CQGELQG

COGELOG/ Etude et réalisation de systémes informatiques 1.
Avenue de la Baltique, Z.A. de Courtaboeuf, 91940 LES ULIS / FRANCE
Tel.: (6) 907.70.79

HOW TO GET MORE FROM YOUR CORE MEMORY

HOW TO GET MORE FROM YOUR CORE MEMORY
OR
CFS/3000

A CORE RESIDENT FILE SYSTEM

PIERRE SENANT

Pierre Senant

A LITTLE HISTORY ...

A data processing system ordinarily uses three main types of
memory, which have each a different speed level. Besides, the
byte cost of these types of memory varies with their access
speed. Here are the three typnes of memory in decreasing cost
order :

1. Core memory. The latest technology uses integrated circuits
and the access time is calculated in micro-seconds. The
purpose of this memory is to contain program segments during

P. SENANT the time they are executed, as well as a part of the data to
COGELOG be handled. The life time of these elements in memory is
ETUDE ET REALISATION DE SYSTEMES INFORMATIQUES between a few milli-seconds, and many hours.

AvENUE DE LA BALTiQue, Z.A. pE COURTABOEUF
91940 LES ULIS. FRANCE

02 1 u2 2



CQGELQG

CQGELQG

2.

2. Auxiliary memory : Magnetic discs are normally used. The
time to access information is calculated in milli-seconds.
The purpose of this kind of memory is to save programs and
data to be used during a given period, which can be from a
few minutes to many months.

3. Archival memory : This can be done through many devices, but
the most common is the magnetic tape. Since the access to
data is performed serially, the access time to data can be
from a few seconds to many minutes. This low-cost type of
memory is used as back-up memory, and for saving all data
currently unused.

When we consider the evolution of these different types of
memory during the last past years, we observe a fall in prices

for all types, but a particular drop for the core memory.

This drop has considerably changed the physionomy of data
processing systems during the last years. The HP-3000
system remained in the swim. When it came out in 1972, the
maximum memory size supported was 128 K bytes. The model of
1981 can support up to 4000 K bytes.

In addition, this trend will oprobably be confirmed in the
next years, and an HP-3000 with 20.000 K memory will be
common soon. The advantages of the increase of the core

memory are evident :

uz2 3

3.

. The amount of code that can be put in memory at a given
time is larger. This implies a fall in data segment
swapping, which dramaticélly reduces the disc overhead
and increases the throughput of the system.

. The amount of data handled in one time can theoretically
be increased, by using large file system buffers. However
this technique gives disappointing results, especially in
random access.

Most data processing applications are now using more and more
interactive mode, instead of batch mode. Improving batches is
important, but improving on-line programs is vital. Batches can
run in off-peak hours, and most of the time the jobs can be
done. But in interactive applications, each second of response
time lost must be multiplied by the number of users, and

employer's time is getting expensive.

So, the benefit of increasing core memory comes almost
exclusively from improving the programs flow. Suppose we
could increase indefinitely the core memory size, we would
reach a critical point where adding a memory module would
not affect the response time, because all program segments
are already in core.

Another important factor bears heavily on the response time
disc accesses due to transactions of appnlication programs,
An on-line program using a data base system (IMAGE 3000 for
example) may be very greedy in disc accesses. This overhead

U2 4



CQGELQG

4.

is independant of the number of program segments in memory
and it becomes the actual bottleneck. This makes unprofitable
an increase of core memory.

When a system has reached this level of evolution, one possible
way to reduce the overhead is to suppress some disc accesses.
At first sight, this load seems to be incompressible. If we
assume the files and the data bases have been correctly
organized, and application programs have been written with
shrewdress , what can we do ?

However, when we examine all kinds of files involved in an
application, we are surprised by their diversity, in the size,
in the organization, and in the usage.

In fact, most of them are small enough, and are so frequently
accessed that we would do better to make them core-resident.

uz2 s

CQGELQG

5.

NOW THE PRESENT : CFS/3000

The idea to make some files core-resident might not be very

original, but it certainly remained a dream until to day.

Now the dream becomes reality with CFS/3000.
In my opinion, a real in-core memory file system must follow
the following principles.

. It must be program independant.
Allowing programming people to decide if a file must be
core-resident or disc resident would be catastrophic.
. A core resident file must be accessible from all processes.
The duplication of data is not acceptable.
It must be reliable. Data integrity must not be affected, as
well as the process independancy.
It must respect all security and privacy provisions of the
file system, as well as those of subsystems (IMAGE, KSAM).
. It must be fully controlled by the System Manager, who must
know at any time.
- the name and the sizes of core-resident files
- the total memory size used
- access frequency of any data-set.

In addition, the System Manager can decide to put inor out of
core-memory any file at any time without disturbance in operation.

The conception of CFS/3000 has been founded upon these

principles.

u2 6



COGELQG

6.

HOW TO USE CFS/3000

This product is intended to optimize both batch programs and
on-line programs. In all cases, a good knowledge of application
programs and system management will be required.

. In a batch environment, the execution time can be dramatically
reduced. It will be strongly recommended to run one program at
a time, in order to devote the maximum core-memory to data files.

. In an interactive environment, the tuning must be more

accurate.

You will have to use the utility program IOSTAT2 to determine

how busy your discs are, and what they are doing (swapping or
accessing data files).

If the swapping is low, you may use CFS/3000. You will select the
file to make core-resident by considering their impact on the
response time.

With CFS/3000 you will be able to make trials without stopping
the daily operation.

As a first step, you may declare core-resident some small files
frequently accessed like.

. Tables of parameters

. Automatic master data sets (IMAGE)

. KSAM key-files

In a second step, you will be able to design your future
applications, by taking into account this new possibility.

uz2 7



	How to Get More from Your Core Memory

