no executable statement is present. It may be
used anywhere a conditional statement or an imperative statement
may be used. For example,

(

IF A ( B THEN
IF A ( C THEN

CONTINUE
ELSE

MOVE ZERO TO A
END-IF
ADD B TO C.

SUBTRACT C FROM D.

The CONTINUE statement allows control to go to the ADD statement
following the IF when A is less than C. If the NEXT SENTENCE
option had been used, control would have transferred to the
SUBTRACT statement instead.

OTHER NEW FEATURES

There is a long list of other new features which should make the
job of the COBOL programmer easier. The more significant
ones are listed here.

Reference Modification

Reference modification allows you to reference a portion of
a data item by specifying a leftmost character position and a
length. For example,

MOVE A (3:5) TO B.

will move the third through seventh characters of A to B.

05 JOB-TITLE PIC X(20).

The following INITIALIZE statements in the Procedure Division
could be used to put values into the record:

INITIALIZE RECORD-l REPLACING NUMERIC BY ZERO.
INITIALIZE RECORD-l REPLACING ALPHANUMERIC BY SPACES.

The effect would be the same as:

MOVE ZERO TO EMP-NO EMP-PAY.
MOVE SPACES TO EMP-NAME JOB-TITLE.

De-editing

Under COBOL '74, it is not legal to move from an edited field
to a numeric or numeric edited field. The new specifications
will allow moving from a numeric edited item to either a numeric
or numeric edited item. The edited item which is the sending
item will be converted to its numeric value and moved to the
receiving field.

REPLACE Statement

The REPLACE statement function is similar to that of a COPY ...
REPLACING except that the REPLACE statement operates on all
source program text, not just text in libraries. Thus, if one
of the new reserved words is used heavily in an existing
program, you may want to use a REPLACE statement to change it.
For example,

REPLACE ==TEST== BY ==TESTT==

will replace all subsequent occurrences of TEST by TESTT in the
source program until another REPLACE statement, a REPLACE OFF
statement, or the end of the source program.

Optional FILLER

The word FILLER is now optional for data items which need not
be named.

INITIAL Attribute

INITIALIZE Statement

The INITIALIZE statement provides the ability to set selected
types of data fields to predetermined values. Assume RECORD-l
was described as follows:

01 A.
05
05

B PIC X( 5) .
PIC X(S) VALUE "NAME:".

01 RECORD-I.
05 EMP-NO
05 EMP-NAME
05 EMP-PAY

PIC 9(6).
PIC X( 20) .
PIC 9(5)V99.

HI 5

The INITIAL clause in the PROGRAM-ID paragraph indicates that
every time the program is called, the internal data is
initialized. This function is the same as the $CONTROL DYNAMIC
option on the HP-3000.

HI 6



The following SET statements could be used:

SET SWITCH-1 TO ON.
SET EOF-FLAG TO TRUE.

PROGRAM-ID. SUB-PROG INITIAL.

EXTERNAL Attribute

The EXTERNAL clause specifies that a data item or file is
available to every program in the run unit which describes the
data item or file.

01 READ-FLAG
88 EOF-FLAG

PIC 9.
VALUE 1.

FD FILE-l IS EXTERNAL.

SYMBOLIC CHARACTERS Clause

The SYMBOLIC CHARACTERS clause in the SPECIAL-NAMES paragraph of
the Environment Division allows the programmer to equate a name
to a specific character. This feature can be useful for
non-printable characters. For example,

SYMBOLIC CHAkACTERS BELL IS 7, CARRIAGE-RETURN IS 13.

This clause would allow a MOVE statement such as

MOVE BELL TO A.

ADD Statement Enhancement

Under COBOL '74, the ADD statement allows either a TO or a
GIVING format, but a statement of the form

ADD A TO B GIVING C

is not allowed. The new specifications will allow the TO
before the last operand when the GIVING option is used.

Alphabetic Tests

Two new alphabetic class tests have been defined:

1. ALPHABETIC-UPPER will be true if the data item being
tested contains only A-Z and spaces.

2. ALPHABETIC-LOWER will be true if the data item being
tested contains only a-z and spaces.

SET Statement Enhancements

The SET statement has been enhanced to allow the setting of
external switches either on or off and condition-names to true.
For example, given the following declarations:

SWO IS SWITCH-l

HI 7

The second SET statement is equivalent to:

MOVE 1 TO READ-FLAG.

TRANSITIONAL CATEGORY

There are some features of the current standard which are
scheduled for a phased deletion. Implementations must still
support these features in the new standard, but not in the
subsequent standard.

One of the most visible areas of change in the transitional
category is in the realignment of file related clauses. The
Environment Division is intended for machine dependent functions
and the Data Division for machine independent functions.
However, the placing of some clauses in the current COBOL '74
standard does not conform to this concept. Therefore, certain
clauses have been moved from the file control entry in the
Environment Division to the file description entry in the Data
Division and vice versa. The old locations are specified as
transitional elements so implementations of the new standard must
support programs which contain the clauses in either th~ old or
the new locations. The following Environment Division clauses
are included in the transitional category:

FILE-STATUS
RECORD KEY
ALTERNATE RECORD KEY
ACCESS MODE

The following Data Divison clauses are included in the
transitional category:

BLOCK CONTAINS
CODE-SET

The Identification Division paragraphs are included in the
transitional category in favor of the more general comment
facility (* in column 7). Part of the reason for this change
is the problem with the use of the word COpy in these
paragraphs. It is not clear whether COpy in a comment entry
is intended to be a COpy statement or is merely part of the
conunent.

HI 8



The INSPECT ... TALLYING ... REPLACING format of the INSPECT
statement is included in the transitional category since
the same function can be accomplished with two separate
INSPECT statements.

DELETED FEATURES

The following features are not included in the next standard:

This change was required because of the desire to minimize the
portability problems caused by implementor-defined reserved
words. Under the COBOL 174 standard, the implementor could
reserve the words used for switches, alphabet-names, and
output advancing controls. The new standard will not
allow these words to be reserved. This change however
caused a parsing problem in the SPECIAL-NAMES paragraph
because it would not be clear whether a clause such as

OTHER CHANGE~

The order of the steps in a multi-conditional PERFORM ... VARYING
statement has been changed. Under COBOL '74, the statement

1. The ALTER statement.
2. The ENTER statement.
3. The MEMORY SIZE clause.

New status code values for file errors are being defined. These
codes will cover situations which violate the standard but for
which no standard status code was defined. For example, trying
to open an indexed file in a program which declares it to be
a relative file.

END-UNSTRING
END-WRITE
EVALUATE
EXTERNAL
FALSE
GLOBAL
INITIALIZE
NUMERIC-EDITED
OTHER
PADDING
REPLACE
STANDARD-2
TEST
TRUE

END-DELETE
END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-PERFORM
END-READ
END-RECEIVE
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT

ALPHABET
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ALPHANUMERIC
ALPHANUMERIC-EDITED
ANY
COMMON
CONTENT
CONTINUE
CONVERSION
CONVERTING
DAY-OF-WEEK
END-ADD
END-CALL
END-COMPUTE

SWO IS EBCDIC

RESERVED WORDS

The following new reserved words have been added:

was specifying that EBCDIC was the mnemonic-name for switch
SWO or whether SWO was the mnemonic-name for alphabet EBCDIC.
By requiring the word ALPHABET in a alphabet-name clause, the
ambiguity is resolved.

UNTIL 1>10
UNTIL J>10

PERFORM PAR-1 VARYING I FROM 1 BY
AFTER J FROM I BY

The ALTER statement is being deleted because it is widely
accepted as poor programming practice which causes significant
program maintenance problems. The ENTER statement and MEMORY
SIZE clause are being deleted from the standard because they are
primarily implementor defined functions which are not necessarily
meaningful on all systems and are thus not portable.
Implementations will still be allowed to support these
three features as extensions to the standard.

would set I to 1 and vary J from 1 to 10 and then set J to 1,
increment I to 2 and vary J until 10. The new specifications
will increment I to 2 before setting J to I. Thus, on the second
cycle, J will vary from 2 to 10 instead of 1 to 10 as under COBOL
'74. The primary reason for this change is because this
statement, as currently defined, has caused much confusion
because it doesn't do what most people expect and is probably not
used very much. Progran~ers who have attempted to use this
statement to do a bubble sort have usually been surprised at the
results.

The new reserved word ALPHABET is required in the alphabet
clause of the SPECIAL-NAMES paragraph.

ALPHABET ASCII IS STANDARD-I.

STANDARDIZATION PROCESS

There are two committees which work on defining COBOL. The
CODASYL COBOL Committee has the responsibility of developing the
language. The ANSI X3J4 committee has the responsibility of
standardizing the language. When working on a new standard. X3J4
can adopt specifications from either the previous standard or
from the Journal of Development which reflects the work of the
CODASYL COBOL Committee. If there is a problem with the JOD
specifications, X3J4 must either subset the specifications from
the JOD so that the problem does not appear in the standard or
request that CCC resolve the problem. Both committees have
representatives from implementors, users, and government. X3J4
currently has 23 members and holds six 4-day meetings each year.
The work on the next standard is nearing completion as the
committee has achieved the necessary two-thirds vote on its

Hl q Hl IC



formal letter ballot to forward the document to its parent
committee, X3. X3, in turn, votes to send it out for an official
pUblic comment period of at least four months. The X3J4
committee will review all comments received during this period.
After all negative comments have been processed, the X3 committee
votes on sending the draft proposed standard to ANSI to be
formally processed as a new standard.

During the standard revision process, X3J4 has published
information concerning its work in COBOL Information Bulletins.
The latest one was CIB 19 which was published in May, 1980.
Comments concerning the draft standard will be officially
requested during the public review period; however, comments
may be submitted earlier to:

Chairperson, X3J4
CBEMA
1828 L St. N.W.
Washington, D.C. 20036

~l }]


	ANSI COBOL 198X: The Story behind the Headlines

