
DESIGN AND SEGMENTATION TECHNIQUES

FOR LARGE SPL PROGRAMS

Jon W. Henderson

General Systems Division
Hewlett-Packard Company

the
SPL

The ease of use of the HP3000 encourages the development
larger and more sophisticated applications which begin
approach the limits of the machine.
This paper deals with those constraints encountered in
compilation of very large (250,000 lines or more)
programs, and methods for circumventing them.

of
to

The limits encountered in SPL compilations are of two forms:
absolute hardware limits and compiler-imposed ones. The
most common hardware limit encountered is exceeding the
addressing capacity of the DB and Q registers. Since
global variables in SPL are DB-relative a maximum of 256
may be declared.
Similarly, 127 Q-relative local variables can be declared
in a procedure. These two bounds are absolute and may be
avoided only through programming techniques described below.
Of the 127 local variables declared only 64 may be arrays.
This is one of the compiler-imposed limitations. The other,
more troublesome, is overflowing the compiler's symbol
table.

Each identifier declared in an SPL program is inserted into
the symbol table, along with relevant information about it.
The number of words of symbol table used for each identifier
varies from a minimum of 4 for a simple variable with a one­
character name, to a maximum of 146 for a 256-character
define with a 16-character name. (A new $CONTROL option,
DEFINE, has been added to SPL to alleviate this problem.
$CONTROL DEFINE causes the bodies of defines to be written

~ out to disc rather than kept in the symbol table. This has

SECTION 2-85

proven useful in large compilations. The DEFINE option will
be available in the next version (08.00) of SPL.)

The symbol table is kept in the area between the DB and DL
registers, and is expanded "downward" from DB toward DL.
An initial allocation of 1000 words is provided and
increments of 512 words are added as needed. When
the marker at the top of the symbol table + 512 exceeds
DL the SYMBOL TABLE OVERFLOW error message is output and the
compilation is aborted.
Case studies have shown that on the order of 10,000
identifiers are necessary for this to happen, but overflow
situations are occurring with increasing frequency as the
complexity of SPL programs grows.

There are several methods for preventing these problems
from arising. The most important of these is a programming
practice of keeping program units small, thereby taking
advantage of the powerful segmenting and linking
capabilities of the HP3000's Segmenter.
The basic philosophy behind modularization is that by
separating global declarations from code and keeping
program units small the burden on the compiler can be
lessened, thereby increasing the resources available,
reducing compilation time, and, indirectly, making
the program easier to maintain and enhance.
This can be accomplished in two ways:

1) Use of the new SPL compiler option, $INCLUDE.

2) Use of the GLOBAL and EXTERNAL options in variable
declarations.

In one case study some 10,000 variables were broken down
into two classes: the 256 variables global to the entire
application, and equates and defines. The equates and
defines were further subdivided according to function.
Then some 160 procedures were modified to $INCLUDE the file
containing the global variables, plus only those equate and
define files necessary for compilation. Before the
restructuring the symbol table overflowed. Now the
program compiles. The $INCLUDE option will also be
available in version 08.00.

By declaring variables as GLOBAL and EXTERNAL the programmer
allows SPL the leave the linking of the variables with their
appropriate offsets to the Segmenter. Since only those
global variables used by a procedure need be declared inside
it, recompilation of the all the global variables whenever
a procedure is recompiled is unnecessary.
The use of GLOBAL/EXTERNAL also encourages subprogram
compilations. A subprogram is a discrete compilable unit,
usually a procedure or group of procedures. For

SECTION 2-86

this technique to be effective, the subprogram must
contain all the declarations necessary for stand-alone
compilation. When the compiler is placed in subprogram
mode by the use of a $CONTROL SUBPROGRAM statement at the
beginning of the subprogram, only the procedure(s)
specified are recompiled into the existing USL file.

Ideally, the structure of a large SPL source would appear as
follows:

SUBPROGRAM(S)

+------------+
OUTER
BLOCK

I
I
I

+----------+--------+
I I

+------------+ +------------+
PROCEDURE PROCEDURE

1 N

GLOBAL
VARIABLE

DECLARATIONS

EXTERNAL
PROCEDURE

DECLARATIONS

GLOBAL
CODE

+------------+

OUTER BLOCK -

EXTERNAL
VARIABLE

DECLARATIONS

LOCAL
DECLARATIONS

LOCAL
CODE

+------------+

EXTERNAL
VARIABLE

DECLARATIONS

LOCAL
DECLARATIONS

LOCAL
CODE

+------------+

Global variables are declared in the following
form:

GLOBAL <variable type> <variable name>;

i.e., GLOBAL INTEGER I;.
The GLOBAL declaration identifies the
to the Segmenter as one to be matched
corresponding EXTERNAL declaration in
block.

variable
up with a
the outer

An EXTERNAL PROCEDURE declaration is necessary
for each separately-compiled procedure called

SECTION 2-87

from the outer block. These declarations use
SPL's OPTION EXTERNAL feature. This is similar
to OPTION FORWARD, and again instructs the
the Segmenter to do the necessary linking.
For example,

PROCEDURE P(A,B);
VALUE A;
REAL A,B;
OPTION EXTERNAL;

No corresponding GLOBAL declaration is necessary.

GLOBAL CODE is the outer-block code, containing
the entry point to the program.

SUBPROGRAM -

EXTERNAL VARIABLE DECLARATIONS are declarations
which cause SPL to place in the USL file
information which the Segmenter uses to link code
referencing the variable with its address.
Each external variable must be declared in
each procedure in which it is used. The form
of the declaration is the same as that of the
GLOBAL variable declaration, except that EXTERNAL
replaces GLOBAL.

LOCAL DECLARATIONS and LOCAL CODE are as found in
any procedure.

The process of creating a complete USL file looks like this:

1) The outer block is compiled, in program mode, into an
initialized USL file. ($CONTROL USLINIT is a good
idea at this point.)

2) Each module is compiled, in subprogram mode, into
the USL file.

The method of recompilation varies, depending on what is to
be recompiled. If the outer block is modified, then the
entire source must be recompiled. However, if only a
module is changed then just step 2 is necessary.

When a subset of the procedures in a subprogram need
compiled, the parameterized SUBPROGRAM statement is

to be
useful.

$CONTROL SUBPROGRAM [(proc-name[*l [, ••• ,proc-name[*ll)]

When procedure names appear, only those specified are
compiled. An asterisk following the procedure n~me causes

SECTION 2-88

that procedure to be compiled with the LIST, CODE, and
MAP $CONTROL options turned on.

SEGMENTATION

Increasing the modularity of programs presents special
segmentation problems. For large programs, proper
segmentation can greatly increase both program and
system throughput. The following is a description of
some guidelines for optimum segmentation of 3000 programs.
(Acknowledgements to John Page & Madeline Lombaerde of GSD.)

The 3000 is a process oriented machine, incorporating the
separation of code and data, and stack architecture. This
permits easy design of re-entrant code. The purpose here is
to discuss ways of making a particular process:

a. Run as fast as possible

b. Have minimum effect on other processes in the system.

PROCESS ENVIRONMENT

HP3000 object code is executed by MPE in the form shown
in Figure 1. The process has a single data segment
(or "stack") and a variable number of code segments of
varying sizes. When a program is written the following
can be controlled:

a. the size of the stack

b. the number of code segments

c. the size of each segment

d. which code goes into which segment.

The diagram in Fig. 1 is actually a simplification since
it does not show the externals referenced by a program
(see Figure 2). If, for example, an SPL program calls
FOPEN then a link will be created from the code to an
MPE segment containing the FOPEN intrinsic code. Most
of these intrinsics and all of the Compiler Library
routines are not in memory permanently, thus they are
viewed by MPE as code segments identical to the caller's.
Although SPL programs have more control over which

SECTION 2-89

external procedures are called than other languages,
proper control of any language's program code and data
decreases the run-time of a process and its impact on
system load.

HOW TO DETERMINE A PROGRAM ENVIRONMENT

When a program is prepared the PMAP option shows the size
of each segment, which procedures are in which segment,
and the names of externals called by each segment. The
MPE Commands and Debug/Stack Dump reference manuals
describe the format of the PMAP in detail.

HOW MPE RUNS A PROGRAM

There are two MPE modules concerned here: the dispatcher
and the memory management system. The dispatcher is
responsible for the allocation of CPU time to all the
executing processes. The memory management system has
the job of fitting code and data segments into memory as
they are required, this operaton often necessitating the
decision of which segment(s) to delete to make room for
others. When a process' time-slice starts, its stack is
made present in memory and control is passed to the
program. As the program runs, it will call procedures
which are not in the segment present in memory. At this
point the program is suspended while MPE arranges to make
the required segment present. This can take from 20 to
100 milliseconds, since a disc access is involved. While
this is going on the dispatcher tries to run the next­
highest-priority process already resident in memory.
When the required segment is made present, control is
pa~sed to the called procedure.
The point to be noted here is that calling a non-resident
code segment is very time-consuming.

CAN THE PRESENCE OR ABSENCE OF A SEGMENT BE DETECTED?

No. The memory management system will simply attempt to
keep the most "popular" segments in real memory. The
smallest set of segments (both code and data) which must
be in real memory for a program to execute efficiently is
called the program's workng set. This dynamic set of
segments may, and most often does, change continuously
during the life of the executing program.

The philosophy of the HP3000 memory manager is based. on
the idea that there is an ideal absence frequency for an
executing process. If a process gets more than the
expected number of absences, the memory manager concludes
that the process does not have enough segments in its
working set and proceeds to add the requested (absent)
segment to the process' working set.

SECTION 2-90

r'.

However, if the process executes for a long time without
absence faults the memory manager concludes that the
working set is too large, and real memory is not being
used efficiently. The least-used segments are removed
from memory and made available for overlay.

From the user's point of view, the internal function of
the memory manager cannot be influenced. Applications
can be designed, however, with the working set concept
in mind. First, it should be kept in mind that the total
of all working sets active at the same time (i.e. a
total of all the commonly used segments, at any given
time, for all application programs running concurrently)
should be no more than 75% of the memory available to the
user. A rough rule of thumb for determining working set
size is that the size of the working set + the size of
all MPE intrinsics used should be no more than 75% of the
linked memory available to the program.
This restriction on working set size is critical and
directly reflects the memory management segment
replacement algorithm.

RULES FOR PROGRAM SEGMENTATION

1) Minimize the number of times the program crosses a
segment boundary. In other words, stay within a
segment for as long as possible; when you leave it,
stay out for as long as possible.

DESIGN IS IMPORTANT

Do not leave segmentation until the last minute. As
will be shown below, it is possible to write a program
which cannot be properly segmented.
Any procedure or outer block Relocatable Binary Module
(RBM) must reside entirely within a segment. Thus if
it proves necessary to move a block of code into a
separate segment, it will only be possible if the
code is a procedure. Arbitrary sets of instructions
cannot be taken and placed into a named segment, the
whole RBM must be moved. Therefore, modularizing code
into procedures is of vital importance during the
design phase.

CONCEPT OF LOCALITY

The locality of a program is the degree to which
control remains in the same general area of code.
A high locality means that control remains in the same
area for a long period of time. Poor locality means
that the program branches frequently. The 3000 needs
programs that have good segment locality, but does not

SECTION 2-91

care about the degree of locality within a segment.
Branching from segment to segment continuously is
wasteful, but branching within a segment makes no
difference.
If correctly applied, the principle of locality
minimizes the number of possible absence traps and
segment switches during execution. Although
transferring control between memory-resident code
segments takes less time than acc~ssing segments on
disc, it still requires more execution time
(approximately 2.5 times longer) than transferring
within the same segment.

FUNCTIONAL vs. TEMPORAL SEGMENTATION

As large systems are structured and modularized into
smaller and smaller procedures, the grouping of these
procedures into segments becomes of paramount
importance. Intuitively, one segments according to
the function of the procedures. That is, all the
input decoding routines are put together, the input/
output routines are put together, etc. This could not
be more wrong. Segmentation is a speed-enchancing
operation; time, not function, is the critical
dimension. Since Rule No. 1 says stay in a segment
for as long as possible, control must flow smoothly
from segment to segment as the program progresses.

As an example, consider a small utility program which
dumps a file to the line printer in some special
format. Assuming that the operator can choose the
name of the file and which of three possible formats
to use. The program is written with four
procedures: A, B, C, and o. (See Figure 3.)
Assume also that each dump routine has a procedure to
fetch a record from its file and a procedure to format
a print line.
It would be tempting to put all the formatting
routines in one segment, and the record fetching
routines in another. This would cause a segment
boundary to be crossed twice for every record dumped,
perhaps thousands of times. The correct way is to
put each record-reading procedure (B1, C1, 01 in
Figure 4) with its corresponding output procedure
(B2, C2, 02). If A is in its own segment then only
three segment boundaries are crossed ofr a whole dump.
In a busy system this could make large differences in
program run time.

In summary, estimate the number of times a segment
boundary is crossed and multiply this by
40 milliseconds. This is the time your program will

SECTION 2-92

be doing no useful work and other processes will be
interrupted.

Assuming that some good segmentation scheme has been
devised so that good segment locality exists. The
next step is reducing the size of the "working set."

2) Do not burden your working set with infrequently
used code.

FREQUENCY OF CODE USE

The working set of segments is the set that consumes
most of the CPU time. For example, in the program
above the working set is the code that excutes the
main loop such as B1-B2. If it is assumed that B1 and
B2 are in a segment of their own called BSEG, then the
system may spend many minutes in this segment for a
large dump. It is therefore important to minimize
BSEG's size in order to reduce the competition for
scarce memory.
To do this, examine the code in the working set and
remove any code which executes infrequently. Very
often, this applies to error-handling code. When a
program detects an error, the error should not be
handled in-line. Instead, call an error message
generating procedure. The procedure should be in a
separate segment and thus not clutter up memory while
normal, error-free, processing is going on. As an
example, suppose in the above program that after doing
an FWRITE the condition code is checked and, if
end-of-file is detected, an elaborate file-extension
routine is executed. If the routine is expected to
execute infrequently why keep it in precious memory
with the working set? Banish it to some auxilary
segment and let MPE fetch it only when needed. As
a reminder, this routine must be a procedure before it
can be placed in another segment.

SECTION 2-93

WRONG

FWRITE (. • .);
IF > THEN

BEGIN

«CODE TO EXTEND FILE»

END;

RIGHT

FWRITE (. • .);
IF > THEN

EXTEND'FILE;

Procedure
EXTEND'FILE
is in
another
segment.

3) Keep the principal working set small and
infrequently used segments large.

SEGMENT SIZES

make

This is a trade-off. A lot of small segments are
easier for the memory manager to place in real memory.
However, a scarce rsource is being used up in the form
of Code Segment Table Extension (CSTX) entries. One
entry in the CSTX is needed for every program segment,
and the table has a maximum of 63 entries per program
executing.

At the opposite end of the spectrum, a program might
have a few large segments. While this does minimize
segment-boundary crossings, the effect on memory can
be devastating for other users. There is no simple
answer to the question of optimum segment size. The
main idea is to minimize the size of the working set.

4) Keep initialized variables, particularly arrays,
out of the global declarations whenever possible.
If they must be global; don't initialize them at
declaration.

SHARED CODE

If a program
terminals then
be shared by the
will have its

is going to be run from multiple
the code segments will automatically
multiple processes. Each process

own stack. If the program's design

SECTION 2-94

incorporates data which is never altered, such as
error messages, tables, etc., then by placing this
data in the code, rather than in the stack, only one
copy is required for all processes. There are two
ways to accomplish this:

1) Initialize arrays in-line, rather than at
declaration.

2) Whenever possible, declare constant arrays
inside procedures as PB-relative. This has
the added benefit of reducing symbol table
overhead.

In both of the above cases
initialization string in
effectively sharing it among
reduces the size of the stack.

SPL
the

the

will store the
code segment,

processes. This

In summary: keep modules
segment them wisely.
When the above methods
applied to large SPL
design, maintenance, and

small, compile them separately, and

of design and segmentation are
programs the result is reduced
execution costs.

SECTION 2-95

Data
Segment
(stack)

PROCESS

Figure 1.

PROCESS

0
Iprogram I 0 Code Segments

belonging to

0 MPE.
Data

~Segment. (Intrinsics,
(Stack)

0
Library Routines,

!segments I

Language, Run-
time Routines,
etc.)

0

Figure 2.

SECTION 2-96

Ask operator for file
name and dump format Q9

Open file

OK?-NO - error msg--....

YES

®
Format 1

Choose dump routine

©
Format 2

Figure 3.

SECTION 2-97

Procedure A talks
to operator (or
outer block).

Procedures B,C,D
produce the
dumps.

@

Format 3

B1

B2 C2

Figure 4.

SECTION 2-98

D1

D2

Get
records

Format &
Output

	Section 2—Language Use
	Design and Segmentation Techniques for Large SPL Programs

