A Maw Tool for Fast Kewad Access (Sometimes)
Jim Kramer, HP St. Louis

=

Introduction

This paper discusses a method of kewed sequential
access to a file which should for certain uses provide
performance advantages ower KSEMA/3000, It also discussss a
set of procedurss which implem=snt the method. In addition
to kewed access these procsdures can be used for saguential
reading and writing of a non-keved file: because they use
HOBUF I/0, they can prowvide considerable CPU savings owver
more wususl methods of sequential access.

The s=t of procedures -- referrsd to in this paper as
Buick-kew == are awailable from the contributed library,
alorng with full documentation,

IT. The Method

In doing keyad sequential reading of a file, it seems
obwvicus that there should b2 some advantage to be gained in
sorting the file first, Thare is indeed an advantage. For
an unsorted ile, knowing the location of a particular
record of the file does not provide any help in finding any
other rzcord (except to know that it must be different).

For a scrted file, however, knowing the location of a record
with a particular key tells vou immediately that all records
with smaller keys precede the known record, and all records
with larger kews follow it., If the keys for the first
record of each block are known then it is possible to know
immadiately without looking at the file which block a
particular record is in., Tha record can then be obtained
with a single disc access.

This is the method the Quick-key procedures use. They
maintain in memory an index containing keys of the initial
records of the blocks of the file. This index can either be
pre-~built (by a Buick-key program which would be run after
thz file is sorted) or built dynamically by Quick-kev., UWhen
RQuick-key does not have a complete index of the file, it
uses a combination of binary search and interpolation to
find the desired record. as it does so it obtains more
information for its index.

Because the file must be sorted, the modes of access

are limited. Reading and updating (without changing the key)
are possible: adding and deleting are not.

Section 10-37



A Mew Tool tor Fast Kevwed Access (Sometimes)

ITT1. LCapabilities

The Quick-key package provides the following
capabilities:

i, Read access or read and write access to a file,

13\

' Exclusive or shared access to a file.
3, For a keyed file:

3. Reading and updating {without changing the
kev) of any record of the file.

b. Random access by sort kay, including generic
and approximate searches.

=, Ksyed sequential access (accessing the
record with the next larger or next smaller
kayl,

d. Handling of duplicate kevs,
4, For an unkeyed file:
a. Reading or updating of any record.
b. Appending of records to the end of the file,
c. Random access by record number.
d. Forward or backward seguential acce=ss,.
I¥., Usage

Since Buick-key is an unsupported utility, it probably
should mot be considered for use unless either

1. it provides a desired capability not awailable
elsa2uwhetre, or

2. it provides significant performance adwantages.

Thz one significant capability Quick-key provides is
the ability to provide keyed access to a sorted file. This
capability has already been made use of in a text sditor
which operates directly on a source file. (A numbered
source file is, after all, a file which is sorted by line
number >, The desire to hawe such an editor was, in fact,
the reaszon that Ruick-key was created.

Significant performance advantages are mosht likely to
be found in the following two areas:

Section 10-38



A New Tool for Fast Keyed fAccess (Somstimas)

1. Multi-user shared read access to a keyed
sequential file, and

-

2. Sequential reading or writing of a non-keved file,

Buick~-key may provide a large savings in disc accesses
awar KSAM for keyed sequential asccess., Guick-key can access
a record by kay with at mozt a single disc access. KSaM, on
the other hand., may require as many disc accesses as the
rnumber of levels of the key file B-tree plus one for the
data block. (KSAM may require fewer accesses if the
necessary records of the B-tree are already in its buffers).

Whather there will be a memory savings is a complex
issue, depending on many factors. In order for Quick-kesy to
be able to access a record with a single disc access, it
must ksep one key per data block in memory., KSAM, to do the
same thing, would hawve to keep one key per record (the
entire key filed in its buffers, Therefore Quick-key will
have a memory advantags proportional to the blocking factor
of the data file. K3AM, of course, does not need to have the
entire key file in memory, but to the extent which it does
not it will payv a panalty in disc acceszes.

Both GQuick-key and K3AM provide a buffer for an sntire
data block, so the size of the data block affects both in
the same way. I there is significant sequential access by
kay, a larage data block healps Quick-key save accesses to the
data Tile -~ tha next record is probably already in the
buffer, and no accesses whatever are required. For KSAM,
unless the data file is sorted, an acceszs will probably be
reguired. Howewver if access is largely random, large blocks
can waste space for both RQuick-key and KSAM -- the next
record desired is probably not in the buffer. UOFf course If
access is entirely random by key, an IMAGE master should be
considered for use rather than either K3aAM or Quick-key.

For sequential access to a non-keyed file, thinas are
sinpler. Because BRuick-keyv uses NOBUF I/0 and reads or
writes an entire data block at one time, the number of calls
to the file sustem can be greatly reducsd, depending on the
blocking factor of ths file, CPU times can be reduced by as
much as an order of magnitude az a reszult,

Dne other factor that should be considered is that
Ruick-key s buffering is entirsly in the stack, whereas

KZaM’s is in an extra data segment. Thus a process which
requires a large stack for other uses may not be able to use
Buick-key, Also, if access to the keyed file is infrequent,

Buick-keys buffars could bacoms a ussless burden Lo the
stack, whereas KSAM s extra data segment could be swapped
out. of memory., Another consideration with Quick-key is that

Section 10-39



A Mew Tool for Fast Kevad Access CSometimes?

ack is frozen by MPE while awaiting completion of an
1/0 request. If such frozen stacks are a significant part
of awvailable memory, and if memory is in short supply for
the currentlyv exscuting processes, the memory manager’s task
~an be made significantly more difficult by the frozen
stacks,

iV, Conclusion

The Buick~key packags can provide performance
improvements over conventional methods of accessing keved
and sequential files. Howewver ths uszer should be aware of
the risks of using software not supported by Hewlett
FPackard, and satisfy himself that the parformance benefits
are worth thas risk involwved.

Section 10-40

™



	Section 10—File System Use
	A New Tool for Fast Keyed Access (Sometimes)


