HEWLETT-PACKARD GENERAL SYSTEMS USERS GROUP
FEBRUARY, 1980 MEETING

RESOURCE OPTIMIZATION SERIES

BLOCK MODE TECHNIQUES:

Presented by:

John Korondy
HEWLETT PACKARD CO., INC.
CUSTOMER SERVICE CENTER
Mountain View, CA 94043

SECTION 8-17

1. THE ADVANTAGES OF USING SCREENS

Input/Output ==> High overhead

Tha data to information ratio

Reducing overhead by increasing the D/I ratio
The visual orientation of screens

Ease of error recognition and correction

Ease of downloading class edits

e o o o o o
AU WN -~
e o o o o o

[

2. THE ADVANTAGES OF BLOCK MODE OPERATION

2.1. Full duplex character mode I/O
2.2, Half duplex block mode I/0
2.3. Additional controls available in block mode

3.1. Increased usefulness of keyboard lock/unlock
.3.2, Meaningful cursor control

2.
2

3. IMPROVED METHODS OF BLOCK MODE DATA ENTRY

3.1. Designing, saving and updating the form
3.2, Painting the form -- PUTFORM overview
3.3. Using the soft keys for function selection
3.3. Reading the data -- BLOCKGET overview
3.5. Concurrent processing
3.5.1. Foreqround data entry
3.5.2. Background calculations/updates
3.5.3. Terminal handling
3.5.3.

Recovery from errors in the backgound process

5. PROCESS TERMINATION

SECTION 8-18

Input/output is expensive but necessary.

There are several ways to optimize machine performance.
The method I would like to present to you will
significantly reduce costly input/output data transfers.

The two approaches to cutting down on wasteful use of I/0
are: to reduce the number of bytes transferred to a
minimum; and to reduce the number of times the data
transfer is initiated. David Brown of the N.I.C.E.
Corporation has made great strides in the latter by
combining control characters with data in a single buffer,
and then performing the output.

The technique that is described in the following will take
advantage of both reducing the number of characters
transferred, and reducing the number of transfers. It
also incorporates a few of the principles of downloading
some functions to the HP264x terminal from the mainframe,
that prompted Bill Gates to develop the much-heralded
LOBOL systenm.

The data to information ratio.

The data we store in our data bases, MPE files or KSAM
files we often refer to as "raw data".. This choice of
phrase implies to me that the computer does not really
store information -- elements of data with a clearly
defined set of inter-relationships -- but rather it stores
data: a seemingly meaningless and random collection of
quantifiers, qualifiers and descriptors. It is then left
up to a subsystem, an application program or the users'
own intelligence to try to decipher the true meaning of
the elements of data and the relationship one bears on
another.

The users rarely if ever look at raw data through FCOPY or
a dump, rather they depend on reports formatted by
application programs or QUERY. These programs turn the
data into information -- at some cost. To illustrate the
point, let us assume that we have an employee data base
with the usual fields. The data element that looks like
'790511' would probably not mean too much to a personnel
administrator. With enough experience one might quess
that it is an employee's date of hire, or date of
promotion, or date of last review, or date of termination,
etc.

SECTION 8-19

1.3.

QUERY will transform the data retrieved from the data base
to information, which might look like this:

DATE-LAST-REVIEW =790511

which means that QUERY has to buffer out 24 characters in
total to translate 6 bytes of data. This results in a
data-to-information ratio of 0.25 (6/24), or 25%.

Reducing overhead by increasing the D/I ratio.

It should now be appearent, that if we manage to reduce
the number of bytes required to transform raw data to
information, and therefore increasing the
data-to-information ratio, we would achieve some reduction
in our operational overhead and improve performance.

If we could somehow display the text that is fixed for
each inquiry, and keep it on the screen as long as there
is more processing to be done, we would never have to
write it out again -- conceivably increasing the D/I ratio
to approach the value of 1.

We can accomplish this improvement by painting a form on
the screen at the start of the application program,
protect it on the screen to prevent overwrite, and upon
each inquiry, we should only have to "fill in the blanks".
If in one day we intend to make 200 inquiries, and we
assume that we deal with 240 bytes of data (40 fields of
6-byte elements, or any combination), we would have to
write to the screen 48,000 bytes of raw data. By using a
form that is 2,400 characters long (24 lines of 100 bytes
each) we would get a D/I ratio of 95,.24%
[48000/(48000+2400)]. If the user had to use QUERY to
gain access to the same amount of data, it would have to
display 192,000 characters in total. The D/I ratio would
still stand at 25%.

The visual orientation of screens.

An additional benefit of using screens is that the
information displayed is visually oriented. When QUERY or
FCOPY displays a set of data elements on the screen, they
do so sequentially; i.e.: the screen scrolls up as more
lines are printed. Inevitably, one will have to search for
the item of interest, and might even have to roll the
screen back down.

When using a form or a set of forms, the same element of
data (i.e.: employee name) will always appear at the same
location on the screen. Users who are only interested in
selected items will quickly get used to finding those
fields in fixed locations, thereby eliminating the need to

SECTION 8-20

1.6.

to search through unwanted data.

Ease of error recognition and correction.

When forms are used for data input functions, another
advantage will quickly become obvious. Errors that have
been detected by the data entry driver program may be
easily brought to the attention of the user by blinking
the field in error; and in some cases of obvoius
typographical errors displaying an error message may not
be necessary. This kind of warning is easily detected by
the user, and the correction of such a mistake is quite
easy as a simple overtype is required in block mode.

Block mode operation will be discussed later, and its
advantages will come to light as we become more familiar
with the concept. Let it suffice to note that once an
error has been recognized, one may tab to the field in
question, or use the cursor control keys to get there;
which is, of course, a lot simpler than re-entering the
entire record.

Ease of downloading class edits.

Downloading means the process by which a system tasks the
terminal with performing a function heretofor accomplished
by the mainframe (CPU).

The greatest advantage of dowloading is that while the the
terminal is performing some task, the CPU can be gainfully
employed doing something else. The noticeable effect will
be the synchronization of entry programs to the users'
needs -- less wait-time for the operator while the CPU is
performing the edits, for example, as some of these edits
can take place as the data is entered. Most of our users
have already bought and paid for quite a few HP-264x type
terminals. These include a fast 8080 processor, so it is
time we took advantage of that processing capability.
Downloading class edits -- alphabetic only, numeric only,
and alphanumeric -- are incorporated into the 2645
package; they are well documented in tye 2645 Reference
Manual, and are very easy to interface to application
programs.

ADVANTAGES OF BLOCK MODE OPERATION

Full duplex character mode I/O.

Full duplex means two-way communication where both
transmitting and receiving functions are enabled. To

illustrate full duplex terminal commucations, I will
outline the events that take place between the terminal

SECTION 8-21

and the computer when a character is typed in on the 2645. Aﬂ%

a. Terminal generates an interrupt
b. Computer sends a read-enable (DC1)
c. Terminal transmits a character
d. Computer echoes character back

It is important to remember, that in full duplex mode the
terminal's echo facility is DISABLED, while the computer's

echo facility is ENABLED.

Character mode I/0 means that each time a character is
struck at the terminal it will be sent to the computer.
Block mode I/0 means that data transfers are initiated
from the terminal by way of the ENTER key (or by some
other means I will discuss later), and an entire line or
page is sent to the HP-3000.

It is interesting to note that the BACKSPACE key
represents a valid ASCII character which can be
transmitted, but the cursor control keys have only a local
function. This is the reason why the cursor control keys
do not work in character mode operation, but the BACKSPACE
key works in both character and block mode.

Half duplex block mode I/0.

Half duplex means two-way communication with one side in ‘a%
receive only mode, the other in transmit only. The
terminal can send, in which case the computer will
receive, or the computer will transmit and the HP-2645
will receive, but simultaneous transmit and receive would
mean full duplex mode. 1In normal half duplex operation,
the echo facility of the computer is DISABLED and the echo
at the terminal is ENABLED. When you turn the echo off by
either entering an Escape semicolon or using the FCONTROL
intrinsic, the computer's echo facility will be turned
off. The terminal will still assume full duplex mode, and
therefore it will not start echoing -- so the echo in
essence will disappear.

In block mode, individual characters are not transmitted
to the computer. One page or one line sent at one time,
depending on the internal strapping of the terminal. 1In
normal operation, the terminal is strapped for line
transmission, so if page mode send is required, the
terminal must be re-strapped by issuing an escape
sequence. Since the terminal is transmitting one block of
text at a time, it will assume echoing the individual
characters, and the computer's echo should be turned off.

Additional controls available in block mode.

‘ﬂ%

SECTION 8-22

2.3.1. Increased usefulness of keyboard lock/unlock.

In character mode the computer automatically disables
some features of the keyboard. When you :RUN FCOPY,
while the program loads, there is nothing you can
enter at the terminal. In block mode, the keyboard
may be easily placed under program control. This
allows the program to return control to the user while
it goes out to lunch to perform some lengthy data base
updates or compound computations or both.

2.3.2. Meaningful cursor control.

In character mode, the cursor control keys are very
close to being useless. We still have to pay for
them, though, as they are an integral part of the
2645. So, why not take advantage of them? The most
use can be realized from these keys by direct tabbing
or cursor movement to specific fields in forms mode.
The only disadvantage of these keys is the learning
curve of the operators in knowing when to use them and
when not to.

IMPROVED METHODS OF BLOCK MODE DATA ENTRY

Designing, saving and updating the form.

Designing and creating a form on the HP2645 is relatively
simple if the pogrammer is familiar with the available
features of the terminal. I recommend that before
attempting to design the screen, one reads the applicable
chapters of the HP264x Reference Manual.

Forms should be painted manually onto the screen while
logged on to a group and account where the form file will
be kept, even if temporarily. The REMOTE latching key of
the terminal should be in LOCAL mode (up). I recommend,
that only 79 graphic characters be used on any one line,
leaving the last 'print' position blank, as this practice
makes the form a bit less cumbersome to work with. It has
something to do with carriage control characters, as we
will see later.

Once the form has been painted on the screen, we should
test it, still in local mode. The testing is especially
well advised, if using a complex form with editing in
forms mode, or transmit only fields. Complete testing
includes manually clearing the display in forms mode to
assure that none of the display control sequences have
been included within the unprotected fields.

SECTION 8-23

Once the form is in an acceptable shape, we can turn off
the forms mode and move the cursor below the form. We can
now latch the REMOTE key to remote; and we are ready to
save the form in a file.

We must first build the forms file. For a one-page form,
a file of 24 records is sufficient, for a two-pageer 48,
etc. A form of the :BUILD command that works is shown
below:

¢:BUILD FORMFILE;REC=-256,,F,ASCII;DISC=24;NOCCTL

There are two very convenient ways to get the form from
the screen into the file, and I will illustrate the
simpler of the two.

First we must set up at least one FILE equation:
:FILE KBOARD=$STDIN;REC=-256,,F,ASCII
but this one will also be most useful a little later on:

:FILE SCREEN=$STDLIST;REC=-256,,F,ASCII

These file equations allow us to handle records greater
than 80 bytes without causing confusion about carriage
control on the terminal. Both system-defined files
($STDIN and $STDLIST) in a session default to 80 byte
record sizes.

Now we invoke FCOPY by the

:RUN FCOPY.PUB.SYS

command. The FCOPY command to copy the form off the
screen to the file called FORMFILE is

>FROM=*KBOARD; TO=FORMFILE

After issuing the above command, the cursor will sit there
at the bottom of the page, waiting. We need to home the
cursor, and it should now be under the top left corner of
the form. We now press the ENTER key to transmit the
first line of the form. If the echo facility is enabled,
some garbage may be echoed back to the screen, but it will
not harm anything. We press the ENTER key again, and
again, until the last line of the form has been
transmitted. Once we copied the entire form, we can send
an end-of-file to FCOPY by typing in a colon (:) and
pressing the RETURN key. This will get us out of FCOPY.

SECTION 8-24

We can :RUN FCOPY.PUB.SYS again, and copy
>FROM=FORMFILE; TO=*SCREEN

to see how the file actually looks on the screen. This is
one method to update the form file. We could now delete a
line, or add a line, or correct a mis-spelled word, or
enlargen a field. Once all the corrections have been
made, the form can be copied on top of the old FORMFILE
using the method illustrated above.

Notes: The recommended length of a line of the form is 79
bytes because when we use FCOPY to copy the form back to
the screen, FCOPY would supply a CR-LF (carriage return
line feed pair) after each record. 1If each record would
contain 80 graphic characters, the terminal would also
generate an overflow CR-LF pair, causing a blank line to
appear between each line of the form.

The record length of the form file in the above examples
is 256 bytes. It is a nice even number, allowing plenty
of room to accomodate even the most complex escape
sequences. It is important to keep in mind, that while
only 79 or less characters are visible to us, the computer
is working with considerably more bytes, since all of the
control characters are valid ASCII codes.

The second method of saving a form in a file -- not
described above -- is a method using the PTAPE program,
which reads in the entire screen all at once, instead of
lineby-line, like FCOPY. The terminal needs to be
strapped for page transmission for PTAPE, and I do not
recommend this method.

The second method of updating a form file -- not discussed
above -- is using the EDITOR. You must be prepared to
accept, that the EDITOR will truncate each record to 255
bytes -- no great loss, you can even create your file and
set up your file equations for 255 bytes -- and also
should be comfortable in reading control sequences with
DISPLAY FUNCTIONS turned on. Using this method has far
too many pitfalls for me to cope with, that is why I
recommend the illustrated method of update.

Painting the form —-- PUTFORM overview
Painting the form programmatically is even simpler than
using the FCOPY method. I have contributed a COBOL,

FORTRAN and SPL callable subroutine called PUTFORM.
PUTFORM is coded in SPL, and it allows the calling program

SECTION 8-25

3.3.

3.3.

to specify a fully qualified file name, which will save
issuing a file equation from COBOL. It is also designed
to 'squeeze' all trailing blanks out of each record of the
form file.

The application notes and COBOL example are a part of the
source listing. If you want to use all 80 bytes of of the
form, line 62 of PUTFORM should be modified, so the third
parameter of the PRINT intrinsic is %320, instead of zero.

Using the soft keys for function selection.

When a program issues a 'hard reset' -- Escape E -- to the
terminal, all the soft keys will be set to their 'natural'
state, i.e.: fl will transmit a word that contains the
ASCII characters Escape and p, or the octal value of
15560. the second soft key, f2, will send an Esc q, or
$15561, and so on to f8, or Esc w.

Which of the soft keys have been pressed, therefore, can
be programmatically evaluated quite simply. COBOL makes
this process even more convenient if the programmer uses
level 88 definitions for each of the soft keys, as

01 FUNCTION-KEYS PIC X(02).
88 F1 [] VALUE "%p".
88 F2 [% = Escape ===>] VALUE “%q".
88 F3 [1 VALUE "s&r".

and so on. The input can then be evaluated by a simple
conditional, such as

IF Fl
PERFORM E400--SCREEN-EDIT
ELSE
IF F2
PERFORM D200--DELETE-RECORD
ELSE

If the program falls through past the condition test for
F8, the user pressed the ENTER key, which may or may not
be meaningful to the program, and can be treated
accordingly. This method of using the soft keys may
eliminate the need for a function selection field on the
screen, and one or more keystrokes during data entry.

Reading the data -- BLOCKGET overview.

Reading the data from a screen and manipulating it is not
as easy as issuing a READ from COBOL or FORTRAN --
unfortunately. The terminal inserts funny control
characters in the middle of the record, which then must be

SECTION 8-26

-

‘W%

~

stripped off. This can get quite involved, especially in
COBOL. Another question that might arise is how to get
the terminal to send me some data once I detected the
appropriate function key without having to ask the user to
press the ENTER key.

These are the reasons that prompted me to write and
contribute the COBOL, FORTRAN and SPL callable subprogram,
BLOCKGET. I would like to acknowledge the cooperation of
Mr. Alan Pound in the development and testing of BLOCKGET;
without his help, it would not have been so easy to use,
nor as efficient as it is today.

BLOCKGET, when called, prompts the terminal to transmit a
block of data. If the HP2645 has been strapped for page
transmission, it will send all the data in unprotected and
transmit-only fields; if the terminal has been left in its
native state, in line mode, BLOCKGET will fetch data in
unpotected or transmit only fields on one line of the
screen. BLOCKGET will strip out all the control
characters, such as unit-separators (US) and
record-separators (RS) that have been inserted into the
data by the terminal.

BLOCKGET will return to the calling program one record, in
a form that would have been received if a conventional
READ would have been executed.

The calling parameters are BUFFER, LENGTH and ERROR.
BUFFER is the area of storage where the data will be
returned to. It needs to be large enough to accomodate
all the control characters as well as the data. The
formula for computing the length of the buffer is supplied
with the BLOCKET documentation and source code. LENGTH is
the size of BUFFER, in bytes. ERROR is a word where
BLOCKET will return the binary value of 1 if the READ from
the terminal has failed. This value will normally be set
to zero.

A COBOL example of using BLOCKGET is provided with the
code.

Concurrent processing.

3.5.1. Foreground data entry.

The terminology of foreground and background may be a
a bit confusing here. I am merely using the terms to
illustrate what is happening at the user level; i.e.:
at the terminal -- foreground --; and what is taking
place at the HP3000 CPU -- background. Shortly we
will see that one will no longer have to wait for the
other, and they both can keep busy without one

SECTION 8-27

impacting the performance of the other. Hence the
distinction between two separate processes: foreground
and background.

In block mode, the program can control when the screen
can be written to by unlocking the keyboard; and it
can also lock the keyboard out to prevent the user
from writing to the screen while the computer outputs
data or is in the process of painting the form.

It is important to note, that the terminal acts as if
it was in LOCAL mode, so when the keyboard is
unlocked, anything is possible. The terminal does not
wait for an enable character before it allows the user
to input data. This is in contrast to the process of
data transmission in character mode, such as when you
type in :RUN FCOPY.PUB.SYS, the computer goes out to
lunch for a length of time, and nothing can be entered
through the keyboard.

So then it is possible to enter an entire screen of
data without ever having to bother the CPU in block
mode. The mainfraime will not recognize our attempt
to communicate with it until a soft key or the ENTER
key has been hit. This facility is enabled through a
a call to the FCONTOL intrinsic. The terminal can
also be placed in block mode from the program by
issuing an escape sequence to latch the BLOCK MODE
key.

Background calculations/updates.

We have seen earlier how the terminal can be made to
function independently of the CPU; therefore it is
possible to liberate the mainframe from being a slave
to the terminal; i.e.: waiting for input.

In character mode, when a program executes a READ, it
will go into a wait state, until it is reactivated by
an interrupt generated by a line termination character
or the ENTER key at the terminal. So, the CPU is not
really doing anything for me while I am pecking away
at the keyboard. It can, however, accomodate requests
from the nebulous 'other users'. If I, as a user,
have to pay for two processors -- the CPU and the one
inside my terminal -- I should be allowed to get the
best use out of both of them.

Once the user has entered a screenful of data and the
program has satisfactorily performed the required
edits, perhaps all that remains is to generate some
computed fields and to update some data sets of some
data bases. This is the process that is time

SECTION 8-28

D

D

3.5‘3.

[o a1}

d.
e.

f£.
g.
h.
i.
j.

1.

consuming and most taxing on the users, because they
have to wait for the system to lock the data sets or
items being updated, perform the update(s) and release
the locked entities. 1In some instances I observed,
this can result in time spent by the user waiting for
the computer of 40 to 80 seconds depending on loading.

This waiting time can now be eliminated, as the
program can clear the data off the screen and release
the keyboard as soon as the edits have been performed,
and then proceed to execute the lengthy tasks of
updating while the user is working on the next record.
The CPU response time can be decimated in the above
manner.

Fatal errors can still be handled by interrupting the
data entry in progress, and displaying the error
message on the next page of the screen, pausing for,
say, 3 seconds, and re-writing the previously entered
record to the screen. The probability of these kinds
of errors can be greatly reduced by proper design and
foresight, and comprehensive edits.

Terminal handling.

As I mentioned earlier, several terminal control
functions need to be performed before the concurrent
data entry technique can be used effectively. The
procedures required to set the HP2645 up for this
purpose are explained below.

HARD RESET (Escape E) Initilizes 2645
Open the data base(s) or perform something that
takes at least 200 milliseconds at the mainframe,

or pause for 200 ms as to prevent a race condition
at the terminal.

KEYBOARD DISABLE (Escape c) Locks keyboard
DISABLE BREAK (FCONTROL 14) Disables BREAK key
STRAP FOR PAGE (Esc &slD) Straps the terminal
for page mode.
PAINT THE FORM (PUTFORM)
DISABLE ECHO (FCONTROL 13) Disables echo
FORMS MODE ON (Esc W) Turns on forms mode
ENABLE BLOCK MODE (FCONTROL 29) Enables block mode
LATCH BLOCK MODE (Esc &k1B) Latches the BLOCK
MODE key at terminal
SETMSG OFF (COMMAND) Turns message off
ENABLE KEYBOARD (Escape b) Ready for input

For those users who run under a pre-1918 release of
MPE, I have contributed an FCONTROL intrinsic
interface, called TCONTROL, that allows COBOL programs

SECTION 8-29

to take advantage of the flexibility in terminal
handling of FCONTROL.

3.3.5. Recovery from errors in the background process.

I have touched upon the subject of handling terminal
errors that occur in the background. Some thought
should be given to where these error messages will be
displayed on the screen. Usually, it seems best to
print the messages on a separate page of screen, this
way we do not have to provide for a separate, and
usually large, field for error messages.

In case of terminal errors, it is important to provide
one and only one exit for the program. We have, in
the previously described process, reconfigured the
terminal for block mode, and it must be reversed
before it can be used for character mode transfers.

PROCESS TERMINATION,

The last paragraph, unit, or procedure performed by the data
entry program should be one that puts everything back to the
way it found it. This is significant for the communication
protocols.

The facilities that we changed using the FCONTROL intrinsic
must be restored the same way -- echo, block mode, break -the
message facility should be enabled using the COMMAND
intrinsic, and the terminal should be restored to its native
state. For the restoration of the terminal we can employ a
short-cut: the hard reset (Escape E), which will do the
trick.

SECTION 8-30

$CONTROL SUBPROGRAM,NOWARN
<<

PUTPFORM

Programmer: John Korondy
Date written: Sep 11, 1979

The PUTFORM subprogram allows COBOL (or any other) programs to call
it and to efficiently paint a form or sets of forms on the $STDLIST
device. This should, of course, be a terminal.

The only required parameter is the name of the forms-file, which may
be fully qualified, and must include the lockword (if any). The name
of the forms-file must be in a byte array [PIC X(xx).] and the last

character of this array MUST be a space.

COBOL example:

01 FORMS-FILE PIC X(20) VALUE "ORDFORM/WD40.IM.DB ".

CALL "PUTFORM" USING FORMS-FILE

NOTE: The PUTFORM subprogram handles all externally caused error
conditions, and will terminate the program with an appropriate
error message.

>>
BEGIN
PROCEDURE PUTFORM (FNAME) ;
ARRAY FNAME;
BEGIN
ARRAY DISPLAY'CLEAR(O0:1);
BYTE ARRAY FILE'NAME (*)=FNAME;
BYTE ARRAY FORM'BUFF (0:255) ;
INTEGER FNO, LGTH, DUMMY, ERROR;
INTRINSIC FOPEN, FCLOSE, FREAD, PRINT, QUIT;
FNO:=FOPEN (FILE'NAME,5,%300);
IF < THEN
BEGIN

MOVE FORM'BUFF:="THE FORM-FILE CANNOT BE OPENED.";
PRINT (FORM'BUFF,-31,%60);
QUIT (FNO) ;
END;
MOVE DISPLAY'CLEAR:=(%15550,%15512);
PRINT (DISPLAY'CLEAR,2,%320);
READ'LOOP:

SECTION 8-31

FREAD (FNO, FORM'BUFF,~-256) ; Aﬂ%
IF > THEN GO EXIT;

IF < THEN QUIT(33);

LGTH:=256;

WHILE (LGTH:=LGTH-1)>0 AND FORM'BUFF(LGTH)=" " DO;

LGTH:=LGTH+1;

PRINT (FORM'BUFF,~-LGTH,0);

GO READ'LOOP;

EXIT:
PRINT (DISPLAY'CLEAR,1,%320);
FCLOSE (FNO,0,0);

END;
END,

SECTION 8-32

BLOCKGET

Programmer: John Korondy
Date written: Sep 17, 1979

The BLOCKGET subprogram facilitates an easy read in block-mode
from the 2645 terminal. It emulates the ENTER key being pressed,
homes the cursor and buffers in the data from the unprotected and
transmit-only fields.

The teminal should be strapped for block mode, else only one line
will be transmitted. The BLOCKGET handles all the communication
protocol and strips the data of all unit separatotrs (Us) and
record separators (Rs). The buffer that is returned to the calling
program will contain the contiguous string of data actually input.
The BLOCKGET subprogram generates all of its own error messages.

COBOL example:

01 FUNCTION-KEY PIC X(002).
88 F1 VALUE "esc p".
88 F2 VALUE "esc q".
01 GROSS-BUFFER PIC X(944).
01 GROSS-LENGTH PIC 9(004) COMP VALUE 944.
01 BLOCKGET-ERROR PIC 9(004) COMP.

CALL "BLOCKGET" USING GROSS-BUFFER
GROSS-LENGTH
BLOCKGET-ERROR
IF BLOCKGET-ERROR = ZERO

MOVE GROSS-BUFFER TO SCREEN-BUFFER
ELSE

DISPLAY "BLOCKGET ERROR --- etc".

NOTE: The GROSS-BUFFER shown above must be long enough to accomo-
date all the unit and record separators. The formula for
computing this is

LENGTH = B + UF + TF;
where
number of actual bytes of data expexted

UF = number of unprotected fields on the screen
= number of transmit-only fields on the screen.

SECTION 8-33

BEGIN
PROCEDURE BLOCKGET (BUFFER,TOTLGTH,ERROR) ;
INTEGER TOTLGTH,ERROR;
ARRAY BUFFER;

<<
Page 16 of 19 pages.

BEGIN
INTEGER DUMMY, LGTH;
LOGICAL TRIGGER;
BYTE ARRAY BUFF (*)=BUFFER;
BYTE ARRAY TEMP(0:1099);
INTRINSIC READX, PRINT;

TRIGGER:=%15544;
PRINT (TRIGGER,1,%320);
LGTH:=0;
READX (TEMP,-TOTLGTH) ;
IF < THEN ERROR:=1
ELSE ERROR:=0;
DUMMY:=-1;
WHILE (DUMMY:=DUMMY + 1) < TOTLGTH DO
IF TEMP (DUMMY) > %37 THEN
BUFF (DUMMY - LGTH) :=TEMP (DUMMY)
ELSE
LGTH:=LGTH + 1;
END;
END.

SECTION 8-34

$CONTROL SUBPROGRAM
<<

- T T — —— S ———— Y T} T S . T A P - M S S A S A S TR TS S SAm S S S S S SE S e T
T3 i+ 1ttt i1 i1+t i i+t i1+ttt t+ 11+t

TCONTROL

Programmer: John Korondy
Date written: Sep 17, 1979

The TCONTROL subprogram allows COBOL programs to freely use the
versatile MPE intrinsic FCONTROL. Only two parameters need to be
supplied: a control code in integer form, and an error-code.

The control code must be one of those described in the MPE INTRIN-
SICS Manual under the intrinsic FCONTROL. The error-code is retur-
ned, if it is zero, no error occured; else the task requested

was not succesfully completed.

COBOL example:

01 TCONTROL-CODE PIC S9(004) COMP.
01 TCONTROL-ERROR PIC S9(004) COMP.

MOVE 13 TO TCONTROL-CODE
kkkkhhhhkkkhkhkkkhhkhkhhkhkkkkkkkkkkkk*x* PTURN THE ECHO OFF.
CALL "TCONTROL" USING TCONTROL-CODE
TCONTROL-ERROR
IF TCONTROL-ERROR GREATER ZERO
DISPLAY "ECHO CANNOT BE DISABLED."
ELSE
PERFORM THE-GREAT-MIRACLE.

————————— — T — —— — ————— o f——————— — — v — ———— M T T e M emEE e ar IR SR EEEEaEar IR ST
3 1 3 T T 1 3 T 1 1 3 1 1t 1t 1ttt 1 e R e bt

>>
BEGIN
BYTE ARRAY INPUT(0:5) :="INPUT ";
PROCEDURE TCONTROL (PARM,ERROR) ;
INTEGER PARM,ERROR;
BEGIN
INTEGER IN, CTL;
INTRINSIC FOPEN, FCONTROL;
IF PARM < 10 OR PARM > 43 THEN
BEGIN
ERROR:=1;
RETURN;
END;

CTL:=PARM;
IN:=FOPEN (INPUT, %45);
IF < THEN
BEGIN
ERROR:=2;

SECTION 8-35

RETURN;
END;
FCONTROL (IN,CTL,ERROR);
IF < THEN
BEGIN
ERROR:=3;
RETURN;
END;
ERROR:=0;
END;
END.

SECTION 8-36

	Section 8—Resource Optimization
	Block Mode Techniques: Concurrent Data Entry and Update Processing

