
HAU DLI l:G A LA RGE (200 PLUS) NUfvlBE R TER~jI NALS ON THE HP-3000
by N. N. Demo s

SYllOPSIS
I Introduction

It is possible within certain constraints to handle a large
nUlilber of terminals on the HP-3000. The terminals must be
dedicated. The application must not consume any undue amount of
cowputer resource per terminal. An efficient monitor program
must be employed to manage the system resources req~ired.

Application code must be written to interface effectively to the
monitor and to process efficiently. In addition, as ~he number
of terminals increases, a way must be found to reduce the
overhead implicit in Hewlett Packard's presen~ terminal handling
hardware and software (the asynchronous terminal controller and
multi-point terminal software with the SSLC). While these
constraints may be violated in minor ways, it must be remembered
that the HP-3000 has a finite computing and file access
capablility. Applications requiring a high degree of computing
and a large number of file accesses for each entry from a .
terminal are not good candidates for the approach presented
here.

In given applications, specialized. hardware may have to be
interfaced to the HP-3000. It is not the purpose of this
presentation to emphasize or advocate a particular hardware
approach, although one hardware solution will be presented in
the context of the software approach described.

It is the objective of this presentation
programming techniques employed to support a
terminals.

to explain the
large number of

II

A case study of an eXisting implementation will be used to
present some of the considerations and requiremertts in handling
a large nUfllber of terminals on a HP-3000.'

History

In mid 1976, the company, with which this author is associated,
started aiscussions on the possibility of implementing an
on-line Point of Sale system. As the company involved was an
o. E• r-; • for He viI e t t Pac ka r d t he prob1em \01 a s c on sid eredin the
context of using a Hewlett Packard Computer. While the company
had substantial expertise on the HP-1000 series of equipment it
was decided to propose to the customer that an HP-3000 be used
as the main frame, because the customer wished to do other
alJplications on the computer syster.l. As a resul t of these
discussions, the Hewlett Packard 3000, with communications
equipment and a Point of Sale terminal designed by the company
ana their associate eneineers, was proposed. The Point of Sale

SECTION 7-21

terlilinal consisted of a logically integrated RS-232 display
terminal and a 40 character wide printer of our design, with a
connection for a cash drawer which was opened by a special ~
character.

The Point of Sale terminal was connected to an intelligent,
remote controller which acted as a control and buffering device,
so that data could be transmitted synchronously over leased
telephone lines. An SDLC-like protocol was implemented for the
communications network so that maximum efficiency could be
obtained. Multi-drop capability was included so that a number of
remote controllers could share one line. At the host sight, the
front end was designed to support the remote controllers. In
order to interface to the HP-3000, with minimum di'sruption to
the 3000 hardware and operating system, the front end was made
to look almost like the HP programmable controller. This was the
product offered at the time by Hewlett Packard for communication
between a 3000 and the HP-l000 line of computers (using the 2100
series as the CPU component). We were therefore able to use the
universal interface driver supplied as part of the MPE operating
system with only slight modification. The universal interface
(the same as the line printer controller) on the HP-3000 is a
parallel interface. It supports programmed versus direct I/O so
that CPU interference is much less than with the asynchronous
terminal controller, which employs direct I/O.

We now had all the hardware and system software components
r eq u.ired to make the system oper ate. Next we had to design and ~

implement a software monitor to acheive our goals. 1

III ImpLementation of the Software Monitor

At the time of the design of the software monitor to achieve our
objective of supporting a large number of terminals on the 3000,
we had to keep in mind several subsidiary objectives. These
we re:.

A.. We wished to maintain the integrity of ~PE.

u• Ti ell ~ to ito pI erne ntandec0 nom y 0 f cod i ng \oJ a s des ira b1e •

C. Response time at the terminal should be in the one to two
second range; it should not exceed six seconds.

D. ~emory utilization should be minimized.

SECTION 7-22

---_•........-..----.-- ----~--'---.

E. As other terminals were to be attached to the system
through the asynchronous terminal controller, the monitor
must relinquish control when it is not performing useful
activity.

The HP- 3000 e nvir 0 nm e nt withit s tv! PE 0 per a ting s ystem, imp0 s ed
an environment that included the following characteristics:

A. Although I/O no-wait was implemented, there was nn way to
determine if an I/O operation was complete and do any
processing if it was not.

B. There was no way for the monitor (which was the father
process) to suspend and be awakened by EITHER I/O
completion or an activation by a son process (meaning that
its task was co~plete and it had data for the monitor).

In this environment, several decisions were made, as follows:

A. Because of the required efficienc~, the monitor and the
application code would 'be programroed in SPL.

B. The ruonitor would handle all input and output to the front
end, but handle no other I/O directly (except communication
with the lIlonitor terminal, that would be used to control
the communication subsystem).

c. Each terminal would be assigned its own process;
process would do no input-output of its own.

this

D• The I rll age Da taGa s e fvl a nag em e nt System w0 u1d be used for the
files where random access was required.

E. There would be separate, asynchronously running processes
for III~age acces s and other di sc acces s (the 1a t ter req ui red

SECTION 7-23

mostly for a Transaction Logging file).

F. All interprocess comliiunication would be through extra Data
Segments.

G. All transfers of control would have to be explicitly
hanoled through the father process.

H." Queues would be set up and maintained for the Image and
Disc Access processes so that the monitor could perform
other activities while an individual terminal might be
waiting for Image or Disc Access.

- With these decisions in place a main process loop was designed,
that started \-li th a read to the fron t end and ended wi th an
IOWAIT if no activity was present in the subsystem. The monitor
runs in the BS queue so that, at this point (IO}iAIT) other
sessions could perform activity. Also, whenever thefe was
activity and a process was started, the monitor would suspend
when no data was available from the front end.

Approximately four months after this system was designed the
hardware and software were brought up for final test purposes.
With some minor adjust~ents, (mostly involved in debugging
firmware in the front end and controllers) the system worked
satisfactorily. About six weeks later, it was put into
production.

The orcinai design goal was to support eighty terminals. The
next required step was to expand to support 100-120 terminals.
This was accomplisheo through implementation of an additional
front end to lessen the load on the first front end, and some
changes in the monitor program. The major change was the
implementation of read and write queues (buffers) for the front
ena I/O. This was necessary, not only to smooth momentary peak
loads, bu t also because the front ends had lind ted bu ffer space.
For tectinical reasons, it was necessary to' read all the data
possible from the front end ("drain" them) before attempting to
write to them. The implementation of \oJrite buffers allo\.;ed
processing to continue, even though there was a momentary peak
load on the out-put side of the system. These changes, an
increase in memory size, and other minor fine tuninr,
ad jus tll~e n t s, a 11 owe d u s to inc rea seca pac i t Y a s r equi red a t t hat
t inle •

SECTION 7-24

The next requireo step was to expand to support 100-120
terminals. This was accomplished through implementation of an
auaitional front end to lessen the load on the first front end,
a na ~ 0 ~he chan Cesin the i!J 0 nit 0 r program. T11 e ma j 0 r c han g e vJ a s
t 11 e irr. p1 e til e ntat ion 0 f readand wr i t e que ue s (b u f fer s) for the
fro n ten d I /0 • T his w() s ne c e s sa r y, not 0 n1y t 0 s r.lO 0 t h morn e ntar y
peak loaas, but also because the front ends had limited buffer
space. For technical reasons, it was necessary to read all the
cielta possible fronl the front end ("drain" them) before
atternpting to write to them. The implementation of write buffers
allowed processing to continue, even though there WbS a
momentary peak load on the out-put side of the system. These
chan g e s, ani ncr e a s e in mem0 r y s i ze, and 0 the r rr. i nor firlet un in g
adjustments, alloweci us to increase capelcity as required at that
time.

The next requirement was to support up to 200 terminals doing
the sarlle application. At this point it was realized that the
process for each terminal approach would not suffice. First,
each process requires a 1··iII-IIFUH overhead of 2048 bytes, for its
stack, not considering working storage for data movement and
calculations. Secondly, research indicated that even without
paging to and from disk, it required an absolute minimum of
eight rllilliseconds for a monitor to activate a process, suspend
and then to have the son process reactivate the father. This
figure holds with no processing being doing in the son. For
these two reasons, it was decided to discontinue the process per
ternlinal approach and use a procedure of the monitor for
application code. A place to store the data required for each
terminal ana a method of ascertaining where in the code,
processing for any given terminal was to continue, were
required. In other words, sorlIe of the housekeeping that MPE
per for n~ e d aut or:1 a tic a 11 y t hr 0 u e; h proc e s s han d1 i ng had to be
s i rl~ u1ate cJ by 0 the r mea ns .

Because Q-relativc storage could be used for data .required
between input-output requests, the only requirement was for the
holdin[of data required between I/O requests. This was
accol:iplished by assigning 70-Hord blocks in -DR. These Here
rii~naBed by the rnonitor. Because the application required that
aGuition~l, consiuerably more dynamic, memory be allocated to
store print lines for a ~ive~ transaction, a method was devised
to Illanipulate the oriEinal Q location upward and use the
available space as temporary storage. This was also handled by
the ru 0 nit 0 r , a 1 tho u~ h in d i v i cJ ualproc cd ures cou 1 d r eque s t d a t a
and release date in this area directly.

The other requirer:tent was handled satisfactorily, if somewhat
inelegantly, by cCJlling a special exi t sub-routine before
leaving the procedurt~. This special sub-routine stored its own
exit ~ddress in the special data area mentioned above. In
c ()~.1 P1 ell. e nl Ci r y f ~ $ hie n, a s tar t sub- r 0 uti ne a 1 way sea1 1e d a t the

SECTION 7-25

beginning of the procedure, retrieved this exit address and used
it at its own exit address. Some additional housekeeping was
required, but this is essentially how the procedure operated.
Tllis required a coding aiscipline where no input/output could be
done ira a procedure or sub-routine called by this application
~roceaure. For obvious reasons, it was also desirable to keep
the aata required between input/output operations to an absolute
lliiniuu:i:. In general these were the only programming constraints
necessary to implement this approach.

Because it would have taken considerable recoding to make the
disc handling process a procedure and because access to it was
no~ required often enough to have a significant impa~t on
performance, it was left as a separate process. Because there
was no way of doing no-wait I/O with the Image files, it was
necessary to leave the Image code as a "separate, independently
running process. This change was implemented and results were as
expected. Thrashing was eliminated and response time was
improved wi th 160 terrninals active. In this application
environrne·nt and the way this system ope"rates, it is felt that
200 terminals operating at once would be feasable.

The next design goal would be to support in the neighborhood of
300 terminals. We will soon be doing simulations to see where
the present system has bottle necks and where we might make
improvements. Depending upon the results of our analysis, we
will probably make one or more of the following changes to
improve- performa nce: ~

A. Restructure the Image Data Base.

B. Take the random processing out of Image and use a custom
randOlll access subsystem. Use extra Data Segments for more
queue capacity for the Image and disc access queues.

c. ~eview and restructure the main process loop in the monitor
to make sure that the most likely event is tested for first
ond that tests are made by groups. At" the same time we
would review and if possible refine our ~ethods for
terminal address calculations, etc.

D. Based on simulation tests, make sure that the most critical
resource has tile highest priority when it cor.:es to a
question of what task the [I jon itor should undertake next.

SECTION 7-26

At this point we realize we are pushing the limits of the
HP-3000 and we will be looking for ways to offload some of the
processing. We are looking currently at two ways of doing this.
The first one involves linking one or more HP-3000s together via
a OS-link and splittine the loads between them. The second
ap~roach involves putting a mini-computer at hiRh volume
locations with capability to handle individual transactions
without interrupting the host 3000. Currently the latter
approach is favored. Our desicn specifies that the mini at the
location will have its own data base that will be updated during
off hours. Also all programs, as well as data, will be down
loaded from the host system. This latter approach is favored,
because it will result in satisfactory backup in case either the
line or the host 3000 fails.

Although the system presented here may be more exotic then some
use r sea n for e see imp1eril e nting, i t has f u1fill ed its pur poseand
has performea with a larger throughl1ut than anyone had
originally envisioned. System uptime has been more than
satisfactory, and processing has been very inexpensive in its
environment. We feel confident in recommending that any
situation requiring a large number of dedicated terminals where
the application processing is not too extensive, be programmed
using the above approach. The key criteria are the requirement
for a large nurllber of dedicated terminals where each input from
a CRT terminal does not require a significant amount of
c Olil put a t ion a lor disc pro c e s sin g • Un d e r thesec 0 nd i t ionsan
excellent response time will be achieved, with economic hardware
and softVJare costs.

tJ • r·j. Demo s

SECTION 7-27

	Section 7—Data Entry Applications
	Handling a Large (200 Plus) Number of Terminals on the HP 3000

