
Conference Paper:

HP 3000 International Users Group Meeting

7. Oct. 1981

On the Use of nprototyping" in Software Development

c. Floyd

Institute {?/dr Applied Informatics

Technical University Berlin

The phrase "rapid prototyping" is currently en vogue in

certain software engineering circles. The basic idea is to

aid communication between software producers and software

users (customers), in particular during the early stages of

software development, by furnishing experimental versions of

the system, to be tried out as part of requirement analysis.

Ba 1

In what follows I wi 11 attpmpt to d~monstr'atp thp ro.l e thclt

a softwar'e-"pr'ototype" might assume in diff~rent pr'oduction

set tingsin a man ne r' compat i. b lewi t h the ma i n 1 1. n e 0 f

softwar'e engineering's strive- for' a methodology, as

illustrated for example in Prof. Tur-skis lecture at this

meeting on October 9th </TURSKI 81/). To begin with,

however, some comments about the phrase "rapid prototyping"

are in order, since this promises to be yet another

unfortunate misnomer, which may well lead to serious

misunderstandings, if ever this technique should be adopted

by the software industry. A prototype is a well established

·concept in the engineering disciplines where it refers to

the first functioning version of a new kind of product. In

this context, a prototype is intended to exhibit all

essential features of the final product and thus becomes the

basis for experiments before the beginning of large scale

production. This analogy does not carryover easily to

software production, where we are not faced with mass

production at all. Surely, if we use the concept of a

prototype in software production - as I will do from now

onwards, though under protest - we shall have to give it a

new meaning appropriate for our purposes.

BO 2

Conference Paper:

UP 3000 International Users Group Meeting

7. Oct. 1981

On the Use of nprototyping" in Software Development

c. Floyd

Institute {?/dr Applied Informatics

Technical University Berlin

The phrase "rapid prototyping" is currently en vogue in

certain software engineering circles. The basic idea is to

aid communication between software producers and software

users (customers), in particular during the early stages of

software development, by furnishing experimental versions of

the system, to be tried out as part of requirement analysis.

Ba 1

In what follows I w.i 11 attpmpt to d~monstr·al.p thp r01 e that

a softwar'e-"pr'ototype" might assume in difft-'rent pr'oduction

set tingsin a man ne r' compat i. b lewi t h the ma i n 1 1. n e 0 f

softwar'e engineering's strivf" for' a methodology, as

illustrated for example in Prof. Turskis lecture at this

meeting on October 9th </TURSKI 81/). To begin with,

however, some comments about the phrase "rapid prototyping"

are in order, since this promises to be yet another

unfortunate misnomer, which may well lead to serious

misunderstandings, if ever this technique should be adopted

by the software industry. A prototype is a well established

·concept in the engineering disciplines where it refers to

the first functioning version of a new kind of product. In

this context, a prototype is intended to exhibit all

essential features of the final product and thus becomes the

basis for experiments before the beginning of large scale

production. This analogy does not carryover easily to

software production, where we are not faced with mass

production at all. Surely, if we use the concept of a

prototype in software production - as I will do from now

onwards, though under protest - we shall have to give it a

new meaning appropriate for our purposes.

BO 2

Conference Paper:

UP 3000 International Users Group Meeting

7. Oct. 1981

On the Use of nprototyping" in Software Development

c. Floyd

Institute {?/dr Applied Informatics

Technical University Berlin

The phrase "rapid prototyping" is currently en vogue in

certain software engineering circles. The basic idea is to

aid communication between software producers and software

users (customers), in particular during the early stages of

software development, by furnishing experimental versions of

the system, to be tried out as part of requirement analysis.

Ba 1

In what follows I w.i 11 attpmpt to d~monstr·al.p thp r01 e that

a softwar'e-"pr'ototype" might assume in difft-'rent pr'oduction

set tingsin a man ne r' compat i. b lewi t h the ma i n 1 1. n e 0 f

softwar'e engineering's strivf" for' a methodology, as

illustrated for example in Prof. Turskis lecture at this

meeting on October 9th </TURSKI 81/). To begin with,

however, some comments about the phrase "rapid prototyping"

are in order, since this promises to be yet another

unfortunate misnomer, which may well lead to serious

misunderstandings, if ever this technique should be adopted

by the software industry. A prototype is a well established

·concept in the engineering disciplines where it refers to

the first functioning version of a new kind of product. In

this context, a prototype is intended to exhibit all

essential features of the final product and thus becomes the

basis for experiments before the beginning of large scale

production. This analogy does not carryover easily to

software production, where we are not faced with mass

production at all. Surely, if we use the concept of a

prototype in software production - as I will do from now

onwards, though under protest - we shall have to give it a

new meaning appropriate for our purposes.

BO 2



The second unfortunate term in the phrase is the epithet

"rapid", which misleads us i.nto believing that spef'd is the

essential aspect in buildi.ng a prototype. Again, this is in

conflict with the engineering tradition, wher'p th<-- (H'ototypP

is the final result of careful design, exlcnsivp

calculations and field tests. I fail to see how a softwarf'

prototype produced rapidly, without the carpful preparations

mentioned above will yield reliable answers in determilling

actual requirements.

In order to judge the usefulness of prototyping in softwarp

development we must find answers to the following questions:

Why is communication about software requiremf'nts based as

it is on interviews, checklists and bulky documen~s not

sufficiently reliable and how could a prototype be helpful

in this context?

How does the software prototype relate to the final

product?

Is there one, or are th~re several prototypes and how are

they evaluated?

Under wbat circumstances can we justify the addit~onal

investment brought about by producing a prototype in the

early stag~s, i.e. what do we hope to gain later on?

How does prototyping relate to an orderly approach to

software development, based on deriving a program from a

rigorous specification according to the rules of

programming methodology?

As a starting point in answering these questions we should

take a close look at the well known phase-oriented approach

BO 3

to software development, its merits and shortcomings (see

for example /LEHMANN 80/). The phase-oriented approach was

devised as a means to find contractual bases in software

development and to define intermediate results in terms of

documents, which form the basis for subsequent work. The

phase-oriented approach relies on som~ important

assumptions, as there are:

that requirements, at least in principle, can be fixed in

advance,

- that documents, provided that their contents are described

in a sufficiently rigorous manner, are adequate as a

primary means of communication, i.e. that the customer

knows what he will get when he signs the contract.

Both of these assumptions unfortunately are contradicted in

the daily practice of software professionals who are faced

with the difficult task to base their own work on existing

base-line documents, while at the same time coping with

constantly changing requirements from their customers. The

phase-oriented approach does of course permit to go back to

earlier phases when needed, but it does not encourage the

planing of profound revisions.

The phase-oriented approach provides a sound basis to limit

the liability of the software producer. The product is

defined by its specification and the liability of the

software producer ends when he has derived a program, which

is cor'r'pct wi th rf'spect to its specification. As Prof.

Turski will point out in two days, this is a highly

nontrivial activity which is well supported by modern

software engineering techniques. Yet, experience shows, that

even a corr'ect program may not at all be adequate to fi t the

user's needs, because of far reaching misconceptions about

the actual requirements.

BO 4

The second unfortunate term in the phrase is the epithet

"rapid", which misleads us i.nto believing that spef'd is the

essential aspect in buildi.ng a prototype. Again, this is in

conflict with the engineering tradition, wher'p th<-- JH'ototypP

is the final result of careful design, exlcnsivp

calculations and field tests. I fail to see how a softwarf'

prototype produced rapidly, without the carpful preparations

mentioned above will yield reliable answers in determilling

actual requirements.

In order to judge the usefulness of prototyping in softwarp

development we must find answers to the following questions:

Why is communication about software requiremf'nts based as

it is on interviews, checklists and bulky documen~s not

sufficiently reliable and how could a prototype be helpful

in this context?

How does the software prototype relate to the final

product?

Is there one, or are th~re several prototypes and how are

they evaluated?

Under wbat circumstances can we justify the addit~onal

investment brought about by producing a prototype in the

early stag~s, i.e. what do we hope to gain later on?

How does prototyping relate to an orderly approach to

software development, based on deriving a program from a

rigorous specification according to the rules of

programming methodology?

As a starting point in answering these questions we should

take a close look at the well known phase-oriented approach

BO 3

to software development, its merits and shortcomings (see

for example /LEHMANN 80/). The phase-oriented approach was

devised as a means to find contractual bases in software

development and to define intermediate results in terms of

documents, which form the basis for subsequent work. The

phase-oriented approach relies on som~ important

assumptions, as there are:

that requirements, at least in principle, can be fixed in

advance,

- that documents, provided that their contents are described

in a sufficiently rigorous manner, are adequate as a

primary means of communication, i.e. that the customer

knows what he will get when he signs the contract.

Both of these assumptions unfortunately are contradicted in

the daily practice of software professionals who are faced

with the difficult task to base their own work on existing

base-line documents, while at the same time coping with

constantly changing requirements from their customers. The

phase-oriented approach does of course permit to go back to

earlier phases when needed, but it does not encourage the

planing of profound revisions.

The phase-oriented approach provides a sound basis to limit

the liability of the software producer. The product is

defined by its specification and the liability of the

software producer ends when he has derived a program, which

is cor'r'pct wi th rf'spect to its specification. As Prof.

Turski will point out in two days, this is a highly

nontrivial activity which is well supported by modern

software engineering techniques. Yet, experience shows, that

even a corr'ect program may not at all be adequate to fi t the

user's needs, because of far reaching misconceptions about

the actual requirements.

BO 4

The second unfortunate term in the phrase is the epithet

"rapid", which misleads us i.nto believing that spef'd is the

essential aspect in buildi.ng a prototype. Again, this is in

conflict with the engineering tradition, wher'p th<-- (H'ototypP

is the final result of careful design, exlcnsivp

calculations and field tests. I fail to see how a softwarf'

prototype produced rapidly, without the carpful preparations

mentioned above will yield reliable answers in determilling

actual requirements.

In order to judge the usefulness of prototyping in softwarp

development we must find answers to the following questions:

Why is communication about software requiremf'nts based as

it is on interviews, checklists and bulky documen~s not

sufficiently reliable and how could a prototype be helpful

in this context?

How does the software prototype relate to the final

product?

Is there one, or are th~re several prototypes and how are

they evaluated?

Under wbat circumstances can we justify the addit~onal

investment brought about by producing a prototype in the

early stag~s, i.e. what do we hope to gain later on?

How does prototyping relate to an orderly approach to

software development, based on deriving a program from a

rigorous specification according to the rules of

programming methodology?

As a starting point in answering these questions we should

take a close look at the well known phase-oriented approach

BO 3

to software development, its merits and shortcomings (see

for example /LEHMANN 80/). The phase-oriented approach was

devised as a means to find contractual bases in software

development and to define intermediate results in terms of

documents, which form the basis for subsequent work. The

phase-oriented approach relies on som~ important

assumptions, as there are:

that requirements, at least in principle, can be fixed in

advance,

- that documents, provided that their contents are described

in a sufficiently rigorous manner, are adequate as a

primary means of communication, i.e. that the customer

knows what he will get when he signs the contract.

Both of these assumptions unfortunately are contradicted in

the daily practice of software professionals who are faced

with the difficult task to base their own work on existing

base-line documents, while at the same time coping with

constantly changing requirements from their customers. The

phase-oriented approach does of course permit to go back to

earlier phases when needed, but it does not encourage the

planing of profound revisions.

The phase-oriented approach provides a sound basis to limit

the liability of the software producer. The product is

defined by its specification and the liability of the

software producer ends when he has derived a program, which

is cor'r'pct wi th rf'spect to its specification. As Prof.

Turski will point out in two days, this is a highly

nontrivial activity which is well supported by modern

software engineering techniques. Yet, experience shows, that

even a corr'ect program may not at all be adequate to fi t the

user's needs, because of far reaching misconceptions about

the actual requirements.

BO 4



The situation is aggravated by the fact that mistakes made

early in software development are the most costly to

correct. Serious mistakes in requirement analysis may well

be too costly to correct at all. The user organization will

have to adapt to the software - not vice versa.

There are important reasons why it may prove very hard to

find out detailed software requirements for the development

of large programs:

1) It is extremely difficult for people to visualize how

seemingly minor decisions about software will later on

affect their work with the system.

2) It is often extremely difficult to locate all groups of

people who will be directly or indirectly affected by the

system. Different user groups often have conflicting

views about an information system (which they perceive

from their own perspective), or they simply ignore each

others needs.

BO 5

The above mentioned difficulties do not pertain to all

requirements alike, in fact the following classification of

requirements helps to point out the areas where troubles

most likely arise. We can distinguish:

functional requirements describing the desired output to

be produced for a given input (the relation between input

and output may be highly nontrivial, but it is normally

governed by a stringent set of rules; whether or not the

program obeys the same set of rules can be proved - at

least in principle).

performance requirements stating the resources available

to achieve these functions (it may be difficult to show

the precise constraints on resources, whether or not the

program meets these constraints can be measured - at least

in principle).

handling requirements characterizing the manner in which

the system is to be embedded into the activities of all

people affected by it.

Of these three, the handling requirements are the least well

understood. Handling requirements pertain amongst others to

the following areas of special concern:

The design of man-machine interfaces in the widest sense

(including conceptual models the user must have, in order

to understand what the system does);

The degree of system integration and as a consequence the

possibility of interfering with or reshuffling the

system's functions as needed ("conviviality" of the system

according to Ivan Ilich /ILleD 79/);

BO 6

The situation is aggravated by the fact that mistakes made

early in software development are the most costly to

correct. Serious mistakes in requirement analysis may well

be too costly to correct at all. The user organization will

have to adapt to the software - not vice versa.

There are important reasons why it may prove very hard to

find out detailed software requirements for the development

of large programs:

1) It is extremely difficult for people to visualize how

seemingly minor decisions about software will later on

affect their work with the system.

2) It is often extremely difficult to locate all groups of

people who will be directly or indirectly affected by the

system. Different user groups often have conflicting

views about an information system (which they perceive

from their own perspective), or they simply ignore each

others needs.

BO 5

The above mentioned difficulties do not pertain to all

requirements alike, in fact the following classification of

requirements helps to point out the areas where troubles

most likely arise. We can distinguish:

functional requirements describing the desired output to

be produced for a given input (the relation between input

and output may be highly nontrivial, but it is normally

governed by a stringent set of rules; whether or not the

program obeys the same set of rules can be proved - at

least in principle).

performance requirements stating the resources available

to achieve these functions (it may be difficult to show

the precise constraints on resources, whether or not the

program meets these constraints can be measured - at least

in principle).

handling requirements characterizing the manner in which

the system is to be embedded into the activities of all

people affected by it.

Of these three, the handling requirements are the least well

understood. Handling requirements pertain amongst others to

the following areas of special concern:

The design of man-machine interfaces in the widest sense

(including conceptual models the user must have, in order

to understand what the system does);

The degree of system integration and as a consequence the

possibility of interfering with or reshuffling the

system's functions as needed ("conviviality" of the system

according to Ivan Ilich /ILleR 79/);

BO 6

The situation is aggravated by the fact that mistakes made

early in software development are the most costly to

correct. Serious mistakes in requirement analysis may well

be too costly to correct at all. The user organization will

have to adapt to the software - not vice versa.

There are important reasons why it may prove very hard to

find out detailed software requirements for the development

of large programs:

1) It is extremely difficult for people to visualize how

seemingly minor decisions about software will later on

affect their work with the system.

2) It is often extremely difficult to locate all groups of

people who will be directly or indirectly affected by the

system. Different user groups often have conflicting

views about an information system (which they perceive

from their own perspective), or they simply ignore each

others needs.

BO 5

The above mentioned difficulties do not pertain to all

requirements alike, in fact the following classification of

requirements helps to point out the areas where troubles

most likely arise. We can distinguish:

functional requirements describing the desired output to

be produced for a given input (the relation between input

and output may be highly nontrivial, but it is normally

governed by a stringent set of rules; whether or not the

program obeys the same set of rules can be proved - at

least in principle).

performance requirements stating the resources available

to achieve these functions (it may be difficult to show

the precise constraints on resources, whether or not the

program meets these constraints can be measured - at least

in principle).

handling requirements characterizing the manner in which

the system is to be embedded into the activities of all

people affected by it.

Of these three, the handling requirements are the least well

understood. Handling requirements pertain amongst others to

the following areas of special concern:

The design of man-machine interfaces in the widest sense

(including conceptual models the user must have, in order

to understand what the system does);

The degree of system integration and as a consequence the

possibility of interfering with or reshuffling the

system's functions as needed ("conviviality" of the system

according to Ivan Ilich /ILleR 79/);

BO 6



- The i n t, e r' p lay betwpen form ali zed (i. e. comput l~ r' - su p POt' t. t'd )

and informal ized wor'k-steps per'mi tt.ed by th(" syst t'm (wi th

thl" two extremes: the systpm pnfor'cps a wor'kj ng sty 1(.> ak in

to ~hp assembly line or' tht\ system offer's a tool-box to b("

used as needed).

This list does not claim to bt~ comp.l ete. Tht'" l'xamp 1<'s at'(-'

indicated in order to d~monstratp that handling rpquirpmpnts

wi 1lindeed 1. e a d to imp 0 r' tan t. d t' C .i s ion s abo u t so f twa f' ('

structur'l', that may well deter'mi ne the adequacy or'

inadequacy of an otherwi se corr'pct pr'ogr'am!

\.

In th<.' absenct· of a sui tab 1p t.hf'or'y of of'gani zat ions and of

sound uspr psychology, communication with the uspr, about

80ft\,,(.\ f'e r'(-'qu i rem<"n t s, wi 1 1 cont i nup to re 1y .I a rge- 1y on

('xp<"r'it'ncl:\ and j ntu i ti on. In this cont,<'xL, it is f(.>1 t by

many t.hat communi c.at.i on .i s mort' ('('.:0.1 i abJ (', if it is baspd on

an it I r'(-'ady ('X i st i ng pr'ogr'am \"h i ch can be eva I uated (a 1bE' it

not S~'st(:'maticaJly sinc(.I th(-'rp is noundf:~rJying theor'y ho\.;

t.his m~ght bl:' don("). A pr'ototypP t.hef'pforp, is to be

fur'Ili ~ht~d j n or'df'r to r'{-'duce the pr'obabi 1 i ty of

mi sund("r'st andi ng r·(..>qll i r'(-'ments . The addi t. i ona 1 i nvpstmen t

nt·t'd(~d fOf' i t.s pr'oducti on is just i fi ed by the- hop<-, t ha t th is

invpstmpnt is significantly smal]pf' than th(..> costs that arp

1 ik<"l.y to ar'is(~ fr'om the nt-'pd to adapt an i nad<:'quate progroam

.1 ater' on.

It.. should be k('pt. in mind, that the pr'oduct..ion of a

pI' 0 tot y P(. i s jus t j f i a b 1P 0 n 1yin l h (' cas (~ 0 f .1 0 n g -1 i f p

~yst("ms~ wh('r'(-" a fur't'H'(' ('xpansion of t.hp (;'':lI~ly phas('s wiJ J

pr-'psumab 1y 1('ad to prof i t::-; ov<.~r' a cons i dt'r'abJ e p(:'r'i od of

tim t' • Fu f't h <' r', t his tee h n i que i spa r' t i cu.1 a r I y f' <-d (..> \' ant for'

progr'am:::i \"hich ar'(·' embpddt'd in LpchnicaJ or' socio-t('chnica.l.

env i r'onm{~nts, bpCClUS<' :;uch pt'ogr'ams wi J 1

han d ling r' (~q1I i f' P m(' n t..s it s:-\ 0 c.i a t (' d wit h t h ('m.

have (-'1 abor'at.e

How t h(·'n , dops a soft wa 1'(-' pr'ototypP f'P I atp t·o t h(·· actua I

pr'oduc t' .i n t. imp, scoP<' and qua 1i t Y -; \\t> can d i st i ngu ish

Sl-"Vl"'r'a 1 feasi bl (' appr'oaches here:

- t h(·~ prutotype may be- in t.ended to aid r('qu·i r'(;'mpn t S ilna I y sis

on .I y 0 r' i t may be i n t (' n d (:" d to a c com pan y t h (' act 1I a I ~~. ~ t. t' III

th r'oughou t .i ts I. i ft'"t i m(".

80 7

Thp prot.otypP may bp inlpndt'd

same scop~ as the actual system

ex h.i bit oS P J e c ted f t-' a t u r' (-' son I y •

to COVt:'l' ('SSl'nt ially t'H'

Ot' il may b(' int('nded to

BO 8

- The interplay between formalized (i.e. computer-supporlpd)

and informal ized wor'k-steps per'mi tt.ed by th(" syst t'm (wi th

thp two extremes: the system enforcps a working style akin

Lo ~he assembly line or' th~ system offer's a tool-box to b("

used as needed).

This list does not claim to bt~ comp.l ete. Thp ('xamp I <,s at'e

indicated in order to d~monstrate that handJing requirpments

will indeed lead to impor'tanL dt'c.isions about softwiH'('

structur'f', that may wel J dl'ter'mi ne the adt'quacy or'

inadequacy of an otherwj se corr'pct pr'ogr'am!

\.

In thp ab~enct· of a sui tab 1p t.hf'ory of or'gani zat ions and of

sound uspr psychology, communication with the user, about

soft\"" r'e r'equ i rem("n t s, wi 1 1 cont i nue to re 1y 1 a r'ge 1y on

t'xppr'it'nct' and j ntu iti on. In this cont,('xt, i. tis f(.>J t by

many t.hat communi c·at.i on .i s mort' 1'(".1 i abJ (', i fit is based on

an a I t"'(-'ady <,x i st i ng pr'ogr'am \"h i ch can be eva I uated (a 1bE' i t,

not S~'st(:'mat:icaJly since:- th(-'r<' is nounderJying theor'y ho\.;

t.his m~ght be donp). A pr'ototypf" t.her'eforp, is to be

fur'ni ~ht~d j n or'der to r'pduce the pf'obabi 1 i ty of

mi sund p r' s t .1 n din g r' e qui f' ('men t s . The add i t ion a .1 i n v t' s t men t

nt'pd("d for' i t.s pr'oducti on is just i fi ed by the hope t ha t th.i s

invt'stmpnt is significantly smal]pT' than the costs that art-'

.I i k (oO J. y to a r' i s p f r' om the tH-' pdt 0 a d apt ani n a d t' qua t e p f' 0 g r' am

J ater' on.

It.. should be k<,pt. in mind, that the pt'oductjon of a

p r' 0 tot y P <' i :5 jus t i f i a b I (;l 0 n 1yin l h <' cas (-' 0 f .1. 0 n g -1 i f p

~yst(o'ms~ wh('r'(~ a fUf,tht·" <,xpansion or t.hp ('.:n'l)' phe:1S('S wil J

p J-' (' sum a b I yipa d top T' 0 fit::-) 0 v (... f' a c <) n sidp T' a b J e pt· J' i 0 d of

t i mt'. Furth('f', t hi:5 techn i que is par't i cu.lar I y f'(·d (-'vant for'

progr' am:::i \vhie h a r' (., f" mb (" d d to' din t (-' c h n i c a J 0 f' ~ DC i 0 - t (' c h n i ca.l.

env i t'onm(~nt::> ~ becClus(' ~lI('h pt'ogf'ams wi J 1

hand I jng r'(~qll i f'emen t.s assoc.i at <.'d with thpm.

have (.>1 abor'at.e

How t h(.• n , do p ~ a so f twa I' (., P r' 0 tot y Pp r' p I at p too t h pac t u a I

pf'oduct' .i n t. lmt-', SCOP(' and qua Ii ty -; \\t> call d i st i ngu ish

s(~v(:'r'a1 feasi bl (' appr'oaches here:

- t h(~ prutotype may be in t.ended to aid r'('qui f'(-'mpn t S ilna I y sis

on.l y or' it may be i nt('nded to accompany t hp act tiel I ~~.'st.(-'m

thr'oughout. its 1. i fpt imc.".

BO 7

The prototype may be intended

same SCOP(·' as the actua I system

ex hoi bit s e J t' C ted f pat u f' (., son I y •

toe 0 v t:' r' <.' SSt' n t i a I I Y t h c­

or' il may bp intc.·nded to

BO 8

- The interplay between formalized (i.e. computer-supporlpd)

and informal ized wor'k-steps per'mi tt.ed by th(" syst t'm (wi th

thp two extremes: the system enforcps a working style akin

Lo ~he assembly line or' th~ system offer's a tool-box to b("

used as needed).

This list does not claim to bt~ comp.l ete. Thp ('xamp I <'s at'e

indicated in order to d~monstrate that handJing requirpments

will indeed lead to impor'tanL dt'c.isions about softwiH'('

structur'f', that may wel J dl'ter'mi ne the adt'quacy or'

inadequacy of an otherwj se corr'pct pr'ogr'am!

\.

In thp ab~enct· of a sui tab 1p t.hf'ory of or'gani zat ions and of

sound uspr psychology, communication with the user, about

soft\"" r'e r'equ i rem("n t s, wi 1 1 cont i nue to re 1y 1 a r'ge 1y on

t'xppr'it'nct' and j ntu iti on. In this cont,('xt, i. tis f(.>J t by

many t.hat communi c·at.i on .i s mort' 1'(".1 i abJ (', i fit is based on

an a I t"'(-'ady <,x i st i ng pr'ogr'am \"h i ch can be eva I uated (a 1bE' i t,

not S~'st(:'mat:icaJly since:- th(-'r<' is nounderJying theor'y ho\.;

t.his m~ght be donp). A pr'ototypf" t.her'eforp, is to be

fur'ni ~ht~d j n or'der to r'pduce the pf'obabi 1 i ty of

mi sund P r' s t .1 n din g r' e qui f' ('men t s . The add i t ion a .1 i n v t' s t men t

nt'pd("d for' i t.s pr'oducti on is just i fi ed by the hope t ha t th.i s

invt'stmpnt is significantly smal]pT' than the costs that art-'

.I i k (oO J. y to a r' i s p f r' om the tH-' pdt 0 a d apt ani n a d t' qua t e p f' 0 g r' am

J ater' on.

It.. should be k<,pt. in mind, that the pt'oductjon of a

p r' 0 tot y P <' i :5 jus t i f i a b I (;l 0 n 1yin l h <' cas (-' 0 f .1. 0 n g -1 i f p

~yst(o'ms~ wh('r'(~ a fUf,tht·" <'xpansion or t.hp ('.:n'l)' phe:1S('S wil J

p J-' (' sum a b I yip a d top T' 0 fit::-) 0 v (... f' a c <) n sidP T' a b J e pt· J' i 0 d of

t i mt'. Furth('f', t hi:5 techn i que is par't i cu.lar I y f'(·d (-'vant for'

progr' am:::i \vhie h a r' (., f" mb (" d d to' din t (-' c h n i c a J 0 f' ~ DC i 0 - t (' c h n i ca.l.

env i t'onm(~nt::> ~ becClus(' ~lI('h pt'ogf'ams wi J 1

hand I lng r'(~qll i f'emen t.s assoc.i at <.'d with thpm.

have (.>1 abor'at.e

How t h(.• n , do p ~ a so f twa I' (., P r' 0 tot y Pp r' p I at p too t h pac t u a I

pf'oduct' .i n t. lmt-', SCOP(' and qua Ii ty -; \\t> call d i st i ngu ish

s(~v(:'r'a1 feasi bl (' appr'oaches here:

- t h(~ prutotype may be in t.ended to aid r'('qui f'(-'mpn t S ilna I y sis

on.l y or' it may be i nt('nded to accompany t hp act tiel I ~~.'st.(-'m

thr'oughout. its 1. i fpt imc.".

BO 7

The prototype may be intended

same SCOP(·' as the actua I system

ex hoi bit s e J t' C ted f pat u f' (., son I y •

toe 0 v t:' r' <.' SSt' n t i a I I Y t h c­

or' il may bp intc.·nded to

BO 8



The intention of the propagators of "rapid prototyping"

seems to be to produce throw-away prototypes - with the

same functional scope as the actual system, but of lower

quality - which precede the development of the actual

system itself. This approach implies the call for new

techniques, such as prototyping languages and

interpreters, which reduce the effort of prototype

production. I would like to point out that this approach

is highly problematic:

Since the specification does not yet exist at the time of

prototype production, it is not clear what the functional

scope of the prototype should be, and we find ourselves

thrown back into the kind working style which was - with

good reason - deplored ever since the 1960's.

Should the specification already exist, it is not clear

what is to be gained by quickly producing a system with

the same functional scope, but of lesser quality than the

final product. It should be remembered that the essential

thing about the prototype is its evaluation, for which

there is no systematic basis available as yet and which

will prove to be a large effort if the prototype itself is

complex. Therefore the feedback obtained by the evaluation

of such a prototype will come late and will be unreliable.

The production of the real system will be delayed, with no

obvious gain to justify the delay.

If the prototype is to precede, rather than to accompany,

the actual system it will not be helpful in dealing with

changing requirements, as will be argued below.

Requirements for software embedded in technicaJ or

socio-technical systems must be expected to change, because

original requirements were misstated (the probability of

this may perhaps be reduced with a "rapid prototype"),

- the environment evolves and develops new requirements,

the system, once in use, transforms its environment and

thus itself contributes to producing new requirements.

Because of the last two of these points, a "rapid"

throw-away prototype cannot be expected to aid in reducing

troubles with changing requirements in the long term.

In view of all the problems cited above it seems appropriate

to drop the analogy with engineering prototypes, to

generalize the concept of a "software prototype"

considerably and to combine its production with an orderly

approach to software production.

In the following, a prototype will designate a preliminary

version of the actual system which exhibits selected

features of the final product.

There may be one or a series of such prototypes, depending

on the needs of the specific project. The prototypes serve

primarily to aid discussions about handling requirements,

i.e. whereas their functional scope may be only a fraction

of the actual product's; they are carefully designed, so as

to illustrate how the system can be embedded into its

working environment.

a different view of

BO 9

This way

software

of using prototypes implies

development, which has been termed the

BO 10

The intention of the propagators of "rapid prototyping"

seems to be to produce throw-away prototypes - with the

same functional scope as the actual system, but of lower

quality which precede the development of the actual

system itself. This approach implies the call for new

techniques, such as prototyping languages and

interpreters, which reduce the effort of prototype

production. I would like to point out that this approach

is highly problematic:

Since the specification does not yet exist at the time of

prototype production, it is not clear what the functional

scope of the prototype should be, and we find ourselves

thrown back into the kind working style which was - with

good reason - deplored ever since the 1960's.

Should the specification already exist, it is not clear

what is to be gained by quickly producing a system with

the same functional scope, but of lesser quality than the

final product. It should be remembered that the essential

thing about the prototype is its evaluation, for which

there is no systematic basis available as yet and which

will prove to be a large effort if the prototype itself is

complex. Therefore the feedback obtained by the evaluation

of such a prototype will come late and will be unreliable.

The production of the real system will be delayed, with no

obvious gain to justify the delay.

If the prototype is to precede, rather than to accompany,

the actual system it will not be helpful in dealing with

changing requirements, as will be argued below.

Requirements for software embedded in technicaJ or

socio-technical. systems must be expected to change, because

original requirements were misstated (the probability of

this may perhaps be reduced with a "rapid prototype"),

- the environment evolves and develops new requirements,

the system, once in use, transforms its environment and

thus i tsel f contributes to pr'oduci ng new r·equirements.

Because of the last two of these points, a "rapid"

throw-away prototype cannot be expected to aid in reducing

troubles with changing requirements in the long term.

In view of all the problems cited above it seems appropriate

to drop the analogy with engineering prototypes, to

generalize the concept of a "software prototype"

considerably and to combine its production with an orderly

approach to software production.

In the following, a prototype will designate a preliminary

version of the actual system which exhibits selected

features of the final product.

There may be one or a series of such prototypes, depending

on the needs of the specific project. The prototypes serve

primarily to aid discussions about handling requirements,

i.e. whereas their functional scope may be only a fraction

of the actual product's; they are carefully designed, so as

to illustrate how the system can be embedded into its

working environment.

a different view of

BO 9

This way

software

of using prototypes implies

development, which has been termed the

BO 10

The intention of the propagators of "rapid prototyping"

seems to be to produce throw-away prototypes - with the

same functional scope as the actual system, but of lower

quality which precede the development of the actual

system itself. This approach implies the call for new

techniques, such as prototyping languages and

interpreters, which reduce the effort of prototype

production. I would like to point out that this approach

is highly problematic:

Since the specification does not yet exist at the time of

prototype production, it is not clear what the functional

scope of the prototype should be, and we find ourselves

thrown back into the kind working style which was - with

good reason - deplored ever since the 1960's.

Should the specification already exist, it is not clear

what is to be gained by quickly producing a system with

the same functional scope, but of lesser quality than the

final product. It should be remembered that the essential

thing about the prototype is its evaluation, for which

there is no systematic basis available as yet and which

will prove to be a large effort if the prototype itself is

complex. Therefore the feedback obtained by the evaluation

of such a prototype will come late and will be unreliable.

The production of the real system will be delayed, with no

obvious gain to justify the delay.

If the prototype is to precede, rather than to accompany,

the actual system it will not be helpful in dealing with

changing requirements, as will be argued below.

Requirements for software embedded in technicaJ or

socio-technical. systems must be expected to change, because

original requirements were misstated (the probability of

this may perhaps be reduced with a "rapid prototype"),

- the environment evolves and develops new requirements,

the system, once in use, transforms its environment and

thus i tsel f contributes to pr'oduci ng new r·equirements.

Because of the last two of these points, a "rapid"

throw-away prototype cannot be expected to aid in reducing

troubles with changing requirements in the long term.

In view of all the problems cited above it seems appropriate

to drop the analogy with engineering prototypes, to

generalize the concept of a "software prototype"

considerably and to combine its production with an orderly

approach to software production.

In the following, a prototype will designate a preliminary

version of the actual system which exhibits selected

features of the final product.

There may be one or a series of such prototypes, depending

on the needs of the specific project. The prototypes serve

primarily to aid discussions about handling requirements,

i.e. whereas their functional scope may be only a fraction

of the actual product's; they are carefully designed, so as

to illustrate how the system can be embedded into its

working environment.

a different view of

BO 9

This way

software

of using prototypes implies

development, which has been termed the

BO 10



the evaluation of successive prototypes is incorporated into

redesign at the end of each development cycle.

process-oriented approach elsewhere (/FLOYD 81/). Rather

than viewing software development as the production of one

program, by going through several phases and ending up in

"installation" and "maintenance", I prefer to view software

development as a sequence of development cycles {re-)design,

(re-)implementation and (re-)evaluation. It must be

emphasized, that each development cycle is baspd on a

specification from which the program version to be produced

can be derived in an orderly fashion, thus there is no

contradiction between this approach and software engineering

methodology; instead the specification itself is viewed as

an evolving document.

As opposed

communication

to the common phase-oriented approach,

with the user is continuous and feedback from

1) A prototype may coexist with the actual product; it is,

then, a program model of the same specification, less

rigorously treated, and serves as basis of experimental

changes before the program itself gets modified.

2) A prototype may coincide with the actual product: This is

intended in version-oriented software production in

development cycles, as described above. The specification

'is an evolving document; it mayor may not change from

one version to the next.

3) The product itself is a prototype: This arrangement is

relevant to the production of standard software, which is

designed to meet the functional requirements ~f a class

of users, but where handling requirements can be decided

by replugging existing components to fit individual

needs.

The specification serves as a common defining document for

both software producer and user. In particular, the

application model associated with th~ specification must be

phrased 50 as to exhibit the embedment characteristics of

the system in its working environment.

The responsebility of the user consists in providing, in

each development cycle, an evaluation basis for the

prototype which can be derived from the application model.

In the absence of a theory we can still point to no

systematic way of how to do this, but at least the new

framework will allow to progress in small, meaningful steps.

In the context of the modified approach to software

development described above, a prototype can assume one of

the following roles:

no 11

4) Production starts from a prototype: Analysis and redesign

of existing software can be viewed as q special case of

the same approach.

Each of these arrangements may prove a valuable help to aid

communication with the user in certain production settings

and each of these can be combined with orderly programming

methods. How much of a previous version of the program can

be retained to be incorporated into a subsequent version,

must be decided as part of the redesign effort following

each development cycle.

In order not to create false hopes, however, we must

remember that in this manner we have obtained a more

flexible framework - no more. Modern software design and

specification methods do not necessarily facilitate

incremental partial changes, which makes the use of a

specification as an evolving document awkward. We all know

30 12

the evaluation of successive prototypes is incorporated into

redesign at the end of each development cycle.

process-oriented approach elsewhere (/FLOYD 81/). Rather

than viewing software development as the production of one

program, by going through several phases and ending up in

"installation" and "maintenance", I prefer to view software

development as a sequence of development cycles {re-)design,

(re-)implementation and (re-)evaluation. It must be

emphasized, that each development cycle is baspd on a

specification from which the program version to be produced

can be derived in an orderly fashion, thus there is no

contradiction between this approach and software engineering

methodology; instead the specification itself is viewed as

an evolving document.

As opposed

communication

to the common phase-oriented approach,

with the user is continuous and feedback from

1) A prototype may coexist with the actual product; it is,

then, a program model of the same specification, less

rigorously treated, and serves as basis of experimental

changes before the program itself gets modified.

2) A prototype may coincide with the actual product: This is

intended in version-oriented software production in

development cycles, as described above. The specification

'is an evolving document; it mayor may not change from

one version to the next.

3) The product itself is a prototype: This arrangement is

relevant to the production of standard software, which is

designed to meet the functional requirements ~f a class

of users, but where handling requirements can be decided

by replugging existing components to fit individual

needs.

The specification serves as a common defining document for

both software producer and user. In particular, the

application model associated with th~ specification must be

phrased so as to exhibit the embedment characteristics of

the system in its working environment.

The responsebility of the user consists in providing, in

each development cycle, an evaluation basis for the

prototype which can be derived from the application model.

In the absence of a theory we can still point to no

systematic way of how to do this, but at least the new

framework will allow to progress in small, meaningful steps.

In the context of the modified approach to software

development described above, a prototype can assume one of

the following roles:

no 11

4) Production starts from a prototype: Analysis and redesign

of existing software can be viewed as q special case of

the same approach.

Each of these arrangements may prove a valuable help to aid

communication with the user in certain pr-oduction settings

and each of these can be combined with orderly programming

methods. How much of a previous version of the program can

be retained to be incorporated into a subsequent version,

must be decided as part of the r-edesign effort following

each development cycle.

In order not to create false hopes, however, we must

remember that in this manner we have obtained a more

flexible framework no more. Modern software design and

specification methods do not necessarily facilitate

incremental partial changes, which makes the use of a

specification as an evolving document awkwar-d. We all know

30 12



that in practice the discrepancy between programs and

specifications increase with time, thus making the

specification obsolete long before the program is shelved.

We can hope that progress in specification rese~rch will

help to remedy this situation.

On the other hand, we cannot hope that communication with

the user even based on carefully designed prototypes ­

will significantly improve, unless we find a theory o~

software embedment which is based on solid grounds in both

psychology and the social sciences. Such a theory will help

the software designer to make intelligent choices that can

be justified to the user by rational arguments, rather than

by individual tastes. It will also allow for the systematic

evaluation of prototypes.

Because of the serious concern for the adequacy of software

systems in their working environment, research efforts in

these directions must be considered one important front of

software engineering research.

80 13

References:

FLOYD, C.:

A Process-oriented Approach to Software Development.

in: Systems Architecture,

Proc. 6th ACM European Regional Conf. {1981),

Westbury House 1981, pp. 285-294.

ILIeH, I.:

Tools for Conviviality.

FONTANA/COLLINS 1979.

LEHMANN, M.M.:

Programs; Life Cycles and Laws of Software Evolution.

in: Proc. IEEE, Special Issue of Software Engineering

SEPT. 1980, pp. 1060-1076.

TURSKI, W.:

Some Problems of Software Engineering.

in: HP3000 International Users Group Meeting

OCT. 1981.

B014

that in practice the discrepancy between programs and

specifications increase with time, thus making the

specification obsolete long before the program is shelved.

We can hope that progress in specification rese~rch will

help to remedy this situation.

On the other hand, we cannot hope that communication with

the user even based on carefully designed prototypes ­

will significantly improve, unless we find a theory o~

software embedment which is based on solid grounds in both

psychology and the social sciences. Such a theory will help

the software designer to make intelligent choices that can

be justified to the user by rational arguments, rather than

by individual tastes. It will also allow for the systematic

evaluation of prototypes.

Because of the serious concern for the adequacy of software

systems in their working environment, research efforts in

these directions must be considered one important front of

software engineering research.

80 13

References:

FLOYD, C.:

A Process-oriented Approach to Software Development.

in: Systems Architecture,

Proc. 6th ACM European Regional Conf. {1981),

Westbury House 1981, pp. 285-294.

ILIeH, I.:

Tools for Conviviality.

FONTANA/COLLINS 1979.

LEHMANN, M.M.:

Programs; Life Cycles and Laws of Software Evolution.

in: Proc. IEEE, Special Issue of Software Engineering

SEPT. 1980, pp. 1060-1076.

TURSKI, W.:

Some Problems of Software Engineering.

in: HP3000 International Users Group Meeting

OCT. 1981.

B014


	On the Use of "Prototyping" in Software Development

