
Programming For Multiterminal Application

A User Experience Managing Processes and Data Segments

Michael A. Casteel
Computing Capabilities

Mountain View, CA.

1. Introduction

This paper describes the approach used and experience with

an HP3000 data entry/inquiry application which supports an

unusually large number of terminals. Developed in the summer

of 1976, this application was to be based on COBOL, provide

short response times and support 36 terminals initially, with

reasonable capacity for growth. That these requirements have

been met is now apparent: the system now hosts about 75 block

mode terminals on 5 ATCS, providing typical response times

of two to three seconds. Main memory is still the original

~ 384K bytes, while a second 47M byte disc has been added to

accomodate growth of the master file to over 100,000 records.

This gratifying result is the product of an excellent match

between the application and the facilities of the HP3000

system. It is certain that not every application could

support 75 terminals and still provide acceptable response

time, especially in 384K bytes. Still, the application

system presented here, which takes full advantage of the

Process and Data Segment management and terminal I/O facili

ties of the HP3000, has not yet reached the limit of its

capacity. The system has operated about 20 hours per day,

six days per week for three years with very little down time

due to software or HP hardware problems.

SECTION 8-81

2. The Application

The application is online data ~ntry and inquiry for work-in

process (WIP) inventory tracking in semiconductor component

manufacturing. The inventory master file resides on the

HP3000, where it is queried and updated from CRT terminals

using any of 10 interactive COBOL programs and 4 common

subprograms. Almost all file maintenance activity takes

place on-line on the HP3000. The entire master file is

copied to tape every night, and processed on a large mainframe

for accounting and reporting.

WIP inventory is tracked in Lots, each Lot representing a

group of components to be processed through a sequence of

manufacturing operations. The master file holds one record

for each Lot containing space to record the result of up to

30 operations. The 10 transaction types available permit Lot ~

records to be added, deleted, or updated, as well as providing ,

a number of ancillary functions such as interdepartmental

transfers.

The most common transaction (80% of transaction volume) is

inventory movement update. Due to the structure of the Lot

records, this t~ansaction need only update the selected

record with the result of the latest operation. Access to

edit files is rarely required, and there are no logical

relationships or chains to be maintained in the master file.

The master file is standard MPE file accessed by custom

File Manager routines using calculated direct addressing by

Lot number (see Section 3).

Clearly, user disc file I/O is light in this application.

Terminal I/O is another matter, as the typical transaction

involves displaying the contents of an entire Lot record,

SECTION 8-82

2. The Application (continued)

then reading the data back in a block mode transmission after

the terminal user has keyed in updates.

3. Disc File Access

As described in Section 2, user disc file activity is close

to an absolute minimum for the typical transaction in this

system. This is indeed a key factor in the performance and

terminal capacity of the system. While this was recognized

early in the design, two factors were given special attention:

a highly efficient storage/access technique and protection

from simultaneous update requests.

On-line access to the master file is random using a key con

taining the Lot number to be accessed. Logically, the master

file corresponds to a stand-alone IMAGE Master Data Set.

However, the System designers chose not to use IMAGE for this

application due to the relatively high overhead (including

separate Data Base Control Blocks) associated with IMAGE and

the simple file structure needed for this application. A

simple File Manager was designed instead, consisting of a

number of SPL subroutines to provide read, write and update

access by key to records stored in a standard MPE file. Disc

storage requirements were minimized by including specialized

record compression and segmentation logic, so that most

records could be stored in a single 256-byte disc record.

Main memory space and file system overhead were both mini

mized using NOBUF access to eliminate MPE buffers.

The question of simultaneous update was of great concern to

the system designers. While there is little chance that two

users would try to update the same Lot record at the same

SECTION 8-83

3. Disc File Access (continued)

time, such a possibility had to be accounted for in the

design of the system. The desired approach was to use a

"record locking" facility: When a user calls a record to the

screen for updating, the record should be "locked" to prevent

another user from calling up the same record. After the

record has been updated, the lock should be released to

permit other users to access the record. Since at the time

HP offered only file (or Data Base) locking, the File Manager

included a record locking mechanism using a shared Extra Data

Segment for a Record Lock Table.

When an application program requests a record for possible

update, the File Manager checks the Record Lock Table. If

the record key is found in the table, the request is rejected

and the user informed that the record is currently in use.

If the record key is not in the table, it is inserted and the

record itself returned to the application program. The key

is removed from the table automatically when the record is

rewritten, or by a special File Manager function if no update

is required.

The File Manager routines access the Record Lock Table using

the DMOVIN and DMOVOUT intrinsics. The table itself is

protected from simultaneous update using a RIN: The File

Manager is careful to Lock the RIN before and Unlock it after

accessing the Lock Table. Thus, while a record may be locked

for many minutes, no user need ever wait long to access a
record or to discover that the desired record is being updated

by another user.

SECTION 8-84

~... /'

" 3. Disc File Access (continued)

The use of the Extra Data Segment facility for record locking

placed a significant restraint on the processing structure of

this application: since Extra Data Segments cannot be shared

between sessions, the terminal users could not log on as MPE

sessions in the usual manner. All users must operate within

a single job/session. As shown in Section 5, use of a single

job/session was desirable for this application in any event,

but the restriction still prevents separate update jobs

from running while online processing takes place. The new

IMAGE locking facility removes this constraint for IMAGE

users, but the restriction on sharing Extra Data Segments

remains one of the more obvious deficiencies in MPE.

The custom File Manager code for this application occupies

about lK words, some 16 pages of SPL source. No Privileged

Mode operations were used, only the Data Segment Handling (DS)

special capability.

The nightly task of copying the master file to tape presented

one more challenge: rapid sequential processing of the 120000

sector master file. The small, one-sector blocks on the

master file are optimum for random on-line processing using

NOBUF access. Normal sequential reads, however, transfer at

most one block per revolution of the disc, a considerable

overhead for 120,000 blocks. For this reason, the copy pro

gram uses Multi-Record (MR) access to read many blocks in

each transfer. MR access transfers as many full blocks as

possible in a single disc read or write, up to one full track.

Adjacent blocks are transferred as one, provided that each

block completely fills one or more disc sectors, i.e. the

block size mllst be a multiple of 128 words. If the block size

is not a multiple of 128 words, MR access transfers

SECTION 8-85

3. Disc File Access (continued)

only one block at a time to or from the disc. This appli

cation uses an SPL subroutine to read up to one full track of

l28-word records into the DL-to-DB area and return one record

at a time to the COBOL copy program.

4. Terminal I/O Handling

This application uses block mode transmission with formatted

CRT screens. A major design concern was the possibility of

overloading the HP3000 with 2400 baud block mode terminal

I/O, with resulting loss of data or poor performance. When

this application was designed, the HP3000 Series II was

expected to require 300 micro-seconds of CPU time to process

each character interrupt on the Asynchronous Terminal Con

troller. At 2400 baud, the terminal sends one character

every 4 milliseconds. A simple calculation shows that no ~

more than 12 terminals can transmit at one time without over

loading the computer, a situation resulting in a "data over-

run" error (loss of a data character) on one or more terminals.

MPE uses the HP264X DC2/DCl protocol in an attempt to prevent

data overruns. When the user presses the ENTER key to initiate

a block transmission, the terminal sends only a single char

acter: DC2. The ATC hardware can retain this one character

until the interrupt is serviced, without incurring a data loss

for this terminal. When MPE receives this character, it

recognizes it as a request for block transmission (if Terminal

Type is 10 for this ATC port). The transmission will not

take place until MPE sends a DCl character to the terminal.

MPE takes advantage of this protocol to hold off the trans

mission until the number of other terminals actively trans

mitting or receiving drops below the level of potential

overload.

SECTION 8-86

4. Terminal I/O Handling <-continued)

WhenHP264X terminals are used, it should be noted that the

user's program must process the DC2 character, because the

cursor must be positioned to the first data field to be

transmitted before the DCI trigger is sent. This is the

reason for FCONTROL #29, to enable user control of block

mode transfers. The DCI trigger is sent by MPE every time a

read is issued to a terminal, so the next FREAD will trigger

the transmission.

The system described here does not use HP terminals, but

uses Lear Siegler terminals which were already owned by the

organization. These terminals offered two features which

were used to advantage: The terminal automatically positions

the cursor for a block mode transmission, and it allows for

data compression when transmitting to the computer. The first

feature relieves the HP3000 from the task of positioning the

cursor whenever a DC2 is received, thus saving the additional

FWRITE and FREAD required for an HP264X. The data compression

feature effectively suppresses transmission of trailing spaces

in any unprotected field. On the average, this significantly

reduces the number of characters transmitted and thereby the

load on the computer due to terminal input. In return, the

program must restructure the input using field separator

characters and knowledge of the screen format.

Screen formatting, terminal I/O and data compression/expansion

are performed in this system by a set of Terminal Handler

routines. The Terminal Handler is coded in SPL, and provides

the COBOL application programs with a high-level interface

akin to HP's DEL. Only numeric edits are provided, protected

fields are supported (display only), and only one program

SECTION 8-87

4. Terminal I/O Handling (continued)

call need be coded in a typical program to write data (using

a named screen format) and wait for input. Forms are cata

logued in an external library using a form maintenance utility.

In order to take advantage of the DC2/DCl handshake supported

by MPE, the terminals used in this system were modified to

observe the HP264X protocol. Unfortunately, data overruns

(FCHECK error 28) are still observed in about 10% of all

transmissions. These errors are recovered automatically

in the Terminal Handler software by forcing retransmission

with an escape code sequence.

The custom Terminal Handler software occupies about 1.5K

words, 18 pages of SPL source. No special capabilities were

needed for terminal handling.

5. Application System Structure and Process Management

The user terminals in this system are not used to run sessions,

but are instead opened as files by the application system.

This means the users never log on to MPEi they cannot, since

their terminals are not configured to accept jobs or sessions.

This approach not only saves the effort of training users to

type HELLO, but affords an extra degree of system security

by preventing access to MPE commands and utilities. System

resources are conserved as well: every session initiated

from a terminal requires the allocation of a process for the

MPE Command Interpreter and Virtual Memory for the Command

Interpreter's stack. This process and stack is in addition

to that of the application program.

SECTION 8-88

5. Application System Structure and Process Management (cont.)

This system instead uses a single master program initiated

at the beginning of the day, which creates a process for

every user terminal in the system using the CREATE and

ACTIVATE intrinsics. This is effectively the same as issuing

a "RUN" command for each terminal, but does not involve the

Command Interpreter. Figure I illustrates the resulting

process structure. Remember, because there is only one job

in the system, the application programs cannot use DISP4AY

and ACCEPT to communicate with the terminal user; DISPLAY

and ACCEPT refer only to the job's $STDIN and $STDLIST for all

processes in the job. The Terminal Handler instead provides

access to the user terminal by opening a file using the

Logical Device Number of the terminal.

The master process also allocates and initializes the Extra

Data Segment for the Record Lock Table and allocates the local

RIN used to control access to that table.

Each created process is assigned to a particular terminal by

Logical Device Number, and each runs the same program con

taining all the application code. The application main

program, written in SPL, starts by opening all disc files

used in the application and opening a file to access the

specified terminal. Once opened, the terminal file must be

conditioned for use by a sequence of file control intrinsic

calls. This system uses:

FOPEN (, %604,

%404,

-2400,

LDEV)

=CCtl, Undefined ASCII records, NEW

=NOBUF, Read/Write

=Maximum Record Length

=Logical Device Number

SECTION 8-89

5. Application System Structure and Process Management (cont.)

FCONTROL #37

FCONTROL #25

FSETMODE #6

FCONTROL #13

=Allocate a terminal

=Set RS as input terminator

=Suppress CR/LF on input

=Echo off

Finally, each process gains access to the record lock table

by a GETDSEG intrinsic call using the same ID the master

process used in allocating the Extra Data Segment. The RIN

is automatically usable without issuing another GETLOCRIN.

Each process stores global control information such as MPE

file numbers returned from FOPEN and the Data Segment index

returned from GETDSEG in the DL-to-DB area of its stack so it

is accessible to the File Manager and Terminal Handler pro

cedures at any time.

Once this initialization is complete, the SPL main program

begins application processing by presenting a menu screen on

the user's terminal. When the terminal user selects function

from the menu and enters a valid password, the COBOL program

implementing the selected function is called as a subprogram.

The COBOL program interacts with the user by calling Terminal

Handler subroutines, and accesses disc files by calling the

File Manager subroutines. Processing overhead is minimized

since all needed files were opened when the system was started.

Stack space for each terminal is minimized by using the

$CONTROL DYNAMIC compiler option on the COBOL subprograms.

This option defers allocation of Data Division storage until

the subprogram is called, and releases the space when the

subprogram ends with GOBACK, to return to the main program.

SECTION 8-90

5. Application System Structure and Process Management (cont.)

The $CONTROL SUBPROGR&~ option on the other hand permanently

allocates stack space for every such subprogram, which is

clearly undersirable for this application. In a further

effort to minimize memory requirements, the main program

shrinks the stack on return from an application subprogram,

using the ZSIZE intrinsic. When the next subprogram is

called, MPE automatically expands the stack as needed.

6. Performance Measurements

The performance of this application system was observed in

actual operation by monitoring terminal I/O. Code was added

to the Terminal Handler to collect CPU time and wall~clock

time elapsed between the completion of a read (input) and

the initiation of the next write (response). The accumulated

times and the number of input/response pairs was recorded

separately for each user by application function. Figure 2

is a graph of the combined statistics for all users and

functions as observed during a peak day of operation with

55 terminals.

A total of 39, 144 responses were recorded in the 14 hours

observed , for an overall average of 2747 responses per hour.

A peak observed rate of over 3800 responses per hour was

observed over two hours (14: 30 - 16: 30). After 1 T: 30 the

rate remained around 2200 responses per hour.

The overall computer response time (wall-clock) averaged 430

ms/response, while the longest observed response took 11.9

seconds. Average CPU time was about half the average response

time.

SECTION 8-91

6. Performance Measurements (continued)

Due to the method of observation, this time does not include

data transmission to or from the terminal. However, since

the average number of characters received on input was

observed to be under 200, data transmission time can be

estimated at around 2 seconds at 2400 baud. Thus, the average

total response time is estimated at under 2.5 seconds.

This analysis does not account for two variables which could

effect (lengthen) the actual response time seen by a terminal

user: First, there could be a delay after the user presses

the ENTER key before the terminal begins data transmission to

the computer. This can result if MPE holds off the trans

mission because of simultaneous block reads and writes already

in process. Second, there could be a delay in dispatching

the application process once the read from the terminal is ,~

complete, for example, if the process has to be swapped in

before it can continue to execute. First-hand observation

of user terminals indicates that neither of these factors

contributes significantly to typical response time.

SECTION 8-92

J/S MAIN
Process

MPE C.I.

USON of Main
Process
Master

/
/

/
/

ser Process 1
Application

Program

SER Process 2
Application

Program • • •
USER Process

75
Application

Program

• • •

Figure 1 - Process Structure

+
4000 001- 500

0 +
Responses + 0 Response

per t + + Time
Hour 0 (ms)

0 Q + +
+ 0

3000 0 0

+
+ +

0
0

0

2000 300
0800 2200

Time of Day - 3/30/79

~ Figure 2 - Response Times and Rates

SECTION 8-93

	Section 8—Resource Optimization
	Programming for Multiterminal Applications: A User Experience Managing Processes and Data Segments

