
RATFOR FORTRAN/3000 + ELEMENTS OF STRUCTURED PROGRAMMING

RATFOR FORTRAN/3000 + Elements o~tructured Programming

Bjorn Dreher

Institut fur Kernphysik der Universitat

0-6500 Mainz, West-Germany

Bjorn Dreher

Institut fUr Kernphysik der Universitat

D 6500 Mainz, West-Germany

D4 1

1. Introduct~on

RATFOR is a language introduced by Kernighan and Plauger (1] based on

F'ORTRAN-66. In their book "Software Tools" they present a preprocessor

that translates RATFOR into standard FORTRAN-IV.

In thlS paper 1 w~ll first show why RATFOR is a very useful addition

to other common languages and what we are using it for in Nuclear

Physics Research and System Programming.

In chapter 3 the RATFOR syntax will be shortly described and some

examples will be glven.

In the forth chapter I will present our implementation of a RATFOR

preprocessor and how to use it on an HP3000 system.

Conclusions about our exper~ence with RATFOR will be drawn in chapter

s.

2. Why use RATFOR as an additional language

The pr~mary reason for the authors of RATFOR was ~o make FORTRAN a

better programming language. With RATFOR it is possible to write much

more readable and better structured programs. This is achieved by pro

viding addltional conlrol structures that are not available in

FORTRAN-66, and by improving the "cosmetics" of the language.

The added control structures for better structur~ng of programs are

IF-ELSE, WHILt:-UU, K.t:~t:A·r-UN·r·lL, r"'uR loops, DO loops, d.m] oth~L~. An

INCLUDE statement allows the lnclusion of predefin~d code or defini

tion sequences at certain points. The cosmetics is improved by allow

1ng the programs to be in free-form. The end of the l~ne marks usually

D4 2

RATFOR FORTRAN/3000 + ELEMENTS OF STRUCTURED PROGRAMMING

RATFOR FORTRAN/3000 + Elements of Structured Programming

Bjorn Dreher

Institut fur Kernphysik der Universitat

D-6500 Mainz, West-Germany

Bjorn Dreher

Institut fUr Kernphysik der Universitat

D 6500 Mainz, West-Germany

D4 1

1. Introductl.on

RATFOR is a language introduced by Kernighan and Plauger (1] based on

F'ORTRAN-66. In their book "Software Tools" they present a preprocessor

that translates RATFOR into standard FORTRAN-IV.

In th1s paper I wl.ll first show why RATFOR is a very useful addition

to other common languages and what we are using it for in Nuclear

Physics Research and System programming.

In chapter the RATFOR syntax will be shortly described and some

examples will be g1ven.

In the forth chapter I will present our implementation of a RATFOR

preprocessor and how to use it on an HP3000 system.

Conclusions about our exper1ence with RATFOR will be drawn in chapter

s.

2. Why use RATFOR as an additional language

The pr1mary reason for the authors of RATFOR was ~o make FORTRAN a

better programming language. with RATFOR it is possible to write much

more readable and better structured programs. This is achieved by pro

viding addltional conlrol structures that are not available in

FORTRAN-66, and by improving the "cosmetics" of the language.

The added control structures for better structur1ng of programs are

IF-ELSE, WHILt:-UU, }{t;~t;A'r-UN'f'lL, J:"'uR loops, DO loops, dUU oth~LS. An

INCLUDE statement allows the lnclusion of predefin~d code or defini

tion sequences at certaln points. The cosmetics is improved by allow

1ng the programs to be in free-form. The end of the l1ne marks usually

D4 2

the end of the statement, but statements can easily be continued on
the next line by ending with a comma or with a special continuation
character. A sharp # anywhere in the line marks the beginning of a
comment, thus allowing trailing comments on each line. This certainly
encourages programmers to add more documentation to the source code.

3. RATFOR syntax

3.1 General rules

There are several characters recognized as special ones in RATFOR:

Examples:

Left and right braces act as delimiters for groups of statements like
BEGIN and END in SPL. other special characters are:

Any line end1ng in a comma will also be continued. Include files may
be nested 3 levels deep. A statement which starts and ends with a
quote will be stripped of the quotes and placed in column one in the
output. This is useful for 'hiding' Ratfor keywords and for putting
FORTRAN compiler commands ($CONTROL ...) in column 1.

A or" for NOT
\ or I for OR
& for AND

[* for MACRO LEFT BRACKET
*] for MACRO RIGHT BRACKET
for the begin of comments

\ ~s the line continuation character

for LEFT BRACE
for RIGHT BRACE

$(or
$) or

Because almost all constructs of standard FORTRAN are retained in
RATFOR, it is very easy for a FORTRAN programmer to learn RATFOR.
There is only a very low psychological barrier to switch from FORTRAN

to RATFOR.

In addition to the already mentioned features, RATFOR comes with a
built-in macro processor, which allows not only such constructs like
EQUATES and DEFINES as in SPL, but also enables you to add additional
language constructs (in the form of macros) to RATFOR as you need it.

In addition, you are not lost if you have to transfer one of your
RATFOR programs to an other installation that has no RATFOR compiler
available. You simply move the intermediate FORTRAN code to the other
system. This is of course the way, how the RATFOR preprocessor itself

is "boot-strapped" on a new machine.

From all this you see that RATFOR is a better choice than FORTRAN in
at least all those cases, where you have somewhat more complicated
control paths in a program. There are only few instances where GOTO
constructs are needed, and avoiding those makes programs usually more
readable and better self-documenting.

Besides applications in Nuclear Physics, we are using RATFOR to imple
ment data acquisition and measurement control subsystems as well as
computer communications systems. RATFOR helps us to write these
systems to a large extent in a machine independent way, burrying

machine dependencies in macro definitions. We are'currentlY using
three type of minicomputers in our institute: HP3000, HPlOOO, and

PE3220.

'$CONTROL USLINIT,NOSOURCE'
or

IF(arith expr) labell, label2, label3 ,

(Note: Arithmetic IF statements are not allowed in RATFOR).

Input is free-field with only few exceptions. Capitals and small
letters can be used. Embedded comments in a source line start with "#"

or "I".

Blocks are one single statement or several surrounded by braces. This
is simi li=iT to thp REGIN/END struc+.urp in AT,C.,()l, or SPL. The left brace
"(tt corresponds to BEGIN, the right brace tt)" to END.

D4 3
D4 4

the end of the statement, but statements can easily be continued on
the next line by ending with a comma or with a special continuation
character. A sharp # anywhere in the line marks the beginning of a
comment, thus allowing trailing comments on each line. This certainly
encourages programmers to add more documentation to the source code.

3. RATFOR syntax

3.1 General rules

There are several characters recognized as special ones in RATFOR:

Examples:

Left and right braces act as delimiters for groups of statements like
BEGIN and END in SPL. other special characters are:

Any line end1ng in a comma will also be continued. Include files may
be nested 3 levels deep. A statement which starts and ends with a
quote will be stripped of the quotes and placed in column one in the
output. This is useful for 'hiding' Ratfor keywords and for putting
FORTRAN compiler commands ($CONTROL ...) in column 1.

A or" for NOT
\ or I for OR
& for AND

[* for MACRO LEFT BRACKET
*] for MACRO RIGHT BRACKET
for the begin of comments

\ ~s the line continuation character

for LEFT BRACE
for RIGHT BRACE

$(or
$) or

Because almost all constructs of standard FORTRAN are retained in
RATFOR, it is very easy for a FORTRAN programmer to learn RATFOR.
There is only a very low psychological barrier to switch from FORTRAN

to RATFOR.

In addition to the already mentioned features, RATFOR comes with a
built-in macro processor, which allows not only such constructs like
EQUATES and DEFINES as in SPL, but also enables you to add additional
language constructs (in the form of macros) to RATFOR as you need it.

In addition, you are not lost if you have to transfer one of your
RATFOR programs to an other installation that has no RATFOR compiler
available. You simply move the intermediate FORTRAN code to the other
system. This is of course the way, how the RATFOR preprocessor itself

is "boot-strapped" on a new machine.

From all this you see that RATFOR is a better choice than FORTRAN in
at least all those cases, where you have somewhat more complicated
control paths in a program. There are only few instances where GOTO
constructs are needed, and avoiding those makes programs usually more
readable and better self-documenting.

Besides applications in Nuclear Physics, we are using RATFOR to imple
ment data acquisition and measurement control subsystems as well as
computer communications systems. RATFOR helps us to write these
systems to a large extent in a machine independent way, burrying

machine dependencies in macro definitions. We are'currentlY using
three type of minicomputers in our institute: HP3000, HPlOOO, and

PE3220.

'$CONTROL USLINIT,NOSOURCE'
or

IF(arith expr) labell, label2, label3 ,

(Note: Arithmetic IF statements are not allowed in RATFOR).

Input is free-field with only few exceptions. Capitals and small
letters can be used. Embedded comments in a source line start with "#"

or "I".

Blocks are one single statement or several surrounded by braces. This
is simi li=iT to thp REGIN/END struc+.urp in AT,C.,()l, or SPL. The left brace
"(tt corresponds to BEGIN, the right brace tt)" to END.

D4 3
D4 4

3.2 The DO statement

It resembles' the well known FORTRAN DO-statement without the need to

use a label at the fi'lal statement.

DO I=l,MAX,IDELTA

A(I)=I

or
DO I=1,MAX

(

A(I)=SIN(X(I»
B(I)=A(I)**2
}

3.3 The FOR statement

3.4 The WHILE statement

WHILE (X(I) A= 5)

{

DISPLAY XCI)
X(I)=FUNCT(X(I»
}

This allows a block of statements to be repeated while a certain con
dition holds true, which is tested at the beginning of each step.

3.5 The REPEAT statement

This is the counterpart to the WHILE statement. A block of statements
is continued until a certain condition, which is tested at the end of
the block, becomes true:

<BLOCK> stands for one statemerit or { several statements }. The
three parts between the parentheses have the following meanings:

FOR (1=1 ; 1<=100
<BLOCK>

!...:I+1) REPEAT
<BLOCK>

UNTIL (X==Y)

One may omit the UNTIL-clause to get a REPEAT FOREVER construct.

1: (1-1) Initialization statement. This may be ommitted, thus
starting with a previously defined value.

3.6 Exits

2: (1<=100) As long as this condition holds true, the following block
will be executed. This is tested at the beginning of

the block.

The two statements NEXT and BREAK allow to change the sequence of exe
cution in DO, FOR, WHILE and REPEAT blocks without the need for GOTO

statements (which is considered as bad programming stylel) and labels.

All three clauses may be almost arbitrarily complicated, as the

following example shows:

Modification, that is performed at the end of the block.3: (1=1+1)

FOR (X=O ; EXP(X)<-1.E70

(

PRINT X

X=ARCSIN(X)+~O./Y)

D4 5

NEXT starts over at the beginning of the currently executing block
(i.e. starts again at the first statement of the DO or POR block after
the appropriate modification of the running index - or whatever was
requested - has been done: corresponds to a GOTO to the CONTINUE
statement of a FORTRAN DO loop)

BREAK continues behind the current block. The DO, FOR, WHILE, or
REPEAT statement is terminated.

D4 6

3.2 The DO statement

It resembles' the well known FORTRAN DO-statement without the need to

use a label at the fi'lal statement.

DO I=l,MAX, IDELTA

A(I)=I

or
DO I=l,MAX

(

A(I)=SIN(X(I»
B(I)=A(I)**2
}

3.3 The FOR statement

3.4 The WHILE statement

WHILE (X(I) A= 5)

{

DISPLAY XCI)
X(I)=FUNCT(X(I»
}

This allows a block of statements to be repeated while a certain con
dition holds true, which is tested at the beginning of each step.

3.5 The REPEAT statement

This is the counterpart to the WHILE statement. A block of statements
is continued until a certain condition, which is tested at the end of
the block, becomes true:

<BLOCK> stands for one statemerit or { several statements }. The
three parts between the parentheses have the following meanings:

FOR (1=1 ; 1<=100
<BLOCK>

!...:I+1) REPEAT
<BLOCK>

UNTIL (X==Y)

One may omit the UNTIL-clause to get a REPEAT FOREVER construct.

1: (1-1) Initialization statement. This may be ommitted, thus
starting with a previously defined value. 3.6 Exits

2: (1<=100) As long as this condition holds true, the following block
will be executed. This is tested at the beginning of

the block.

The two statements NEXT and BREAK allow to change the sequence of exe
cution in DO, FOR, WHILE and REPEAT blocks without the need for GOTO
statements (which is considered as bad programming stylel) and labels.

All three clauses may be almost arbitrarily complicated, as the

following example shows:

Modification, that is performed at the end of the block.3: (1=1+1)

FOR (X=O ; EXP(X)<-1.E70
(

PRINT X

X=ARCSIN(X)+lO./Y)

D4 5

NEXT starts over at the beginning of the currently executing block
(i.e. starts again at the first statement of the DO or POR block after
the appropriate modification of the running index - or whatever was
requested has been done: corresponds to a GOTO to the CONTINUE
statement of a FORTRAN DO loop)

BREAK continues behind the current block. The DO, FOR, WHILE, or
REPEAT statement is terminated.

D4 6

3.7 Relational express10ns
define(pi,3.141S93)

The following is a table of the correspondence between FORTRAN and

RATFOR relational and logical operators:

Following

text will

letters.

th1s macro defin1t10n, every occurance of pI (or PI) 1n the

lead to the lnsertion of 3.141593 instead of the two

FORTRAN

.EQ.

.NE .

. GT.

.GE.

.LT .

•LE.

.AND .

. OR.

.NOT.

RATFOR

1\=

&

1\

define(max1nd,200)

1nteger 1array(max1nd),rarray(maxind,2)

do i = I, maxind

iarray(i) :: 0

This is useful to define dimensions and maximum index values globally.

define(tan,[*sin(SI)jcos(S1)*])

3.8 IF and ELSE clauses

This is similar as in ALGOL or SPL and many other languages:

IF (logical expression)

<block>

or

IF (logical expression)

<block>

ELSE

<block>

3.9 The INCLUDE statement

The INCLUDE statements allows the inclusion of program parts, which

are stored on a different file, at the point of the INCLUDE statement.

INCLUDEs may be nested 3 levels deep.

3.10 The Ratfor Macro

Rat for contains a macro processor. It is useful for simple character

string replacements, string replacements with parameters, as well as

for powerful extensions of the Ratfor syntax. Macros are defined with

the DEFINE statement. In the following we give a few examples of

simple macro definitions.

D4 7

This is a macro with parameters. tan(xj2) will be replaced by

s1n(xj2)/cos(x/2). With the macro definition, you can write the pro

gram as if "tan" were a function, but there are no function calls at

run-time. For complicated expressions, however, the object,code will

be quite long when you call the macro often.

Macros can be globally defined for a complete source file. It is best

to make the definitions at the beginning of the file, maybe with an

include statement for a file containing the macros.

The following example 1llustrates how powerful the RATFOR macro pro

cessor can be, 1f you have understood its operation and syntax in

detail. For instance, it is possible to write easy to use constructs

for condition code checking after the call of system intrinsics:

IFN=FOPEN(...)

BEGINCC

CCE

« block

CCG

« block »

CCL

block> >

ENDCC

There is no need to use all three conditions (CCE,CCG,CCL). If one is

omitted, control continues for that case after the ENDCC. The sequence

of CCE,CCG and CCL may be chosen arbitrarily.

D4 8

3.7 Relational express10ns
define(pi,3.141S93)

The following is a table of the correspondence between FORTRAN and

RATFOR relational and logical operators:

Following

text will

letters.

th1s macro defin1t10n, every occurance of pI (or PI) 1n the

lead to the lnsertion of 3.141593 instead of the two

FORTRAN

.EQ.

.NE .

. GT.

.GE.

.LT .

•LE.

.AND .

. OR.

.NOT.

RATFOR

1\=

&

1\

define(max1nd,200)

1nteger 1array(max1nd),rarray(maxind,2)

do i = I, maxind

iarray(i) :: 0

This is useful to define dimensions and maximum index values globally.

define(tan,[*sin(SI)jcos(S1)*])

3.8 IF and ELSE clauses

This is similar as in ALGOL or SPL and many other languages:

IF (logical expression)

<block>

or

IF (logical expression)

<block>

ELSE

<block>

3.9 The INCLUDE statement

The INCLUDE statements allows the inclusion of program parts, which

are stored on a different file, at the point of the INCLUDE statement.

INCLUDEs may be nested 3 levels deep.

3.10 The Ratfor Macro

Rat for contains a macro processor. It is useful for simple character

string replacements, string replacements with parameters, as well as

for powerful extensions of the Ratfor syntax. Macros are defined with

the DEFINE statement. In the following we give a few examples of

simple macro definitions.

D4 7

This is a macro with parameters. tan(xj2) will be replaced by

s1n(xj2)/cos(x/2). With the macro definition, you can write the pro

gram as if "tan" were a function, but there are no function calls at

run-time. For complicated expressions, however, the object,code will

be quite long when you call the macro often.

Macros can be globally defined for a complete source file. It is best

to make the definitions at the beginning of the file, maybe with an

include statement for a file containing the macros.

The following example 1llustrates how powerful the RATFOR macro pro

cessor can be, 1f you have understood its operation and syntax in

detail. For instance, it is possible to write easy to use constructs

for condition code checking after the call of system intrinsics:

IFN=FOPEN(...)

BEGINCC

CCE

« block

CCG

« block »

CCL

block> >

ENDCC

There is no need to use all three conditions (CCE,CCG,CCL). If one is

omitted, control continues for that case after the ENDCC. The sequence

of CCE,CCG and CCL may be chosen arbitrarily.

D4 8

4. Our RATF0Rt3000 implementation

Our RATFOR implementation was derived from a RATFOR preprocessor ori
ginally written for the HPI000 family of computers. Therefore it is
capable to produce output for the HPI000 FTN-IV compiler as well as

for FORTRAN/3000.

4.1 Limitations

Due to the fact that this version of RATFOR is an adaptation from the
HPI000 version there were some features in RATFOR/IOOO that did not
conform with FORTRAN/3000 syntax. Therefore, if in HP3000 mode some
original RATFOR features are switched off. In particular, in HP3000
mode the following applies:

RATFOR/3000 may be invoked by the following ODe:

For PORTRAN/3000:
RATFOR <in>, <out>, <list>, <opts>, <incld>, <ftnlist>

Por PTN4/1000:
RAT4 <in>,~out>,<list>,<opts>,<incld>,<ftnlist>

the intermediate Fortran code will be written to <out>
(the default is a SESSION temporary file RATTEMP)

the Ratfor program will be read from <in>

the source listing will be written to <list>

(default SNULL)

(default SSTDLIST)

1. CHARACTER declarations are passed as they are, because
PORTRAN/3000 supports type CHARACTER variables.

2. Character strings between quotes, e.g. "ABCDEF", are kept as they
are. In non-HP3000 mode this is converted to 8HABCDEF.

To allow for the use of substring designators, e.g. 1[3:5], in both
modes brackets are not recognized as delimiters of blocks as they were
in the original version. Use braces "{}" insteadl

RATFOR'does NOT understand FORTRAN arithmetic IF statements. If you
have to use them, e.g. to check the condition code after returning
from a system intrinsic, you have to put the statement between quotes.
(There is a special RATFOR macro available to check condition codes)

options are specified by <opts> (default %17 or %13)
The options are given as an integer constant (octal or decimal).
If the most significant bit is number 0 and the least signifi
cant is number 15, the bits have the following meanings:

15 list the source, otherwise only errors are listed.
bit 15=0 is automatically set, if <list> = SNULL;

errors are then output to SSTDLIST.

14 for future enhancements

13 =1 FORTRAN/3000 code
=0 PTN4/1000 code
automatically set by the two unc's

12 merge all RATFOR (and other) comments into the generated

PORTRAN program

the file <incld> will be included in frc:.C' ojf <in> (default SNULL)

the FORTRAN compiler listing will go to <ftnlist> (default SSTDLIST)

D4 9

For FORTRAN/3000 applications it is good practice to use the following
compiler command:

SCONTROL USLINIT,NOSOURCE

If you then use the default setting for the FORTRAN/3000 output
(SSTDLIST) you will not get the awkward FORTRAN listing, but instead
all (if at all) error messages with the line in error on your
terminal. The FORTRAN line numbers are derived from the original
RATFOR source line numbers, with an increment of .001 if there are
more than one FORTRAN lines generated from one RATFOR line. Therefore
it should be easy to find the RATFOR line, which is in error.

5. Conclusion

In conclusion, we found the RATFOR preprocessor a very valuable pro
gramming tool, especi~lly since a FORTRAN-77 version for the HP3000
seems to be still far away. Although FORTRAN-77 adds some of RATFOR'S
control structures, we find the cosmetics, the appearance of the pro
gram text, of RATFOR much more appealing.

D4 10

4. Our RATF0Rt3000 ~plementation

Our RATFOR ~plementation was derived from a RATFOR preprocessor ori
ginally written for the HP1000 family of computers. Therefore it is

capable to produce output for the HP1000 FTN-IV compiler as well as

for FORTRAN/3000.

4.1 Limitations

Due to the fact that this version of RATFOR is an adaptation from the
HP1000 version there were some features in RATFOR/1000 that did not
conform with FORTRAN/3000 syntax. Therefore, if in HP3000 mode some
original RATFOR features are switched off. In particular, in HP3000
mode the following applies:

RATFOR/3000 may be invoked by the following ODe:

For PORTRAN/3000:
RATFOR <in>, <out>, <list>, <opts>, <incld>, <ftnlist>

Por PTN4/1000:
RAT4 <in>,~out>,<list>,<opts>,<incld>,<ftnlist>

the intermediate Fortran code will be written to <out>
(the default is a SESSION temporary file RATTEMP)

the Ratfor program will be read from <in>

the source listing will be written to <list>

(default SNULL)

(default SSTDLIST)

1. CHARACTER declarations are passed as they are, because
PORTRAN/3000 supports type CHARACTER variables.

2. Character strings between quotes, e.g. "ABCDEF", are kept as they
are. In non-HP3000 mode this is converted to 8HABCDEF.

To allow for the use of substring designators, e.g. 1[3:5], in both
modes brackets are not recognized as delimiters of blocks as they were
in the original version. Use braces "{}" instead!

RATFOR'does NOT understand FORTRAN arithmetic IF statements. If you
have to use them, e.g. to check the condition code after returning
from a system intrinsic, you have to put the statement between quotes.
(There is a special RATFOR macro available to check condition codes)

options are specified by <opts> (default \17 or \13)
The options are given as an integer constant (octal or decimal).
If the most significant bit is number 0 and the least signifi
cant is number 15, the bits have the following meanings:

15 list the source, otherwise only errors are listed.
bit 15=0 is automatically set, if <list> SNULL;

errors are then output to SSTDLIST.

14 for future enhancements

13 =1 FORTRAN/3000 code
=0 FTN4/1000 code
automatically set by the two UDC'S

12 merge all RATFOR (and other) comments into the generated

FORTRAN program

the file <incld> will be included in fre:.(" 'jf <in> (default SNULL)

the FORTRAN compiler listing will go to <ftnlist> (default SSTDLIST)

D4 9

For FORTRAN/3000 applications it is good practice to use the following
compiler command:

SCONTROL USLINIT,NOSOURCE

If you then use the default setting for the FORTRAN/3000 output
(SSTDLIST) you will not get the awkward FORTRAN listing, but instead
all (if at all) error messages with the line in error on your
terminal. The FORTRAN line numbers are derived from the original
RATFOR source line numbers, with an increment of .001 if there are
more than one FORTRAN lines generated from one RATFOR line. Therefore
it should be easy to find the RATFOR line, which is in error.

5. Conclusion

In conclusion, we found the RATFOR preprocessor a very valuable pro
gramming tool, especially since a FORTRAN-77 version for the HP3000
seems to be still far away. Although FORTRAN-77 adds some of RATFOR'S
control structures, we find the cosmetics, the appearance of the pro
gram text, of RATFOR much more appealing.

D4 10

Now, what is the pay-off? certainly compilation time is increased. In

the current version, the RATFOR compiler needs about the same CPU time

to transform RATFOR to FORTRAN as the FORTRAN compiler needs for its

job. This can be somewhat improved in the future by sampling the most

frequently used parts of the preprocessor and improving on these

pieces of code.

In addition you have to be aware, that RATFOR/3000 checks only RATFOR

syntax, most of the FORTRAN s~atements go unchecked to the FORTRAN

compiler. FORTRAN/3000 will then g~ve you the errors. Since the line

numbers of the intermediate FORTRAN code a derived from the original

RATFOR line numbers, it is very easy to track an error reported,by the

FORTRAN compiler back to the original RATFOR source line.

Regarding run-time performance, we did not

difference between a RATFOR program and a

written directly in FORTRAN.

find any sign~ficant

corresponding version

Of course, a globally optimizing FORTRAN compiler, which we are all

waiting for, would improve the run-time behaviour of RATFOR programs

as well as FORTRAN programs.

[1] B.-W. Kernighan, P.J. plauger:

Publishing Co. 1976

Software Tools, Addison-Wesley

04 11

Now, what is the pay-off? Certainly compilation time is increased. In

the current version, the RATFOR compiler needs about the same CPU time

to transform RATFOR to FORTRAN as the FORTRAN compiler needs for its

job. This can be somewhat improved in the future by sampling the most

frequently used parts of the preprocessor and improving on these

pieces of code.

In addition you have to be aware, that RATFOR/3000 checks only RATFOR

syntax, most of the FORTRAN statements go unchecked to the FORTRAN

compiler. FORTRAN/3000 will then g1ve you the errors. Since the line

numbers of the intermediate FORTRAN code a derived from the original

RATFOR line numbers, it is very easy to track an error reported,by the

FORTRAN compiler back to the original RATFOR source line.

Regarding run-time performance, we did not

difference between a RATFOR program and a

written directly in FORTRAN.

find any sign1ficant

corresponding version

Of course, a globally optimizing FORTRAN compiler, which we are all

waiting for, would improve the run-time behaviour of RATFOR programs

as well as FORTRAN programs.

[1] B.-W. Kernighan, P.J. Plauger:

Publishing Co. 1976

Software Tools, Addison-Wesley

D4 11

	RATFOR = FORTRAN/3000 + Elements of Structured Programming

