
~
~

NOBUF/NO-WAIT 10

NOBUF/NO-WAIT 10

No-wait 10 can be a very powerful tool in dealing with multi
terminal applications. It is an option of the MPE File System
that allows a program to issue an 10 request to a file/device and
continue processing without having to wait for the 10 to com
plete. This paper will explore the File System mechanism used to
provide this facility, no-wait 10 applications techniques, and
no-wait 10 considerations for the application programmer.

Madeline A. Lombaerde
Hewlett Packard
General Systems Division

January, 1980

Section 10-1

NOBUF/NO-WAIT 10

INTRODUCTION

There are two situations that arise in dealing with 10 requests:
one is that the requesting process needs to have the 10 complete
before it can continue execution. Perhaps the process needs to
have input data in order to decide what to do next; perhaps it
requires assurance that the output successfully reaches the des
tination device before attempting further processing. In any
case, the process must be 'blocked', that is, prevented from exe
cuting until the 10 completes. This is what is referred to as
'wai ted (Wai t) 10'.

The second situation is where the 10 need not complete in order
for the requesting process to continue. Perhaps the input will
be required at a future time, but it is not needed immediately.
Perhaps the process does not need to wait until the output
reaches its final destination. The process does not have to be
blocked: this is referred to as ' no-wai t 10'.

The MPE File System alternates between these modes depending on
the requirements and specifications of the user made at the time
of opening the file (via FOPEN) and accessing the file (via
FREAD, FWRITE, FCONTROL, etc.). Typically, when a file is opened
on the HP3000, the File System sets up a buffer area outside of
the user process stack data segment. Transfers to and from the
file are handled through this buffer area (which is known to MPE
as an extra data segment). When sequential reads are done from
the file, the File System tries to keep all buffers full in an
ticipation of future requests by the user process. The File Sys
tem makes 10 requests whenever it decides one or more buffers
need filling. Since these 10 requests are made prior to the act
ual user process request, there is no reason to make the user
process wait. Thus, anticipatory reading (which is also called
'pre-reading') is handled by the File System as no-wait 10
transfers.

Similarly, when output is sent to buffers from the process stack
data segment, the buffers are only written (posted) to the
file/device when the buffer is considered full. This posting is
done as no-wait 10. [A buffer is exactly one physical record
(block) long; it is 'full' when the last (or only) logical record
in that block is written.]

However, the File System cannot always use no-wait 10 for buf
fered file transfers. If the user process requests a particular
record which has not yet been brought into a buffer, then the
File System must request that the process be "blocked" (make it
wait) until the 10 has completed (the desired record is in the
buffer).

Section 10-2

NOBUF/NO-WAIT 10

These decisions made by the File System when handling buffered
files are transparent to the user: as long as the File System
handles the 10 transfers via the buffer(s) for that file, whether
the process will have to wait or not will depend on the contents
of the buffer(s) when the user request is made. [However, with
fixed and undefined length record files, it is possible for the
user to use the FREADSEEK intrinsic to request that a certain
record be pre-read (no-wait) into a buffer.]

The situation changes when the user elects to access a file in
'nobuf' mode. In this mode, transfers go directly to or from the
process stack data segment: no File System buffers are involved.
The default mode is to make the process wait until the nobuf
transfer has completed. The no-wait 10 option (specified at file
open time) allows the application process to request that the
File System not force it to wait: when it requests a transfer,
the user process should be allowed to continue once the 10 re
quest is made by the File System. This option is particularly
useful in handling many terminals from one process but requires
more careful use than 'wait 10'. The remaining sections will
present detailed information on using the no-wait 10 option with
'nobuf' files.

Section 10-3

NOBUF/NO-WA1T 10

There are three basic elements involved in a nobuf transfer: the
process stack data segment, File System tables and control
blocks, and the device itself (with any special device dependent
buffer area handled by the 10 system, e.g. terminal buffers).
These elements come into play whether the file was opened nobuf
wi th the wai t 10 or the no-wai t 10 option.

When the user process requests the nobuf transfer, the
information passed to the File System is as follows:

1. file number: a number (originally returned by FOPEN) that
is an index into a File System table known
as the AFT ('available' or 'active' file
table), which is located in the stack data
segment. The AFT entry corresponding to
this file number allows the File System to
locate the control blocks for this file.

2. source/target address: an address pointing to some
location in the user portion of
the stack data segment. Data
will be transferred either from
or to this location.

3. length: number of words or bytes to be transferred.

The File System locates the associated control blocks, does some
bounds and other error checking; from the File System procedure
FNOBUF it then calls the 10 system, requesting that the transfer
be done. This call is made to a procedure called ATTACHI0, which
can be thought of as the door to the 10 system. Some of the in
formation passed to it is the device number, the starting sector
address (if the device is a disc), the transfer length, the stack
target (or source) address, type of transfer (read or write), and
whether or not to make the process wait until the 10 completes.
The target/source address is converted to an absolute memory ad
dress; thus, the process stack data segment must be and is frozen
in memory until the 10 completes so that the target/source lo
cation cannot change while the transfer is in progress.

The information given to the 10 system is formatted as an 10
request and queued in a table (10 Queue) to await service. An
index (the '10Q index') identifies this particular request and is
the mechanism by which the File System is informed of the status
of the transfer.

If the File System has specified that the process should wait
until the 10 completes, the 10 routine will cause the process to
be suspended. This is exactly the case when the file has been
opened nobuf with the wait 10 option. When the 10 completes, the
process is reawakened and the information on the status of the

Section 10-4

NOBUF/NO-WAIT 10

transfer is passed back to the File System and ultimately to the
application program that requested the transfer.

However, if the file was opened nobuf with the no-wait 10 option,
the File System will request that the 10 system NOT suspend the
process once the 10 request has been initiated. Thus, the 10
system returns control to the File System once it has finished
making the request; the File System returns to its caller.
Notice that, at this point in time, nothing is known about the
status of the transfer. The user process can continue execution
while the 10 is in progress. However, the process will not know
whether the 10 has completed and if it was successful until it
explicitly calls the File System to find out this information.
For example, requested input data may have already been
transferred into the stack data segment, but until the process
calls either one of two special File System procedures (IOWAIT,
IODONTWAIT), it will not know if the transfer has successfully
completed.

Section 10-5

NOBUF/NO-WAIT 10

APPLICATION OF NO-WAIT 10

How can this no-wait 10 mechanism be an advantage to an
application programmer? The fact that the process does not
suspend on each read/write means that one program can be used to
handle concurrent access to many terminals where the order of 10
completion is random. In ordinary circumstances, any process can
open many terminals; however, once a read is issued against one
of them, the process waits until the input completes. Because
this usually depends on human interaction, the length of time
varies widely. Thus, all the other terminals handled by this
process cannot send input or receive output until it is their
"turn". In no-wai t 10 mode, the process can issue a no-wai tread
to each terminal and then wait until one of them completes. It
could also handle other processing tasks until it finds out that
a request has completed.

Of course, the no-wait option can be used with devices other than
terminals, except for serial disc. A disc or a tape file can be
opened nobuf, no-wait 10; this may be very useful when also
handling multiple terminals in no-wait 10 mode. The application
may wish to issue reads to several terminals, having requested
selection from a "menu" of possible tasks. Before checking for
completion of any terminal reads, it could issue no-wait reads or
writes from disc or tape in anticipation of work to be requested
at one (or more) of the terminals.

The no-wait option can allow the programmer to overlap operations
to be handled by an application program. Handling several termi
nals from one process instead of from individual processes
belonging to separate jobs and sessions will dramatically cut
down on the number of extra data segments and other system
resources used. However, there are several factors that require
careful consideration when using the no-wait 10 option. These
are best brought out by examining the basic programming sequence
that is used to apply the no-wait 10 option in a multi-terminal
application.

Section 10-6

NOBUF/NO-WAIT 10

NO-WAIT 10 PROGRAMMING SEQUENCE

The first step is to open the fi1e(s) using the FOPEN intrinsic~

either directly or indirectly. [For the purposes of this discus
sion~ all the File System intrinsics will be referred to
directly; however~ it is assumed that the reader is aware that
all subsystems ultimately use File System intrinsics; that high
level syntax check for~ say~ the COBOL "OPEN" statement results
in a call to a COBOL library routine that calls FOPEN. Thus~ the
application programmer can effect the File System specifications
even when they are made indirectly; this is usually done most
easily by the :FILE command.]

When a file is to be FOPEN'd nobuf with the no-wait 10 option~

the process calling FOPEN must be running in privileged mode.
This can be accomplished in a variety of ways:

a. In SPL~ a procedure can have the OPTION PRIVILEGED
statement. An outer block can be designated to run in
privileged mode via the statement $CONTROL PRIVILEGED.
In both these cases, the module will be in privileged
mode during its entire execution time (unless the
GETUSERMODE intrinsic is called).

b. From SPL, FORTRAN~ COBOL~ BASIC, the GETPRIVMODE
intrinsic can be called to place the current executing
code into privilege mode. To return to user mode, call
the GETUSERMODE intrinsic.

c. Regardless of how privileged mode is requested within
the program~ the program file MUST be given PM
capability at PREP time. The program file's capability
list is checked when attempting to grant privileged
mode; if PM is not present, the request will not be
granted. [Note that to :PREP a program file with CAP=PM
the user (and thus the account) must have PM capability.
To run a program file prep'd with CAPapM~ the program
file must reside in a group (and thus an account) that
has PM capability.]

FOPEN will check to see if the file is to be opened with the
no-wait 10 option. If this is the case, it checks to see if the
caller was running in privileged mode; if not, an error will
occur indicating illegal capability (FS error 2). If the caller
is "privileged"~ FOPEN will set or disallow a number of
associated options. Nobuf will be set; mutli-record mode~

blocking*, and multi-access will be disallowed. [*Block factor
is set to 1 for new files]. An error will result if the user
tries to FOPEN with the no-wait 10 option a file on a serial disc
(serial disc error 11).

Section 10-7

NOBUF/NO-WAIT 10

All the other work of FOPEN remains the same: it must get entry
in the AFT for the file; it must build a physical access control
block (PACB) for controlling access to the file; if the file
resides on disc, the File System will need a file control block
(FCB) for the file. If the file is new, space must be allocated
(disc) or the device itself must be allocated. And so, FOPEN
will complete all of its work just as it would if the file has
been opened wi th the wai t 10 option.

Once FOPEN returns to the caller, there is no further requirement
for the module to continue executing in privilege mode in order
to access the file. Thus, the sequence of events used in the
application program can be:

-1------------+
I GET I
I PRIVILEGED I
I MODE I
+------------+

I
I

+------------+
I FOPEN I
I NO-WAIT 10 I
I FILE I
-1------------+

I
I

+------------+
I GET I
I USER I
I MODE I
-1------------+

I
I

+------------+
I ACCESS I
I NO-WAIT 10 I
I FILE I
+------------+

In order to access the no-wait 10 file, the user will be using
the normal transfer intrinsics such as FREAD, FWRITE, etc. and
two other intrinsics specifically designed for use with no-wait
10 files: IOWAIT, IODONTWAIT. To explain the basic sequence of
events let's assume that what we want to accomplish is as

Section 10-8

NOBUF/NO-WAIT 10

follows:

a. write a message out to the (no-wait) terminal

b. request input (no-wait) from the terminal.

The first step is to call FWRITE to send the message. Error
checking after returning from FWRITE tells us whether or not the
File Systen was able to request the transfer but it tells us
nothing about the transfer itself since we did not wait for it to

complete. There are several reasons why FWRITE might reject our
call requesting a transfer, but the most common error programmers
make with no-wait files is to request a transfer when a previous
10 request is still pending. Thus, one of the first things done
by FWRITE and the other transfer intrinsic is to find out if any
no-wait 10 is pending for this file. The File System does this
by checking the fourth word of the four-word AFT entry for that
file. If it is non-zero, it indicates that an 10 request was
queued but completion information has not yet been given to the
application program. (File System Error 77, NO WAIT 10 PENDING
is set and an error condition is returned to the caller). Note
that the 10 may have completed: the File System has not yet been
able to "clean up" the transaction. Since there is room in the
AFT entry for only one such indicator, there can only be one
no-wait 10 request pending for any given file. All other
requests will be rejected until the application program requests
and receives completion information on this transfer. This is
accomplished by calling IOWAIT or IODONTWAIT.

Let's assume that our FWRITE request was not rejected and that
the 10 request was set up and control returned to our program.
At this point in time we have several options:

a. We can request completion information for that file
transfer, waiting if it has not yet completed until it
does complete (IOWAIT).

b. We can request completion information for that file
transfer, returning to our program if it has not yet
completed (IODONTWAIT). Realize, of course, this means
we must again request completion information at a
later time.

c. We can execute some other tasks, perhaps requesting
transfer to/from other files (wait or no-wait). Once
all these other tasks are complete, we will request
completion information by either of the two methods
above (IOWAIT or IODONTWAIT).

Section 10-9

NOBUF/NO-WAIT 10

If there are several other terminals opened no-wait, we may want
to issue no-wait FWRITE's to those terminals before requesting
completion information on any of them. This would be option c.
above. MOst often, however, the program flow calls for a read
following the write to a teminal. In this case the program would
follow option a. by calling IOWAIT. IOWAIT will force the
process to wait until the requested completion information is
available. Thus, if our write transfer had not yet completed,
our process would wait until it did.

Once we return from IOWAIT, we know the status of the transfer
itself. If it was successful, we can go ahead and issue our
FREAD to the terminals. Once again, the error information back
from FREAD tells about the success of the request, not about the
transfer itself. Note also, the only length FREAD can return is
zero since the transfer has not yet taken place. After calling
FREAD, we again have the option of doing some processing before
checking to see if the read has completed. We may choose ~

issue no-wait reads to other terminals or process some other
tasks. But just as when FWRITE was used, we must ultimately
follow our call to FREAD with a IODONTWAIT to find out whether
the read completed, if it did so successfully, and the length of
the transfer. Thus, our sequence of events is:

Section 10-10

[No te:

NOBUF/NO-WAIT 10

~-----------+
'FWRITE ,
, TO TERMINAL I
, I
~-----------+

I,
~-----+
, OPTIONAL I
, PROCES SING I, ,
~ - - - +

I,
~------------+
IIOWAIT (OR I
'10DONTWA1T) ,
IFOR COMPETION'
, INFORMATION ,

+-------------+
I
I

~-----------+
I FREAD ,
'TERMINAL ,
I NOWAIT ,

~-----------+
I
I

~-----+

, OPTIONAL I
, PROCESSING ,
, I
~-----+

I
I

+-------------+
'IOWAIT (OR I
'IODONTWAIT) ,
'FOR COMPETIONI
IINFORMATION I
+-------------+

I
I

Whenever IODONTWAIT is used t the process will regain
control even if the 10 has not yet completed. In this
case t optional processing may be done t followed by
subseqent calls to IOWAIT or IODONTWAIT until the
desired 10 completes.)

Section 10-11

NOBUF/NO-WAIT 10

10 COMPLETION OPERATIONS

At this point, let's digress slightly to discuss how IOWAIT and
IODONTWAIT actually work. In actual fact, IODONTWAIT is an entry
point in the IOWAIT procedure. Their operation is identical
except for the decision to force the process to wait if the 10
has not yet completed: calling IOWAIT means the process will be
suspended until completion; calling IODONTWAIT means it will not
be suspended.

[No te: There are two reasons for i ncluding the following
information in this paper. The first is to build some apprecia
tion for the work the File System goes through on behalf of the
user to handle no-wait 10. Secondly, it may be useful for an
application programmer to realize that the search for 10 comple
tion is distributed over the range of files opened, based on the
last file whose 10 completion was processed by
IOWAIT/IODONTWAIT.]

The caller has the option of requesting completion information
for one specific file or for any no-wait file. This is done
through the first parameter, the "filenum". If the parameter
value supplied is not zero, then we are asking to know if 10 has
completed for that specific file. Of course, that number must
correspond to an open file (that is, there must exist an AFT
entry for it); if not, an error is returned (FS error 72 :Invalid
file number). Also, the File System checks to see if 10 was in
fact pending for this file. If not, it sets File System error 79
(No No-Wait 10 pending for Special File) and returns.

If an 10 request was made but hasn't completed, the File System
returns to the caller if IODONTWAIT was called. Bo th
IOWAIT/IODONTWAIT are function procedures: a zero is the
function value returned through IODONTWAIT when the 10 for the
specified file has not yet completed.

If IOWAIT was called, the process is suspended waiting for the 10
to complete. When the 10 completes (or if it had already
completed), FNOBUF is called to process the transfer completion.
The status is checked, error and condition codes returned as
appropriate. When FNOBUF returns, IOWAIT/IODONTWAIT return the
completion information to the caller, the function return value
is set to the file number for the file whose 10 completed.

There is additional work involved if the caller requests comple
tion informa tion for any file whose no-wai t 10 may have
completed. The caller specifies this option by supplying a zero
file number parameter or by not supplying that parameter at all.
If this is the case, the File System procedure FINDWAITINGIO is
called to determine if any no-wait 10 has completed. It will

Section 10-12

NOBUF/NO-WAIT 10

return to IOWAIT/IODONTWAIT a zero if no file's 10 has completed
or the file number of the file whose 10 has completed. From that
point, the File System processing proceeds as described above
(specific file option). Let's consider what FINDWAITINGIO must
do on behalf of the user to determine which, if any, file has
completed.

Recall that in the stack data segment below DL (limit of user
portion), there is a system area (called the PCBX, process
control block extension) divided into three basic parts (PXGLOB,
PXFlXED, PXFILE). The PXFILE area is used by the File System; it
contains the AFT and some control blocks. One of the locations
in this PXFILE area is set aside to contain the file number
corresponding to the last file on which no-wait 10 completion
information was processed. One of the first things FINDWAITINGIO
does is to pick up this file number and use it to determine where
to begin looking in the AFT for 10 completions. In essence, this
file number tells the File System where it left off so it will
begin wi th the entry for the~ file in the AFT. Thus, it
essentially adds one to the file number that it picked up out of
the above-mentioned PXFILE location and proceeds to step through
the AFT in a circular fashion until it winds up back where it
"left off". Thus, for each file number, it

a. locates the AFT entry

b. checks to see if 10 is pending for that file (fourth
WI'.) rd is non-zero)

1. if no 10 is pending, go on to next file

2. if 10 is pending, check for completion

a) if complete, can return information

b) if not complete, put on top of stack the AFT
entry number (file number) and the index
corresponding to the pending 10 request.

If the File System finishes this loop without finding any
completed 10, there may be a li8t of stacked file numbers/IOQX's
indicating there are pending IO's we can wait for. If not, an
error is returned. Even if there are pending IO's, FINDWAITINGIO
will re turn a zero if the option was "don't wai t".

However, if the wait option was requested (IOWAIT), then the
process will be suspended until some 10 completes. Upon
awakening, FINDWAIT1NGIO does not have to go through the AFT
again to find which file's 10 completed: it starts at the top of
the stack and goes back down through its list of AFT (file)
numbers/IOQ indexes checking each one to see if the 10 completed.

Section 10-13

NOBUF!NO-WAIT 10

As soon as it finds one that has completed, it returns that file
number and exits back to the caller. If none in the list
completed, then the process was awakened for some unknown reason.
At any rate, FINDWAITINGIO will go back and recheck the AFT,
rebuilding the stack list, and possibly waiting again.
FINDWAITINGIO will return when it finally finds an 10 completion
for a no-wait file.

Section 10-14

NOBUF/NO-WAIT 10

MISCELLANEOUS FILE OPERATIONS

Getting back to our discussion of file access, we have already
covered the basic elements required to access the no-wait file.
There are still a few points to mention with respect to file con
trol and closing. With respect to the latter, the point to note
is that a file with pending no-wait 10 cannot be successfully
FCLOSE'd by the user. IOWAIT, IODONTWAIT, or FCONTROL (see
below) must be called in order to 'clean up' pending 10.

File control is done mainly through the FCONTROL intrinsic. Con
trol codes 0 to 41 result in FCONTROL calling the 10 system
(ATTACHIO) wi th the request to "block" the process. This means
that, even though the file is opened no-wait, the process will
wait until the 10 control function completes. Another point to
note is that the special FCONTROL code (43) is provided specifi
cally for aborting pending no-wait 10. This is particularly use
ful when the application program has to deal with error condi
tions. Suppose twenty-five terminals are opened no-wait by an
application program and reads are pending at each. One of the
reads completes and for some reason the program discovers, much
to its dismay, that it must close down the entire application.
If it wants to do this gracefully, it will probably want to wri te
a message to the other terminals before closing them: this can't
be done until the pending 10 is cleaned up. Even if it doesn't
want to send a message, FCLOSE will fail as long as 10 is pend
ing. FCONTROL (code 43) allows the program to abort pending 10
by file number. The sequence of events might go something like
this:

Section 10-15

-+------------+
1 ERROR 1
I CONDITION 1
1 DETECTED 1

-+------------+
-+--------------1--------------+

I 1
-+------------+ 1
1 FCONTROL 1 1
1 TO ABORT 1 1
1 10 1 I
-+------------+ 1

1 1
I 1

+------------+ I
1 FWRITE 1 1
1 MESSAGE 1 1
1 1 1
+------------+ 1

+--------------1--------------+
+--------------1--------------+

+------------+
1 1
1 IOWAIT 1
I 1
+------------+

I
1

+------------+
I I
I FCLOSE 1

1 1
+------------+

+-----------------------------+

NOBUF/NO-WAIT 10

For
each
terminal

For
each
terminal

Some comments/cautions on the features of FCONTROL: if a read
pending at a terminal is aborted while someone was entering data,
no indication is returned to the program that input was in pro
gress. This is probably not a concern if the 10 was aborted
because the application must be terminated; however, it is worth
consideration when the 10 is aborted for some other reason. Even
if the 10 has already completed, the application program will not
know it (in addition to requesting the removal of the actual 10
request, FCONTROL has to zero out the index kept in the file's
AFT entry corresponding to the request).

Section 10-16

NOBUF/NO-WAIT 10

It is probably worth reminding the reader that although we only
mentioned FREAD· and FWRITE, it is possible to use FREADDIR and
FWRITEDIR with no-wait disc files.

Section 10-17

NOBUF/NO-WAIT 10

NO-WAIT 10 DESIGN CONSIDERATIONS

We will end our discussion of nobuf/no-wait 10 by covering some
considerations that the programmer should keep in mind when
designing an application that accesses files with the no-wait
option. [The points are made with no-wait terminal applications
in mind; the reader is asked to apply them as needed to other
types of no-wait file applications.]

1. One stack buffer per no-wait file will be required when any
one or more 10 requests may complete before the last one is
completely processed by the application. In other words, if
twenty-five terminals have no-wait reads pending, there
should be a separate place in the stack for input from each
of the terminals because there's no way to prevent one of the
reads from completing once the 10 is requested. If the pro
gram is still processing data in an input buffer, there
should be no chance that this data could be overlayed by a
subsequent 10 completion. There should be twenty-five areas
in the stack, each as big as the maximum amount to be read at
one time. The address of each area is supplied to FREAD and
is converted to a memory address when the 10 request is set
up. Maximum stack size will be a consideration if the buffer
areas have to be quite large. If one program cannot handle
all the terminals because of stack segment limitations, an
al ternative would be to have the program handle the maximum
it can. A "driver" program could create and activate the
program as many times as necessary until all terminals are
handled. Thus perhaps one process can't handle all
twenty-five, but two could (one handling 15, the other 10).

2. If an application has opened $STDIN as a no-wait file, the
File System will not be able to check for logical end-of-file
(:for $STDIN, :EOD for STDINX) unless the user passes the
same input buffer address to IOWAIT (or IODONTWAIT) as it did
to FREAD when it initially requested the input. The reason
for this is that the File System must actually look in the
buffer for the presence of a: (:EOD). If the buffer address
isn't supplied, the File System can't look.

3. There is no reason why a program can't do multiple opens on a
file. Therefore, an application may find it advantageous to
open a terminal in no-wait mode for input and again in wait
mode for output. This would allow the programmer to elimi
nate the the call to IOWAIT following each FWRITE. This is
useful when the sequence of events calls for the process to
always have to wai t until a wri te to the terminal completes.
The reads, on the other hand, are handled no-wait so that the
application can handle other processing while terminal input
is being entered.

Section 10-18

NOBUF/NO-WAIT 10

4. It may be useful for an application to put a time limit on
the no-wait read pending at a terminal. FCONTROL (option 4)
allows the programmer to do this.

5. Extreme care must be taken to insure that any buffer area
specified as the target (or source) of a no-wait transfer
remains a valid buffer area until the transfer completes.
Consider the following:

Suppose an application program calls FREAD requesting that
data be read no-wait into a buffer area that has been
allocated in the dynamic portion of the stack. [The buffer
is no thing more than an array local to a procedure (i .e.
subroutine in FORTRAN, dynamic subprogram in COBOL).] Remem
ber that the transfer is a nobuf transfer: it will go direct
to the stack. FREAD passes this buffer area address along
and it is converted to an absolute memory address (the stack
data segment is frozen in memory). That absolute address is
where the transferred data will be put - regardless of any
thing else that may have happened (other than an abort 10, of
course).

Now let's suppose that before the 10 completed, the applica
tion (accidently or on purpose) exits from the procedure.
What happens to local arrays? They are no longer valid and
the stack space is reusable by calls to other procedures. It
could very easily happen that the program calls some MPE (or
subsystem) procedure which now uses as part of its local
storage the very area designated to receive the input data.
What if the procedure called is FOPEN or some other routine
that deals with system table/directories, etc? When the in
put completes, the data will be transferred right on top of
the procedure's local storage. It might proceed to update
tables using totally erroneous data. It may indeed be quite
some time before it (or some other part of MPE) discovers
things are not right. However, sooner or later the result
will almost certainly be a system failure of one sort or
another. If you're lucky, only tables refreshed by INITIAL
were corrupted. But it could be something like the system
directory, in which case recovery will take much longer. The
no-wait 10 option requires PM because system managers must
have a way to make sure that great care is taken when a
no-wait 10 application is developed.

[I t is no t my intent to make no-wai t 10 sound so frightening
that no one uses it. I do believe, however, that apprecia
tion for its power must be matched by respect for its having
potential for serious consequences if handled carelessly or
without sufficient information.]

Section 10-19

NOBUF/NO-WAIT 10

CONCLUSION

Nobuf/no-wait 10 is a powerful tool, very useful in multiple
terminal applications. It is quite easy to use (although it must
be used carefully) and can be a performance alternative to the
typical one-process-per-terminal approach to handling terminals.
It can be used with any language provided the IOWAIT/IODONTWAIT
procedures can be used to obtain completion information. An ex
ample of a program handling no-wait 10 is given in the MPE In
trinsics Manual.

Section 10-20

	Section 9—Advanced MPE
	Section 10—File System Use
	NOBUF/NO-WAIT I/O

