
The Formatter
A Halfway House for FORTRAN Input/Output Requests

Author:
Steven Saunders, H-P Development Engineer

General Systems Division
Cupertino, Calif.

Abstract:
The FORTRAN Formatter provides a simple intermediate level

interface to the MPE File System. The Formatter provides data
conversion and editing capabilities not provided by the File
System. The benefits of this interface are available to SPL
programmers as well as the FORTRAN compiler. The Formatter does
have some special limitations and some processing overhead.

This paper provides an overview of the FORTRAN Formatter and
its use. The reader is assumed to have some familiarity with
FORTRAN input/output and FORMAT statements, the MPE File System,
SPL, and the architecture of the HP3000. This paper is intended
to be an overview and brief tutorial. The interested reader is
referred to the following publications:

Compiler Library Reference Manual 30000-90028
FORTRAN/3000 Reference Manual 30000-90040
Systems Programming Language Reference Manual 30000-90024
MPE Intrinsics Reference Manual 30000-90010

The example programs given in the appendices of this paper have
been compiled and run on a HP3000 series II. The section on the
Formatter's operation is intended to provide insight, but not
encouragement to try "clever" programming tricks.

SECTION 10-21

The Formatter Interface to the File System

General Features of the File System

The MPE File System intrinsics, hereafter simply called the
File System, provide the basic mechanism to transfer data between
the users's stack and external devices containing the user's
files. The File System has a basic unit of data transfer called
a record (fig 1). Multiple record transfers will not be discussed
in this paper.

/
/1

I
USER'S I

FILE I
/

/

fig 1 IUSER'S I \
ISTACK I 1\
I I FILE SYSTEM I
I 1<===========>1
I I (1 record) I
I I \
I I \

The organization of records within a user's file is device
dependent, but the File System masks most of this device
dependence from the user. The device dependence the user does
encounter is primarily in the area of access types. For example,
not being allowed to input data from a line printer or update
records in the middle of a file stored on magnetic tape.

The File System does not concern itself with the contents
of each record, thus no data conversions take place. The File
System has no interest in the number of data items contained in
each record. For example, to input a fixed number of data items
from a terminal could require varying numbers of input requests
(FREADs). The term "data item" is used to denote any program
variable; for example, a simple variable or an array.

The Formatter as an Extension of the File System

We have seen that the File System transfers records without
concern for the number or type of data items contained in each
record. The user must provide the means to map his data items
into File System records, but this may greatly increase the
effort to develop his/her application. What is needed is an
extention of the File System that will transfer data items and
perform data conversions (fig 2).

SECTION 10-22

The Formatter Interface to the File System

fig 2 IUSER PROGI
I I 10PEN FILE I
I I? I I
I I IRECORD I/O I
I IITEM TRANS I I I
I I I? ICONVERT I I
I I I I I I
I I? I I
I I I I
I I ICLOSE FILEI
I I I I
<---SPL---><-----------FORMATTER------------><~FILE SYS->

The FORTRAN Formatter intrinsics, hereafter simply called
the Formatter, provide this extention of the File System. The
Formatter was developed to support FORTRAN input/output requests,
as described below, but it will also support intermediate level
input/output requests for SPL programs. The term "intermediate
level" is used to denote highlevel function without modification
to the highlevel language.

SECTION 10-23

The Formatter Interface to FORTRAN/3000

General Features of FORTRAN I/O

The input-output statements in FORTRAN/3000 are READ and
WRITE. Each has four forms: core-to-core, free-field, formatted,
and unformatted. There exist special purpose free-field versions
of READ and WRITE called ACCEPT and DISPLAY which will not be
discussed further. The definitions of READ and WRITE statements
are intended to be machine independent and are in terms of
transfer of groups of values, not single records (fig 3).

fig 3 IUSER'SI \ /
ISTACK I 1\ /1
I I FORMATTER FILE SYSTEM I I
I 1<----------><===========>1 USER'S I
I I (>1 value) (>1 record) I FILE I

1\/
I _ /

The four forms of READ and WRITE statements are given below
along with a brief description of their features.

core-to-core:
READ (character variable,format statement#) data item list
WRITE character variable

This form causes the conversions requested in the format to
be performed and the results transferred between the first
character variable and the data items.

free-field:
READ (unit#, *) data item list
WRITE

This form causes default conversions to be performed and the
results transferred between the FORTRAN unit# and the data
items.

formatted:
READ (unit#,format statement#) data item list
WRITE character variable

This form causes the conversions requested in the format to
be performed and the results transferred between the FORTRAN
unit# and the data items.

unformatted:
READ (unit#) data item list
WRITE

This form causes all conversions to be suppressed and
internal bit patterns transferred between the FORTRAN unit#
and the data items.

SECTION 10-24

The Formatter Interface to FORTRAN/3000

The basic problem implementing all these features is deciding
where the work should be done, in the user's object code or in
library intrinsics.

Simplified Code Generation

It was decided that the work required by FORTRAN I/O features
would be done for FORTRAN/3000 in a set of intrinsics.
This is very reasonable when we consider the segmentation
features of the HP3000 architecture. This choice also removes
much of the object code space requirement for input/output
requests. The compiler has less object code to generate, thus it
requires less time to compile input/output requests. The sharing
of intrinsic code segments and smaller user code segments reduces
the overall system memory requirement.

It should be noted that generalized intrinsics cannot perform
as well as specially developed input/output code sequences. But
the additional effort to develop (or compile) and maintain
special input/output code sequences makes generalized intrinsics
a better choice in almost all cases.

SECTION 10-25

The Formatter Interface to the SPL Programmer

General Form of Formatter Requests

The SPL programmer using the Formatter to perform input/output
must issue the sequence of intrinsic calls detailed below.
The basic sequence is: initialize the Formatter (INIT FMTR),
transfer one or several data items (ITEM TRANS) possibily with
data conversion (CONVERT), and terminate the Formatter (TERM
FMTR). See figure 4.

fig 4 IUSER PROGI
I I 10PEN FILE I
I IINIT FMTR I I
I I IRECORD I/OI
I lITEM TRANS' 'I
I , I? 'CONVERT I I
, I , , , ,
I ITERM FMTR I I
I I I'
I , ICLOSE FILEI
I I 'I
<---SPL---><-----------FORMATTER------------><-FILE SYS->

initialize the Formatter:
filet

FMTINIT' (format,unit#,record#,iotype,last)
bsize,buffer

This intrinsic provides the Formatter with information about
the type of input/output request (iotype), what data
conversions to use (format), where the source/destination of
the transfer is (file#/unit#/buffer), which record to access
directly (record#), and what statement follows the entire
sequence of intrinsic calls for returns (last). If the
request is for input the first record is read by this
intrinsic call. If this is the first call for a FORTRAN
unit the file is opened by this intrinsic.

transfer a data item:
IIO' (loc) AIIO' (dim,loc) «INTEGERs,LOGICALs»
DIO' (loc) ADIO' (dim,loc) «DOUBLEs»
RIO' (loc) ARlO' (dim,loc) «REALs»
LIO' (loc) ALIO' (dim,loc) «LONGs»
SIO' (slen,loc) ASIO' (slen,dim,loc) «BYTEs»

These intrinsics provide the Formatter with information to
transfer single or multiple (A prefixes) data values (loc),
on how many multiple data values to transfer (dim), and on
how long a character string is (slen). Records may be read
or written by this intrinsic call.

SECTION 10-26

The Formatter Interface to the SPL Programmer

terminate the Formatter:
TFORM'
This intrinsic provides for orderly termination of
input/output request. If the request is for output, the
record is written by this intrinsic call. The Formatter
returns to 'last' (parameter in FMTINIT' call).

the
last
then

The SPL programmer interested in using the Formatter is
referred to the sample program in Appendix B and the Compiler
Library Reference Manual.

Special Programming Considerations

Several special considerations a SPL programmer must keep
in mind when using the Formatter are given as points below:

1) Calls to Formatter intrinsics must not appear in SUBROUTINEs.
The reason is illustrated in the next section.

2) Calls to Formatter intrinsics must not be made by a program
operating in split-stack mode. The Formatter accesses the
subsystem area of DL-DB.

3) The program must not alter the stack marker between Formatter
intrinsic calls. This includes interleaving Formatter
intrinsic call sequences for different input/output requests.
The reason for this is illustrated in the next section.

4) If the programmer wishes to use FORTRAN unit numbers he/she
should carefully study the Compiler Library Reference Manual
and the sample program in Appendix B.

SECTION 10-27

An Overview of Formatter Operation

Stack Games

The Formatter must convert between records, (what the File
System uses), and data items, (what the programmer uses). This
conversion requires a buffer to hold partial records. The buffer
must be allocated on the user's stack because DL-DB has been
reserved for other uses. The mechanism of this buffer allocation
and its correspondence to the Formatter intrinsic call sequence
are explained below. The Formatter initialization call is made
and the hardware pushes a stack marker onto the stack and adjust
Q, the stack marker register (fig 5).

fig 5 Q

I • • • { flu t} • • • [sm] [sm]

DB S z

The Formatter initializes its global data area and allocates the
buffer by incrementing S, the top of stack register (fig 6).
It then places a 'fake' stack marker on the top of the stack and
adjusts Q, the underscores to the left of Q denote delta-Q (fig
7) •

fig 6

fig 7

I ••• {flut} ••• [sm]

DB

I ••• { flu t} ••• [sm]

Q

[sm] {glb} {buf} I

s

--------_Q

{glb}{buf} [sm] I

z

DB SZ

The Formatter initialization is complete and the intrinsic
returns. The hardware removes the 'fake' stack marker, leaving
the buffer on the stack (fig 8). Each successive Formatter
intrinsic call causes the hardware to replace the 'fake' stack
marker (fig 9).

fig 8 Q

I ••• {flut} ••• [sm]

DB

SECTION 10-28

{glb}{buf} I

s z

fig 9

An Overview of Formatter Operation

--------_Q

I • • • { flu t} • • • [sm]

DB

{glb}{buf}[sm]

SZ

When the Formatter termination call is made or an error occurs,
the value of Q is set to the 'real' stack marker (fig 10).

fig 10 _Q

I ••• {flut} ••• [sm] [sm]

DB S z

The stack returns to its state before the Formatter
initialization call (fig 11).

fig 11 Q

I ••• {flut} ••• [sm]

DB S z

I/O List and Format Synchronization

There is no need to synchronize a format and i/o list, or
data item transfers, for either unformatted or free-field
requests. Thus this section applies only to core-to-core and
formatted requests.

step 0: process format until a data value must be transferred,
save scan position and return

The Formatter then repeats the following steps for each Formatter
call until TFORM' is called or an error occurs.

step 1: convert data value as per format specification,
transfer converted value

step 2: process format until a data value must be transferred,
save scan position

step 3: if more array elements to be transferred repeat step 1;
otherwise return

SECTION 10-29

An Overview of Formatter Operation

The user's program and the Formatter behave as two parallel
processes, with each executing as far as possible and then
stopping to wait for the other.

Data Conversion

The Formatter performs data conversions by translating
format specifications into the parameters for either INEXT' or
EXTIN'. These two intrinsics perform the actual conversions.
INEXT' converts INternal bit patterns to EXTernal ASCII strings.
EXTIN' converts EXTernal ASCII strings to INternal bit partterns.

SECTION 10-30

Formatter Processing Overhead

Defining Processing Overhead

The definition of overhead used here is the difference
in processor time for performing some action and not
performing it. For example, the overhead of any statement is
the amount of processor time saved if it is removed, assuming
nothing else about the program's execution changes.

fig 12 IUSER PROGI
I I 10PEN FILE---------------- ? ms (1)

IINIT FMTR
lms (1)

TRANS------(1: v)
ICONVERT I
Ims (0: 1)

_____ 1 I

IRECORD 1/01
------------------ lOms (0: r)

I IlITEM TRANSIVALUE
• lms (1: i) .0 lms

I I

I
ITERM FMTR

.lms (1)
I

-----------------I-=C.."..L...".O-=S~E-=F-=I.."..L=-E I
? ms (0: 1)

I I I I
<-FORTRAN-><-----------FORMATTER------------><-FILE SYS->

The overhead of the Formatter is divided into seven (7)
areas (fig 12): initialization (INIT FMTR), opening the file
(OPEN FILE) , data item transfer (ITEM TRANS), data value
transfer input/output (RECORD I/O), and termination (TERM
FMTR). Closing a file is not included because the Formatter
never closes any files. The order of magnitude overhead for
each area (except opening the file) is shown in figure 12.

That figure should be interpreted this way:

1. The time shown in each box is the overhead incurred each
time that box is entered. For example, each CONVERT has
an overhead on the order of 1 millisecond.

2. The number(s) enclosed in parentheses indicate the number
of times each box is entered for each time the box to the
left is entered. For example, "(O:r)" means "entered
zero to r (many) times".
The areas of overhead which must be considered for each

of several types of Formatter input/output requests are
discussed below.

SECTION 10-31

Formatter Processing Overhead

Core-to-Core Transfers

Core-to-core transfers incur the same overhead as their
corresponding formatted transfer requests, except no RECORD
I/O is incurred.

Free-Field Transfers

Free-field transfers incur the same overhead as their
corresponding formatted transfer requests.

Formatted Element Transfers

Formatted element transfers incur INIT FMTR, ITEM TRANS,
VALUE TRANS (1 for each ITEM TRANS), CONVERT, RECORD I/O
(depends on the format), and TERM FMTR overhead.

Formatted Array Transfers

Formatted array transfers incur INIT FMTR, ITEM TRANS,
VALUE TRANS (for each element of each ITEM TRANS), CONVERT,
RECORD I/O (depends on the format), and TERM FMTR overhead.

Unformatted Element Transfers

Unformatted element transfers incur INIT FMTR, ITEM
TRANS, VALUE TRANS (1 for each ITEM TRANS), CONVERT, RECORD
I/O (depends on the number and size of items), and TERM FMTR
overhead.

Unformatted Array Transfers

Unformatted array transfers incur INIT FMTR, ITEM TRANS,
VALUE TRANS (for each element of each ITEM TRANS), CONVERT,
RECORD I/O (depends on the number, size and dimension of
items), and TERM FMTR overhead.

SECTION 10-32

What the Formatter Does Not Do

The Formatter does not close files because each Formatter
input/output request corresponds to a single FREAD/FWRITE. The
Formatter simply has no means of knowing that a file should be
closed.

The Formatter has no provision to handle multiple record
unbuffered input/output because it assumes the File System does
all deblocking/blocking and presents/accepts only one record at
a time. The best approach is to do multiple record unbuffered
input/output with File System intrinsics and use Formatter
intrinsics to do core-to-core transfers for each record in turn.

SECTION 10-33

Appendix A - FORTRAN Sample Program

This is a sample FORTRAN program illustrating the use of the
Formatter. Two real numbers are input (free-field) and the
two numbers and their sum are output (formatted)

$CONTROL
C
C
C
C
C

USLINIT,MAP,LOCATION,STAT

REAL a,b,c
10 CONTINUE

READ (5,*,END=999) a,b
c = a + b
WRITE (6,600) a,b,c

600 FORMAT(lX,FlO.3," + ",FlO.3," = ",FlO.3)
GOTO 10

999 STOP
END

SECTION 10-34

Appendix B - SPL Sample Program

$CONTROL USLINIT,MAP
BEGIN

COMMENT
This is a sample SPL program illustrating the use of the
FORTRAN Formatter. Two real numbers are input (free-field)
and the two numbers and their sum are output (formatted).

;
INTEGER ARRAY

flut(0:2) ,
db' (*)=DB+O;

BYTE ARRAY
fo rma tl (0 : I) ,
format2(0:35);

REAL
a,
b,
c;

«File Unit Table (used by Formatter»>
«array to access DL-DB (for flut pointer»>

«dummy format for free-field input»
«format used for output»

«input value»
«input value»
«sum of input values»

INTRINSIC
FMTINIT',RIO',TFORM ' ;

«formal designator FTN05»
«formal designator FTN06»
«flut terminator»
«flut pointer»

«Initialize flut»
flut(O) := [8/5,8/0];
flut(l) := [8/6,8/0];
flut(2) := -1;
db' (-1) := @flut;

«Initialize formats»
MOVE formatl := " ";
MOVE format2 := "(lX,FlO.3,3H + ,FIO.3,3H =

«Process input»
DO

,FIO.3) ";

BEGIN «process 2 more numbers»
«read input values»

FMTINIT' (formatl,5,OD,[8/0,8/%(2)10010001],@e'input);
RIO' (a);
RIO' (b);
TFORM' ;

e'input:
IF = THEN

BEGIN «output sum of numbers»
c := a + b;
FMTINIT' (format2,6,OD,[8/0,8/%(2)00000000],@e'output);
RIO' (a);
RIO' (b);
RIO' (c);
TFORM' ;

e'output:
END; «output sum of numbers»

END «process 2 more numbers»
UNTIL <>;

END.

SECTION 10-35

'.

	Section 10—File System Use
	The Formatter, A Halfway House for FORTRAN Input/Output Requests

