
HEWLETT-PACKARD GENERAL SYSTEMS USERS GROUP

FEBRUARY, 1980 MEETING

RESOURCE OPTIMIZATION SERIES

Checkstack and Controlling COBOL Stacks

David Greer
Premier Cablevision Ltd.

5540 Cambie St.
Vancouver, B.C.
Canada, V5Z 3A2

I. Introduction

One of the most important resources of the HP 3000 is memory.
Checkstack allows the programmer the ability to monitor his data space
and hence the amount of memory that his programs use. The less memory
your program consumes, the less load it is on the system and the
better performance you can expect. Specifically, checkstack gives
excellent guidelines on what values should be used in the STACK=
parameter of the PREP command.

Note that user memory is broken into two main parts. The first
is program code, the size of which can be controlled by the SEGMENTER
and compiler directives, but which is another topic altogether. The
second type is the data stack, and this paper concentrates on this
type of user memory.

In order to describe checkstack, the programmer must be aware of
the HP 3000 stack mechanism and how it works. The following is a
brief overview of the stack from a COBOL programmer's point of view.

II. The Stack

All user-accessible memory on the HP 3000 is partitioned into
variable length stacks. A stack works like a plate stacker in a
restaurant. When a plate is taken off the top of the stack it gets
smaller and when a new set of clean plates arrives from th~ kitchen
the stack grows larger.

Stack Before Adding Dishes Stack After Adding Clean Dishes

<------- Top of the Stack ------)

<---- Bottom of the Stack ------)

SECTION 8-55



The stack is a very dynamic resource, constantly varying in size
as dishes are removed and added. The stack used in memory is very ~
similar to this simple model. When a program requires more memory the . }
stack grows, and when a program releases memory the stack mayor may
not grow smaller.

Probably the least unde~stood concept among COBOL programmer~ is
just why programs require more or less memory. In general there are
three types of COBOL proqrams.

1. MAINLINE - Indicated by $CONTROL SOURCE in the first control
line of the program.

2. SUBPROGRAM - Indicated by $CONTROL SUBPROGRAM in the first control
line of the source program.

3. DYNAMIC Indicated by $CONTROL DYNAMIC in the first control
line of the source program.

A single source file falls into one of the above three categories,
with MAINLINE being the default. SUBPROGRAM and DYNAMIC indicate
subroutines which can be called from the MAINLINE or from other
subroutines. An MPE program is one or more COBOL source files
compiled into a USL file which is then PREP'ed into a program file.
It is this program file which you then :RUN.

The control record of the source files determines how memory is
allocated at run time. MAINLINE and SUBPROGRAM-specified source files
cause ALL memory for the program to be allocated at run time, and at
least this amount of memory is used for the entire time that the
program is running. Contrast this with DYNAMIC routines which cause
the stack to grow and, possibly, contract for each call to the
procedure. Note that any SUBPROGRAM that initializes all its
variables for each call to the procedure can be changed to DYNAMIC
without affecting the program logic. The following example should
help clarify these points.

$CONTROL SOURCE $CONTROL SUBPROGRAM

PROGRAM-ID. MAIN. PROGRAM-ID. BIGSUB.

PROCEDURE DIVISION.
DO-MAIN.

CALL "BIGSUB".

DATA AREA IS %000615 WORDS.

PROCEDURE DIVISION.
DO-MAIN.

DATA AREA IS %001005 WORDS.

The stack looks like this immediately after :RUNning this program.

SECTION 8-56



S ---) -------------------------

Storage for BIGSUB.

Storage for MAIN.

DB --) -------------------------

The pointers in the diagram represent the following:

DB - Data Base pointer. This points to the bottom of the stack.
S - Top of the stack pointer.

Now I introduce four different routines with DYNAMIC subprograms:

$CONTROL SOURCE $CONTROL DYNAMIC

PROGRAM-ID. MAIN2. PROGRAM-ID. SMALLSUB.

PROCEDURE DIVISION.
OO-MAIN.

CALL "SMALLSUB".

CALL "SMALLERSUB".

DATA AREA IS %000615 WORDS.

$CONTROL DYNAMIC

PROCEDURE DIVISION.
OO-MAIN.

DATA AREA IS %001005 WORDS.

$CONTROL DYNAMIC

PROGRAM-ID. SMALLERSUB. PROGRAM-ID. SMALLEST.

PROCEDURE DIVISION.
OO-MAIN.

*NESTED CALL

CALL "SMALLEST".

DATA AREA IS %000520 WORDS.

*CALLED FROM SMALLERSUB.

PROCEDURE DIVISION.
OO-MAIN.

DATA AREA IS %000310 WORDS.

SECTION 8-57



The stack now looks as follows:

Before the call to "SMALLSUB". After the call to "SMALLSUB".

5 ---> ---------------

Storage for
SMALLSUB

S ---> --~--------

Storage for
MAIN2.

Storage for
MAIN2.

DB --> ---------------

After the return from "SMALLSUB".

S --->

Storage for
MAIN2.

DB --> ---------------

DB --> ---------------

After the call to "SMALLERSUB".

S ---> ---------------
Storage for

SMALLSUB

Storage for
MAIN2.

DB --> ---------------

After the call to "SMALLEST".

S ---> -------------
Storage for

SMALLEST

Storage for
SMALLERSUB.

Storage for
MAIN2.

DB --> -------------

After the return from "SMALLEST".

5 -~-> 1-------------1
I Storage for I
I SMALLERSUB. I
I 1
1-------------1
I I
1 1
I Storage for 1
1 MAIN2. I
1 1

DB --> 1-------------1

SECTION 8-58



Finally we see the stack after the return from SMALLERSUB.

S --->

Storage for
MAIN2.

DB --> ---------------

During these subroutine calls, the S pointer has been moving up
and down as more or less memory was required. In an ideal situation,
this is what we would want, but under MPE it is too expensive to
constantly expand and shrink the stack size. Contracting the stack
size is relatively inexpensive, but expanding the stack involves a
large amount of overhead.

Every time your stack grows, the current data stack, before being
expanded, is written out to disc. Then more room is found in memory
for the larger stack. When enough memory is found, your stack is
copied from disc back into memory. Since this is expensive, MPE won't
shrink your stack size; instead, there is another pointer called Z
which points to the high-water mark where S has pointed. Note that
the amount of memory that you are using is the amount between Z and
DB, plus some more, if the program uses VIEW, reg~rdless of where S
is.

This is the same example as before but now the Z pointer is included:

Before the call to "SMALLSUB".

S --->

Storage for
MAIN2.

DB --> ---------------

After the call to "SMALLSUB".

S ---> --------------- (--- Z

Storage for
SMALLSUB

Storage for
MAIN2.

DB --> ---------------

SECTION 8-59



After the return from "SMALLSUB".

--------------- <--- Z

S ---> -----------

Storage for
MAIN2.

DB --) ---------------

After the call to "SMALLEST".

S ---> ------------- <---z
Storage for

SMALLEST

Storage for
SMALLERSUB.

Storage for
MAIN2.

DB --) -------------

After the call to "SMALLERSUB".

--------------- <--- Z
S ---> 1-------------1

I Storage for I
I SMALLSUB 1
1 1
I ----------- I
I 1
1 1
I Storage for I
1 MAIN2. I
1 I

DB --> ---------------

After the return from "SMALLEST".

------------- <--- Z

S ---> -------------
Storage for
SMALLERSUB.

Storage for
MAIN2.

DB --> -------------

Finally we see the stack after the return from SMALLERSUB.

------------- <--- Z

S ---) -------------

Storage for
MAIN2.

DB --) -------------

These diagrams should give an idea of how much memory is being
taken up by all these various subroutines. The problem is that MPE
will expand the amount of stack that the program uses, but it will not
shrink the stack. Instead, the programmer must do it explicitly.

SECTION 8-60



III. Checkstack

The type of programs that would use checkstack are those which
have a mainline, usually with a small amount of storage, and then have
calls to several DYNAMIC subroutines. These subroutines automatically
expand the stack as necessary according to how much storage each
subroutine needs. Note that if every subroutine is called, then Z will
point to the largest amount of storage used, which also includes calls
between subroutines. Every call to a subroutine causes the stack to
grow, if the amount of storage necessary exceeds Z.

Since
the stack
checkstack
These SPL
stack size.

it is very tedious to try to keep track of all movements of
by hand, Bob Green of Robelle Consulting Ltd. wrote

(available in the contributed library as CHECKSTACK).
routines are called by the COBOL mainline to monitor the
Calling checkstack requires the following in the MAINLINE:

1.

2.
3.
4.

Set up a small work space in the working storage section of
the MAINLINE.
Call checkstackl at the beginning of the MAINLINE.
Call checkstack2 after every procedure call.
Just before terminating the program, checkstack3 is called.

The following is an example of a call to checkstack.

$CONTROL SOURCE

~
WORKING-STORAGE SECTION.

01 CHECKSTACK-AREA.
as PRINT-FLAG PIC 89(4) COMP.
as FILLER PIC X(18) •

The PRINT-FLAG must be set before the call to checkstackl. Also,
the filler area must never be modified by the MAINLINE, as
checkstack uses this area for storage.

*
*
*
*
*
*
*
*
*
*
*

Note: The
O.

1.
2.
3.

PRINT-FLAG can have four values:
Print no messages, just adjust the Z pointer as
necessary.
Print messages on the terminal.
Print messages on the console.
Print messages on both the console and terminal.

SECTION 8-61



PROCEDURE DIVISION.
OO-MAIN.

MOVE 1 TO PRINT-FLAG.
CALL "CHECKSTACKl" USING CHECKSTACK-AREA.

lO-SELECT-FUNCTION.
ACCEPT FUNC.

IF FUNC = "A" THEN
CALL "SUBA"

ELSE
IF FUNC = "B" THEN

CALL "SUBB"
ELSE
IF FUNC = "C" THEN

CALL "SUBC"
ELSE
IF FUNC = nE n THEN

GO TO 20-FINISH-PROGRAM.

CALL "CHECKSTACK2" USING CHECKSTACK-AREA.

GO TO lO-SELECT-FUNCTION.

20-FINISH-PROGRAM.
CALL "CHECKSTACK3" USING CHECKSTACK-AREA.

STOP RUN.

Checkstackl finds the current Z value of the stack and the amount
of global area used by the MAINLINE. Checkstack2 sees if the stack
has expanded past the original Z value which is fixed by the STACK=
parameter of the PREP command. If it has grown, then checkstack2
reduces the stack size to the original Z size. Checkstack3 then
prints certain statistics according to which print value was
specified. A typical example of the output from checkstack3 is as
follows:

GLOB750 STK2500 iOK54 AVE2550 #ADJ5 SIZ4500

The parameters are:

~

~

GLOB - Global space used by the MAINLINE.
STK - Initial value of Z which is the STACK= parameter on the

PREP command.
tOK - Number of calls to checkstack2 where no adjustment to

the stack was necessary. This means that no subroutine
or group of nested subroutines expanded past the STK value.

AVE - Average size of the stack when checkstack2 was called.
iADJ - Number of adjustments to the stack. If this number is

much larger than the tOK, then the STACK= parameter on
the PREP command is too small. ~

SECTION 8-62



SIZ - Average size of the stack when it was larger than the value
that the program was prepped with.

Some analysis of these figures is now necessary. The Z size
isn't decreased unless the stack has expanded past Z plus 512 words.
This prevents unnecessary shrinking of the stack. The global storage
should be as small as possible. Remember that every user must have
his own stack, therefore, all the extra storage in every stack causes
a large total decrease in the amount of available memory, especially
if there are many users of this program.

As with everything on the HP 3000, there is always a trade off
between good and evil. There is a cost associated with this expansion
and contraction of the stack size. Shrinking the stack is very
inexpensive, as it only results in your stack being contracted when
your data stack is swapped out and then later swapped in. Expanding
the stack is very expensive, since every stack expansion results in
the data stack being swapped out to virtual memory and then swapped
back in when more memory is found. The net result of this is that you
want to PREP your program with an initial stack size that causes the
minimum number of adjustments while keeping the STK value as low as
possible.

An excellent example of where CHECKSTACK is most useful is when
there are a large number of calls to CHECKSTACK that are OK, and then
only about 5% of the calls are for adjustments. Also, if the size of
the adjustments is much larger than the average, then CHECKSTACK is
helping you get optimal performance from your programs.

SECTION 8-63



Appendix

An Application of Checkstack.

The primary application package at Premier consists of a controlling
routine which prompts for commands. For each command there is a call
to a COBOL subroutine. Each subroutine may then call other COBOL or
SPL subroutines.

During July 1978, we examined the stack size of the program using Son
of Overlord and found that the average stack size was approximately
12,000 words. Checkstack was added to the program to monitor and
adjust the stack size.

The result was drastic, the average stack size being only 8,000 words
instead of 12,000. Only one routine was causing the stack to expand
to 12,000 words, but without checkstack the stack was remaining at
12,000 words rather than shrinking. We had a net saving of 4,000
words per user, and there were six users at that time. A total
savings of 24,000 words of virtual and real memory.

We still felt that the stack size was too large, so every subroutine
was checked to see that it started with $CONTROL DYNAMIC instead of
$CONTROL SUBPROGRAM. At the same time unnecessary storage (such as
long field lists, instead of the "@" sign) was deleted from each
subroutine. The routine that was using 12,000 words of storage was ~

examined, and a special effort was made to delete unnecessary storage. )
The average stack size decreased to 4,000 words and the worst case
became 8,000 words. Approximately 2,500 words of this storage was
saved just by changing $CONTROL SUBPROGRAM to $CONTROL DYNMAIC in two
of the larger routines. The net savings was again 4,000 words per
user. Checkstack and some simple changes to our application software
reduced the average stack size by 8,000 words per user.

SECTION 8-64


	Section 8—Resource Optimization
	Checkstack and Controlling COBOL Stacks


