II

HANDLING A LARGE (200 PLUS) NUMBER TERMINALS ON THE HP-3000
by N.M. Demos

SYHOPSIS
Introduction

It 1is possible within certain constraints to handle a large
number of terminals on the HP-3000. The terminals must be
dedicated. The application must not consume any undue amount of
computer resource per terminal. An efficient monitor progranm
must be employed to manage the system resources required.
Application code must be written to interface effectively to the
monitor and to process efficiently. 1In addition, as che number
of terminals increases, a way must be found to reduce the
overhead implicit in Hewlett Packard's preseni terminal handling
hardware and software (the asynchronous terminal controller and
multi-point terminal software with the SSLC). While these
constraints may be violated in minor ways, it must be remembered
that the HP-3000 has a finite computing and file access
capablility. Applications requiring a high degree of computing
and a large number of file accesses for each entry from a.

terminal are not good candidates for the approach presented
here.

In given applications, specialized. hardware may have to be
interfaced to the HP-3000. It 1is not the purpose of this
presentation to emphasize or advocate a particular hardware
approach, although one hardware solution will be presented in
the context of the software approach described.

It 1is the objective of this presentation to explain the

programming techniques employed to support a large number of
terminals.

A case study of an existing implementation will he used to
present some of the considerations and requirements in handling
a large number of terminals on a HP-3000. '

History

In wmic 1976, the company, with which this author is associated,
started aiscussions on the possibility of implementing an
on-line Point of Sale system. As the company involved was an
O.E.M. for Hewlett Packard the problem was considered in the
context of using a Hewlett Packard Computer. While the company
had substantial expertise on the HP-1000 series of equipment it
was decided to propose to the custcmer that an HP-3000 be used
as the main frame, because the customer wished to do other
applications on the computer systen. As a result of these
discussions, the Hewlett Packard 3000, with communications
equipment and a Point of Sale terminal designed by the company
ana their associate engineers, was proposed. The Point of Sale

SECTION 7-21

ITI

terminal consisted of a logically integrated RS-232 display
terminal and a 40 character wide printer of our design, with a
connection for a cash drawer which was opened by a special
character.

The Point of Sale terminal was connected to an intelligent,
remote controller which acted as a control and buffering device,
so that data could be transmitted synchronously over 1leased
telephone 1lines. An SDLC-like protocol was implemented for the
communications network so that maximum efficiency could be
ootained. Multi-drop capability was included so that a number of
remote controllers could share one line., At the host sight, the
front end was designed to support the remote controllers. 1In
order to interface to the HP-3000, with minimum disruption to
the 3000 hardware and operating system, the front end was made
to look aluiost like the HP programmable controller. This was the
product offered at the time by Hewlett Packard for communication
between a 3000 and the HP-1000 line of computers (using the 2100
series as the CPU component). We were therefore able to use the
universal interface driver supplied as part of the MPE operating
system with only slight modification. The universal interface
(the same as the line printer controller) on the HP-3000 is a
parallel interface. It supports programmed versus direct I/0 so
that CPU interference is much less than with the asynchronous
terminal controller, which employs direct I1/0.

We now had all the hardware and system software components
required to make the system operate. Next we had to design and
implenient a software monitor to acheive our goals,
Implementation of the Software Monitor

At the time of the design of the software monitor to achieve our
objective of supporting a large number of terminals on the 3000,

we had to keep in mind several subsidiary objectives. These
were:

A. We wished to maintain the integrity of MPE.
b. Time to immplement and economy of coding was desirable.

C. Response time at the terminal should be in the one to two
second range; it should not exceed six seconds.

D. Hkemory utilization shculd be minimized.

SECTION 7-22

-

—_—— ————— - l

As other terminals were to be attached to the system
through the asynchronous terminal controller, the monitor

must relinquish control when it is not performing useful
activity.

The HP-3000 environment with its MPE operating system, imposed
an environment that included the following characteristics:

A.

Although 1I/0 no-wait was implemented, there was no way to
determine if an I1/0 operation was complete and do any
processing if it was not.

There was no way for the monitor (which was the father
process) to suspend and be awakened by EITHER I1/0
completion or an activation by a son process (meaning that
its task was complete and it had data for the monitor).

In this environment, several decisions were made, as follows:

A.

Because of the required efficiency, the monitor and the
application code would be programmed in SPL,

The monitor would handle all input and output to the front
end, but handle no other I/0 directly (except communication
with the monitor terminal, that would be used to control
the communication subsystem).

Each terminal would be assigned 1its own process; this
process would do no input-output of its own. :

The Image Data DGase Management System would be used for the
files where random access was required.

There would be separate, asynchronously running processes
for Image access and other disc access (the latter required

SECTION T7-23

mostly for a Transaction Logging file).

F. All interprocess communication would be throuzh extra Data
Seguents.

G. All transfers of control would have to be explicitly
hanuled through the father process.

H. (Queues would be set up and maintained for the 1Image and
Disc Access processes so that the monitor could perform
other activities while an individual terminal might be
waiting for Image or Disc Access.

With these decisions in place a main process loop was designed,
that started with a read to the front end and ended with an
ICWAIT if no activity was present in the subsystem. The monitor
runs in the BS queue so that, at this point (IOWAIT) other
sessions could perform activity. Also, whenever there was
activity and a process was started, the monitor would suspend
when no data was available from the front end.

Approximately four months after this system was designed the
hardware and software were brought up for finzl test purposes.
With some minor adjustments, (mostly involved 1in debugging
firmware in the front end and controllers) the system worked
satisfactorily. About six weeks later, it was put into
production.

The orginal design goal was to support eighty terminals. The
next required step was to expand to support 100-120 terminals.
This was accomplishea through implementation of an additional
front end to lessen the load on the first front end, and some
changes in the monitor program. The major change was the
implementation of read and write queues (buffers) for the front
ena I/0. This was necessary, not only to smooth momentary peak
loads, but also because the front ends had limited buffer space.
For tecnhnical reasons, it was necessary to- read all the data
possible trom the front end ("drain" them) before attempting to
write tc them. The implementation of write buffers allowed
processing to continue, even though there was a momentary peak
load on the out-put side of the system. These changes, an
irncrease in nemory size, and other minor fine tuning
adjustuments, allowed us to increase capacity as required at that
tine.

SECTION 7-24

The next reqguirea step was to expand to support 100-120
terminals. Tunis was accomplished through implementation of an
adagitional front end to lessen the load on the first front end,
ana sowme changes in the monitor program. The major change was
the implementation of read and write queues (buffers) for the
front end I/G. This was necessary, not only to sriooth momentary
peak loads, btut also because the front encs had limited buffer
space. For technical reasons, it was necessary to read all the
data possitle from the front end ("drain" them) before
attempting to write to them. The implementation of write buffers
allowed processing to continue, even though there wazs a
momentary peak load on the out-put side of the system. These
changes, an increase in memory size, and other wminor fine tuning

ad justments, allowed us to increase capacity as requirecd at that
tine. :

The next requirement was to support up to 200 terminals doing
the same application. At this point it was realized that the
proccess fer each terminal approach would not suffice. First,
each process requires a MIHIWUM overhead of 2048 bytes, for its
stack, not considering working storage for data movement and
calculations. Secondly, research indicated that even without
paging to and from disk, it required an absolute minimum of
eight milliseconds for a monitor to activate a process, suspend
and then to have the son process reactivate the father. This
figure holds with no processing being doing in the son. For
these two reasons, it was decided to discontinue the process per
terminal approach and use a procedure of the monitor for
application code. A place to store the data required for each

terminal ana a method of ascertaining where in the code,
processing for any given terminral was to continue, were
required. In other words, some of the housekeeping that MPE
perfcrmed automatically through process handling had to be
simulated by other means.

Because Q~relative storage could be wused for data required
between input-output requests, the only requirement was for the
holding of data required between I/0 requests, This was
acconiplished by assigning 70-word blocks in -DB. These were
managed by tne monitor. DBecause the application required that
acuitional, consiuerably more dynamic, memory be allocated to
store print lines for a given transaction, a method was devised
to manipulate the original § location wupward and use the
available space as temporary storage. This was also handled by
the wmonitor, although individual procedures could request data
and release date in this area directly.

The other requirement was handled satisfactorily, 1if somewhat
inelegantly, by culling a special exit sub-routine before
leaving the procedure. This special sub~rcutine stored its own
exit address 1in the special data area mentioned above. In
complementary fashicn, a start sub-rcutine always called at the

SECTION 7-25

beginning of the procedure, retrieved this exit address and used
it at its own exit address. Some additional housekeeping was
required, but this 1is essentially how the procedure operated.
This required a coding aiscipline where no input/output could be
done ir a procedure or sub-routine called by this application
proceaure. For obvious reasons, it was also desirable to keep
the data required between input/output operations to an absolute
miniunum. In general these were the only programming constraints
necessary to implement this approach.

Because it would have taken considerable recoding to make the
disc handling process a procedure and because access to it was
not required often enough to have a significant impact on
perfornance, it was left as a separate process. Because there
was no way of doing no-wait I/0 with the Image files, it was
necessary to leave the Image code as a . separate, independently
running process. This change was implemented and results were as
expected. Thrashing was eliminated and response time was
improved with 160 terminals active, In this application
environment and the way this system operates, it is felt that
200 terminals operating at once would be feasable. '

The next design goal would be to support in the neighborhood of
300 terminals. We will soon be doing simulations to see where
the present system has bottle necks and where we might make
improvements. Depending upon the results of our analysis, we
will probably make one or more of the following changes to
improve performance:

A. Restructure the Image Data Base.

B. Take the random processing out of Image and use a custom
random access subsystem. Use extra Data Segments for more
queue capacity for the Image and disc access queues,

C. keview and restructure the main process loop in the monitor
to make sure that the most likely event is tested for first
and that tests are made by groups. At the same time we
would review and if possible refine our methods for
terminal address calculations, etc.

D. Based on simulation tests, make sure that the most critical
resource has the highest priority when it comes to a
question of what task the monitcr should undertake next.

SECTION 7-26

At this point we realize we are pushing the 1limits of the
HP-3000 and we will be looking for ways to offload some of the
processing. lie are loocking currently at two ways of doing this.
The first one involves linking one or more HP-3000s together via
a DS-link and splitting the 1loads between them. The second
approach involves putting a mini-computer at high volume
locations with capability to handle indivicduzl transactions
without interrupting the host 3000. Currently the 1latter
approach is favored. OQOur design specifies that the mini at the
location will have its own data base that will be updated during
off hours. Also all programs, as well as data, will be down
loaded from the host system. This latter approach is favored,
because it will result in satisfactory backup in case either the
line or the host 3000 fails.

Althcugh the system presented here may be more exotic then some
users can foresee implenenting, it has fulfilled its purpose and
has performed with a larger throughput than anyone had
originally envisioned. System uptime has been more than
satisfactory, and processing has been very inexpensive in its
environment. We feel confident in recommending that any
situation requiring a large number of dedicated terminals where
the application processing is not too extensive, be programmed
using the above approach. The key criteria are the requirement
for a large number of dedicated terminals where each input from
a CRT terminal does not require a significant amount of
computational or disc processing. Under these conditions an
excellent response time will be achieved, with economic hardware
and software costs.

N.FMM. Demos

SECTION 7-27

	Section 7—Data Entry Applications
	Handling a Large (200 Plus) Number of Terminals on the HP 3000

