
;eth G. Fearey
~ebruary 1980

DISTRIBUTED PROGRAMMING WITH $FLOW$

Hewlett-Packard Co
Cupertino IC Operation

Technological developments in the information processing industry
have done wonders for reducing costs and increasing throughput. But
to most of the users, the computer remains a black box to be
controlled only by trained professionals using unintelligible
'languages."

The spread of Distributed Processing exemplified by the HP300 has
.rought the black box closer to the user and often allows him or her to

sign on, load data and run selected programs. But the user is still con
strained to the systems installed and maintained by professional program
mers, and programmers still operate in batch mode - submit a request and
wait three months for a response.

Distributed Programming is the next logical step toward
utilization of the computer and higher productivity.

I. Concept of Distributed Programming

greater

Definition. In essense, applying Distributed Programming means making
the power of the computer available to the users.

In a Distributed Programming environment programs will be written, run
and maintained by users in all professions at all levels, from ac
counting clerks to production managers.

A. Benefits/Costs

Many of the benefits of Distributed Programming are obvious:

1. Clerical productivity and accuracy improve.

2. Professional programmers are relieved of small, nuisance pro
jects.

3. Reports are tailored to the user's desires instead of being
tailored to fit the time the progammer has available.

There are also secondary benefits:

1. Red tape in the form of Program Requests, Maintenance Requests
and programmer scheduling is eliminated.

SECTION 8-105

2. Users feel more in control of the computer.

3. Users develop a greater understanding of the complexities of
programming and of what the computer can and cannot do.

4. Users have a new outlet for creativity, improving job interest.

At the same time, there will be drawbacks:

1. Time must be invested in user training.

2. The demand for user labor may increase as users demand more
information and take on tasks normally performed by keypunch op
erators, graphics artists and secretaries.

3. The need for terminals will increase dramatically.

B~ Prerequisites for Success

Distributed.Programming will not get started· without planning and
support. In fact, those who have the most to gain may fight the hardest
against letting the unsophisticated user on the computer. Data Processing
professionals will fret over nSECURITY" and managers will say: "That's not
part of your job - we have secretaries and programmers to do that."

Assuming management is willing to give Distributed Programming a try,
there are other prerequisites:

1. Software must be is "user oriented", ie. friendly, on-line and ~
flexible. The example of $FLOW$ is described in detail below.

2. User training. Users will have to be taught how a terminal
works, how to log on, and how to operate the user software. A
good training program will assuage the fears of the professional
programmers regarding security.

3. Interested users. Distributed Programming cannot be forced on
the uninterested. Those with the curiosity will catch on quickly
and inspire others to give it a try. All users will need a will
ingness to experiment and go on despite failures.

4. Distributed Processing.
computer the other areas
non-professionals.

If each functional area has its own
will not be as afraid of meddling by

5. Accounting. The accounting system should not penalize users
for their connect time. Distributed Programming will flourish
most easily in an environment where computer time is considered a
"free resource."

SECTION 8-106

II. The Example of $FLOW$

A. $FLOW$

A good example of a language appropriate for Distributed Programming
is $FLOW$, a package available from the Palo Alto Group, which I have been
using for the last year.

$FLOW$ is a self-contained, financial report writing language with
tremendous flexibility. Applications at Hewlett-Packard range from market
ing forecasts to production models to financial planning. (Two examples
are described later.)

B. User Oriented Features

Using $FLOW$ as an example we can see the features which separate
user oriented languages from traditional languages.

1. Friendly. The
$FLOW$ guides the
prompts, ex:

language must
user step by

be on-line and interactive.
step through multiple option

MODIFY DEFINITIONS(1),REFORMAT(2),DISPLAY PGM(3),INPUT NEW PGM(4), INPUT
VALUES(5),COMPUTE REPT(6) ,SAVE PGM(7),LOAD PGM(8), OR DONE (CR)?

The selection of an option by entering a single number or letter,
takes the user to the next level prompt and on down until the de
sired results are achieved.

2. Fault Tolerant. A user oriented language should prevent pro
gramming errors from occuring before the program is ever run.

There are two types of errors: the illogical and the improbable.
In $FLOW$ illogical errors generate an error message and return
the user to the previous prompt. For example:

UNBALANCED PARENTHESES. THERE ARE 2 MORE CLOSING THAN OPENING () 'S.

Improbable errors, such as changing a calculation in a report and
not saving the new version result in warnings which can be over
ridden only by a forceful response, ex.:

W60l* WAIT! YOU HAVEN'T SAVED THIS VERSION OF YOUR REPORT YET! DO YOU WISH
TO SAVE IT ON A SAVE FILE BEFORE SCRATCHING IT FROM THE WORKING FILES
(Y,N)?

SECTION 8-107

In addition, it is almost impossible to crash the program, an un
nerving experience for new users of the computer.

3. Default Options. A user should be able to quickly generate
output of acceptable quality. $FLOW$ has a great number of report ~
formatting options, all with default values. The user is only 7
required to set up the equations and enter data; $FLOW$ centers
titles, arranges page breaks and numbering, underscores columns
when a total occurs and more.

4. Self Documenting. A user oriented language should contain
built-in documentation. Unraveling an unfamiliar program written
in a conventional "user" language like BASIC, is difficult and
time-consuming. In addition, users are generally not motivated
toward documenting their work.

$FLOW$ listings are relatively straightforward. Variable names
can be more than 50 characters; listing show both variable names
and line number references (see examples). Listings also show
when the program was last computed and modified.

5. Minimal Training. Users are not interested in spending several
weeks learning a language. After a couple hours of formal train
ing, users should then be able to use the language to teach them
selves what they need through trial and error or a quick scan of
the manual.

The many options in the $FLOW$ prompts encourage users to try them
all out. When mistakes are made the user can return and reset the
options or recall the last version saved.

While the above is not a comprehensive list of desireable features, the
above items should be fundamental to all user oriented langues.

III. Examples

A. Using the computer to perform routine calculations.

The first example is a $FLOW$ program I wrote to allocate expenses
to different locations. The versions attached are condensed to fit on a
single page. The real program includes some 40 departments and 6 al
locations. To do the same calculations by hand a clerk would work out the
percentages on a calculator then multiply them by the amount to be al
located - a one hour task if it foots the first time.

The initial version of this report took only 15 minutes to set up. The
final version is the result of another half hour's tinkering with the
format. How long would it have taken in COBOL or BASIC?

SECTION 8-108

~ A clerk now has total resonsiblity for this program, running it once
a month and updating it as locations change or other expense items added.

A copy of the program listing is also attached to give you a better idea
of what I mean by self-documentation.

B~ Using the computer for analysis.

The second example was written by a clerk who
a computer before being introduced to $FLOW$ a
the program she prepared the report by hand on a
curacy of the calculations had to be checked
erasures and a rather messy final version.

had never worked with
year ago. Before writing
spread sheet. The ac
several times, leading to

While the calculations are not terribly complex the report will always
foot so the user can concentrate on the quality of the inputs instead of
running endless tapes in hopes of hitting the same total twice in a row.

IV. CONCLUSION

I have attempted to make two points:

First, there are advantages to allowing users to become programmers,
what I have called Distributed Programming. Benefits range from increased

~ productivity to improved job satisfaction.

Second, in order to develop Distributed Programming we need new
languages which are user oriented. The development of such languages will
be difficult because users are not willing to devote their lives to under
standing the computer.

Nonetheless, the trends
talking television controls.
also become more flexible.

are clear: home computers, robotics and
As our machines become more flexible we must

SECTION 8-109

..~ . : , ~ .' .

~
'_u "

	Section 8—Resource Optimization
	Distributed Programming with $FLOW$

