
A N~w Tool for Fast K~yed Access (Sometimes)
Jim Kram€r~ HP St. Louis

I. Introduction

This paper discusses a method of keyed sequential
access to a file which should for certain uses provide
parformance advantag~$ over KSAM/3000. It also discusses a
S€t of procedures which implement the method. In addition
to keyad access these procedures can be used for sequential
reading and writing of a non-keyed file; because they use
NOBUF I/O~ th~y can provide consid€r~ble CPU savings over
mora usual methods of sequential access,

The S€t of procedures -- referred to in this paper as
Quick-key -- ~re available from the contributed library,
along with full documentation.

II. The Method

In doing keyed sequential reading of a rile~ it seems
obvious that there should be some advantage to be gained in
sorting the file first. There is indeed an advantage. For
an unsort€d fil€J knowing the location of a particular
r€cord of the file does not provide any help in finding any
oth€r record (Qxcept to know that it must be different).
For a sorted file J however) knowing the location of a record
with a particular key tells you immediately that all records
with smaller keys precede the known record~ and all records
with larg€r keys follow it. If the keys for the first
record of each block are known then it is possible to know
immediately without looking at the file which block a
particular record is in. The record can then be obtained
with a single disc access.

This is the method the Quick-key procedures use. They
maintain in memory an index containing keys of the initial
records of the blocks of the file. This index can either be
pre-built (by a Quick-key program which would be run after
the file is sorted) or built dynamically by Quick-key. When
Quick-key does not have a complete index of the file J it
uses a combination of binary search and interpolation to
find the desired record. As it does so it obtains more
information for its index.

Because the file must be sorted} the modes of access
are limited. Reading and updating (without changing the key)
are possible; adding and deleting are not.

Section 10-37



A New Tool for Fast Keyed Access (Sometimes)

III. Capabilities

The Quick-key package provides the following
capabilities:

1. REad access or read and write access to a file,

2, Exclusive or sh~r€d access to a file.

3, For a keyed file:

a. Reading and updating (without changing the
key) of any record of the file.

b. Random access by sort key) including generic
and approximate searches.

c. Keyed sequential access (accessing the
record with the next larger or next smaller
key).

d. Handling o~ duplicate keys.

4. For an unkeyed file:

a. Reading or updating of any record.

b. Appending of records to the end of the file.

c. Random access by record number.

d. Forward or backward sequential access,

IV. Usage

Since Quick-ke~' is an unsupported utility) it probably
should not be consider€d for use unless either

1. it provides a desired capability not available
elsewhere) or

2, it provides significant performance advantages,

The one significant capability Quick-key provides is
the ability to provide keyed access to a sorted file. This
capability has already been made use of in a text editor
which operates directly on a source file. (A numbered
source file is) after alII a file which is sorted by line
numbF-r), The desire to have such an editor was J in factJ
the reason that Quick-key was created.

Significant performance advantages are most likely to
be found in the following two areas:

Section 10-38

~.



A New Tool for Fast Keyed Access (Sometimes)

1. Multi-user sh~red r€ad access to a key€d
sequential file, and

2. Sequential reading or writing of a non-keyed file.

Quick-k€y may provide a large savings in disc accesses
over KSAM for keyed sequential access. Quick-key can access
a r€cord by key with at most a single disc access. KSAM, on
the other hand~ may require as many disc accesses as the
number of levels of the key file 8-tree plus one for the
data block. (KSAM may require fewer accesses if the
necessary records of the 8-tree are already in its bu~fers).

Whether there will be a memory savings is a complex
issue, depending on many factors. In order for Quick-key to
be able to access a record with a single disc access, it
must keep on€ key per data block in memory. KSAM 1 to do the
same thing, would have to k~ep one key per record (the
€ntire key file) in its buffers. Therefore Quick-key will
have a memory advantag€ proportional to the blocking factor
of the data file. KSAM~ of course l does not need to have the
entire key file in m€mory~ but to the extent which it does
not it will pay a penalty in disc accesses.

Both Quick-key and KSAM provide a buffer for an entire
data block, so the size of the data block affects both in
the same way. If there is significant sequential access by
key, a large data block helps Quick-key save ~ccesses to the
data file -- the next record is probably already in the
buffer~ and no accesses whatever are required. For KSAM~

unless the data file is sorted~ an access will probably be
required. However if access is largely random l lat'ge blocks
can waste space for both Quick-key and KSAM -- the next
record desired is probably not in the buffar. Of course If
access is entirely random by key, an IMAGE master should be
considered for use rather than either KSAM or Quick-key.

For sequ€ntial access to a non-keyed file, things are
simpler. Because Quick-key uses HOBUF I/O and reads or
writes an entire data block at one time~ the number of calls
to the ~ile system can be greatly reduced, depending on the
blocking factor of the file. CPU times can be reduced by as
much as an order of magnitude as a result.

One other factor that should be considered is that
Quick-key~s buffering is entirely in the stack, whereas
KSAM's is in an extra data segment. Thus a process which
requires a large stack for other uses may not be able to use
Quick-key. Also, if access to the keyed file is infrequent,
Quick-keys buffers could become a useless burden to the
stack l wher€as KSAN~s extra data segment could be swapped

~ out of memory. Another consideration with Quick-key is that

Section 10-39



A New Tool for Fast Keyed Access (Sometimes)

the stack is frozen by MPE while awaiting completion of an
110 raqu€st. If such frozen stacks are a significant part
of available memorYI and if memory is in short supply for
the currently executing processes l the memory manag€r~s task
can be made significantly more difficult by the frozen
St.3l:ks.

The Quick-key p~ckag€ can provide parform~nc€

improvements Qver conv~ntiQnal methods of accessing keyed
and s€quential files. However the user should be aware of
the risk$ of using soft~ar€ not supported by Hewlett
P~ck~rdl and satisfy himself that the performance benefits
are 1•••IOt--th the t'" i sk i nvo 1'.,led,

Section 10-40


	Section 10—File System Use
	A New Tool for Fast Keyed Access (Sometimes)


