
LIVING IN AN RPG/3000 ENVIRONMENT:
ALTERNATIVE APPROACHES TO ENTRY AND UTILIZATION

OF RPG ON THE HP 3000

DUANE R. SCHULZ
DIRECTOR OF DATA PROCESSING

M. A. BIOPRODUCTS
WALKERSVILLE, MARYLAND

INTRODUCTION

This discussion is presented with the intended goal of developing
a fuller understanding of the problems associated with utilizing
the HP3000 in an RPG programming environment, reviewing several
alternative approaches to the traditional batch report generation
uses of RPG. Other commonly unsolved problems, such as techniques
for entry and maintenance of RPG source code on the 3000 and the
use of RPG as an interactive language, will be discussed. Emphasis
will be placed on the transition in conceptual approaches to data
processing as the 3000 is used more fully by RPG-oriented users.

BACKGROUND

As we all know, during the past 15 years several events have occurred
in the data processing marketplace which have placed computing power
within the reach of medium-to-small companies: some of the most
notable were the announcement of the IBM System/3 series, and later
the IBM Systems/32 and /34. The migration of these systems into the
world marketplace in the past decade has also led to the widespread
use of RPGII, a vendor-proprietary programming language initially
designed to convert card images to formatted output. Because of the
market strategy which has been used by vendors of small computers
featuririg RPG as the only high-level programming language, RPG and
RPG programmers have, justifiably or not, inherited a reputation as
unsophisticated, unprofessional strangers to the data processing
community (a complete examination of the social and professional
evolution of the RPG programming community, seemingly as a nearly
separate pocket of the data processing population, would require
more time than I wish to devote to it here). Regardless, the RPG-

~ oriented machine hit with great force: though RPG shops are usually

SECTION 2-75

small, no less than 25,000 IBM System/3s were shipped in the first
5 years of the product's life, and the newer machines, especially ~
the System/34, have hit with much greater force than even the Sys/3. J

Though the use of RPG is not as visible as COBOL and Company, its
use is extremely widespread and popular, and will remain so.

NoW, as users of the more commo~ RPG machines are experiencing more
and more difficulty with poor system capabilities, seemingly endless
conversions, and dead-ends to attempted shifts to more appropriate
use of systems technology, the flexibility and seeming open-ended
capabilities of time-shared minicomputers are looking a great deal
more appealing. With the failure of IBM to produce the promised
System/38, and our successful conversion to the "mini" enviromnent,
the migration to the Hewlett-Packard 3000 as an RPG machine will
undoubtedly occur at a rapidly increasing rate. And, as we have all
discovered, HP offers an excellent RPG and operating software, tied
to hardware flexibility and state-of-the-art engineering most of us
are very surprised to find. Nonetheless, I don't believe the average
(or in HP's case, above average) System Engineer knows quite what to
do with an all-RPG, green-to-the-minicomputer-marketplace, installa­
tion. After the installation of the 3000, several problems present
themselves, demanding solution before any serious long-range software
plan is developed to facilitate movement towards the appropriate use
of the HP3000 as it is intended. The most immediate problems are: How
will you enter and maintain RPG source code on the 3000, and how will
you change your approach to the use of RPG on the 3000?

RPG ENTRY AND MAINTENANCE: 5 OPTIONS

Most RPG users who walk into an HP environment begin with two
problems: they code in a symbolic, column-oriented language which
still reflects the cards it was developed on, and they are probably
used to a vendor-supplied Silver Spoon (pronounced: SEU, On-line
CCP/RPG Maintenance, etc.). In addition, most RPG systems come
equipped with a library maintenance utility (pronounced: Silver
Spoon Number Two) and possibly a "structured programming" capability
designed to cut redundancy of code. IBM's Auto Report is a nice
example of the latter. HP offers None-Of-The-Above, a new concept
to most RPG users, so our first task on the 3000 will be to develop
a strategy for handling this problem. Though the options are endless,
I would like to review 5 relatively productive options for entry and
maintenance of RPG on the 3000. They are:

a) Removable media
b) RPGWIZ
c) RPG/ENTRY
d) EDITRPG
e) In-house solutions

SECTION 2-76

r REMOVABLE MEDIA:

Probably the most traditional solution to facilitate entry of RPG
on the 3000 is the use of some offline device to place your source
code on removable media. This would include 80- or 96-column cards,
floppy disc, or even mag tape. The removable media may be submitted
directly to the RPG compiler, or placed on disc via the FCOPY utility
or even a non-written library maintenance program. The advantage
of this approach is the ease of formatting cards or floppy disc
output through drum cards or format records. It is also comforting
to some to be able to correct compiler errors by plucking the
appropriate card and replacing it with a new one. Nonetheless,
the hardware and drivers necessary to handle removable media are
costly and in most cases unavailable from HP, so this solution
is not particularly cost effective. Secondly, this type of
approach is quite different in orientation than the use of the HP
as an online system. If we cannot find a way to enter our source
code without cards or diskettes, what kind of systems will we later
offer our users?

RPGWIZ:

Undoubtedly the most common of all solutions to the RPG entry
problem is RPGWIZ, a series of DEL screens controlled by an RPG/DEL
program, WIZ. RPGWIZ was developed by Craig Jester at Hewlett­
Packard in Rockville, Maryland, and is available in the HPGSUG
Contributed Library. RPGWIZ allows entry of RPG code with relative
ease through Block Mode utilization of an HP-264X series terminal.
The WIZ program initially displays a screen for entry of the $CONTROL
Statement for the program being entered, also allowing setup of the
program name and line numbers, both of which are duplicated into
all statements. A HEADER/CONTROL Statement screen is then displayed
and used to produce the H-specifications for the program. Next,
the FILE specifications screen is displayed, and program entry
begins. With the use of Block Mode, it is relatively difficult
to enter values into the wrong columns of RPG source records. WIZ
allows movement from one specification type to another, and uses
soft keys for field toggling in the INPUT and OUTPUT Screens. RPG
specifications are written to a KSAM work file, allowing retrieval
and correction of a statement entered earlier during the session.
Another attractive feature of RPGWIZ is that the lower half of each
form displays statements entered just before the statement now
being entered, allowing the proqrammer to look back through the
previous 8 to 10 statements and facilitate corrections. Once
program entry is terminated (using the f8 soft key), the KSAM RPG
work file is copied, sequentially-by-key, into the final sequential
source file, using another contributed program, WIZ2. Once this is
done, RPGWIZ can no longer be used to modify the program:
modification is then most commonly done with EDIT/3000.

SECTION 2-77

Installation of RPGWIZ should be done by users with a good ~
knowledge of the RPG/DEL interface, and the use of DEL forms.
The problem of multiple users executing RPGWIZ at the same time
can be solved by building a set of KSAM work files, and developing
a User Defined Command (UDC) which includes all steps of the RPGWIZ
entry process and will allow the user to specify the desired KSAM
work file and the name of the final source file to be created. It
will take a few days to be totally comfortable with RPGWIZ (as is
true with the following two options), but it can be a very productive
and useful tool for RPG programmers. Unfortunately, it has one major
drawback: DEL is no longer a part of the HP3000 software offerings;
virtually all new HP customers who use an HP screen formatter will
use VIEW.

RPG/ENTRY:

At this moment, several of us are working on, or have completed, an
RPG entry routine which uses VIEW screens for formatting RPG being
entered into the 3000. To avoid confusion, I will review only one of
these, RPG/ENTRY, which I developed in 1979. RPG/ENTRY is available
in the 1980 San Jose tape swap, and has been given to the HPGSUG
Contributed Library for 1980 distribution in release 07. RPG/ENTRY
consists of nothing more than a VIEW form file containing one form
for each RPG specification type, including one for all comments.
Relatively extensive FORMSPEC edit specifications are included,
allowing for quicker specification entry through the use of
justification and pre-compiler type editing. An ASCII representation
of a typical RPG/ENTRY screen is included in appendix A.

RPG/ENTRY does not interface to any user-written program. It is
designed to be used with HP ENTRY/3000 utility. Execution of
RPG/ENTRY is done by running ENTRY.PUB.SYS and specifying the
RPG/ENTRY form file. Specification sequencing is controlled by using
"the soft-key functions defined for ENTRY; as with RPGWIZ, I first
display $CONTROL and HEADER/CONTROL screens. Out-of-sequence forms
selection is handled by indicating the specification type desired,
then pressing ENTER and f6 (this writes blank records to the Batch
file and necessitates my stripping program). RPG/ENTRY is designed
for speed and productivity, and relies on the features of ENTRY for
control of the entry process. Correction or review of prevously
entered statements is done by using Browse mode. One entry is
terminated, the ENTRY batch file is written to a KSAM work file,
stripped, and resequenced to the final sequential RPG source file.

Implementation of RPG/ENTRY should be done carefully according to
the RPG/ENTRY documentation. Again, I must stress the fact that
RPG/ENTRY is designed for the entry, not modification, of new RPG
source code. The most commonly used tool for maintenance of existing
RPG source code is still EDIT/3000, which may be enhanced by using
the more advanced EDITOR commands and capabilities.

SECTION 2-78

EDITRPG:

To complement RPG/ENTRY or RPGWIZ, I have developed another tool,
EDITRPG, which allows RPG programmers to use the text editor in
conjunction with any HP CRT for easy manipilation of existing RPG
source files (EDITRPG is available along with RPG/ENTRY). EDITRPG is
a group of USE files containing EDITOR "0" commands for formatting
the terminal screen. To use EDITRPG, evoke the EDITOR and enter
"USE RPGEDIT". This file loads soft keys with USE commands for each
RPG statement type. Text in the file to be modified (unless new code
entry is to be done). To modify an existing statement, find it,
then enter "USE MOD", which outputs a columnar mask on line 20 of
the screen and sets on memory lock. The editor "M" command is then
used to do the actual modification; the MOD mask simply makes column
orientation and viewing of the corrected statement simple and
reliable. For listing and addition of new statements, the soft
keys are used to select the appropriate statement format. For
instance, to add input statements, f6 should be pushed, followed by
the "ADD" command. The soft key will execute another USE file,
which sets tabs, explains tab settings, labels the specification
type, outputs a columnar mask, and sets memory lock at line 18 on
the screen.

I have found EDITRPG to be an extremely powerful yet simple tool for
RPG modification and entry. Potential users should be sure that
their terminal is equipped with a tab-setting capability (HP264X or
HP262l) and be familiar with its use. Entry of new RPG via ENTRYRPG
should only be done by experienced programmers who are familiar
with the columnar layout of RPG specifications. A simulation of
an EDITRPG screen format is included in appendix A.

IN-HOUSE SOLUTIONS:

Though all of the above options will lead to some solution of the
RPG entry and maintenance problem, there will be no solution which
is ideal for your environment. A final option, one which led to all
of the above solutions, is to do it yourself. One of the most
important differences with the HP3000 environment is that users have
the freedom to create their own systems software. It is constantly
amazing to note how many people immediately reject the HP3000
because no Silver Spoons are available. Rather than consider this
problem a problem, here is a strong opportunity for all of us to
get acquainted with the 3000 at a level we've not previously had
access to. Given the availability of languages and contributed
software, there are several feasible approaches to the RPG entry and
maintenance problem. For instance, all of the afforementioned
solutions could be tailored and enhanced to fit specific needs. A
full-capability library maintenance system could be developed to
simplify program development and documentation capabilities. An
interpretive RPG entry precompiler could be written. Again, the

~ successful use of the 3000 in an RPG environment will depend upon

SECTION 2-79

the capability to generate creative solutions, rather than rely on ~

others for answers. By installing an HP3000, we have entered a J
situation which will require much stronger internal site support.

USING RPG ON THE HP3000: CONCEPTUAL APPROACHES

Once a tool for RPG program maintenance has been selected or
developed, RPG users must determine how they will use RPG in
developing new systems on the 3000. Again, there are two basic
alternatives: find a standard batch RPG approach to systems design,
or explore as many new uses of RPG as can be found before settling
on which system capabilities will be made available to users. When
faced with the need for interactive, on-line system capabilities,
most HP3000 RPG users begin using other languages which are more
suited to on-line activities. I feel that a blanket rejection of
RPG as an interactive language is a mistake. Because it is a cycle­
driven language, there are unquestionable limitations to the
flexibility of RPG in an on-line environment: most systems tasks
are handled by the RPG compiler. This does not mean that RPG
programmers have no control over files and devices - we are simply
used to using RPG in a fashion which allows the system to do most
of the work. Given expertise with all the capabilities of RPG, we
have the tools necessary to develop an interactive environment using ~

RPG as the primary language. The remainder of this discussion will 7
cover three basic alternative approaches to using RPG as a primary
applications language. We know that disc I/O, report and output
formatting, and basic file handling are easily and quickly handled
by RPGi we will attempt here to discuss only how RPG can be used to
handle on-line data collection and inquiry.

RPG/DEL:

For DEL users, the HPGSUG Contributed Library includes RPG/DEL,
written by Paul Grazulis of Hewlett-Packard in Dayton, Ohio,
which allows RPG programs to call up DEL forms and conrol terminal
I/O. The terminal is defined as a variable-length, update primary
or demand file. Use of the demand file option allows reading of
the terminal at willi output can be accomplished via the EXCPT
calculation. Terminal handling is done by preceding output
literals with a two-digit function code defining the action required.
The 09 subfunction allows output of escape sequences, giving the RPG
programmer complete control of the terminal (an HP264X series
terminal must be used), including turning block mode on and off as
desired. RPG/DEL programs may, by definition, be used for on-line
input editing, control of general processing programs, and random
inquiry/master file maintenance. Any data structure, including
direct file, KSAM, or IMAGE data sets, may be utilized and accessed
by RPG/DEL (the RPG/IMAGE interface is another topic which would

SECTION 2-80

require another paper to adequately evaluate, but it seems to be the
weakest RPG/3000 capability at present). Probably because it is
an unsupported software product, RPG/DEL continues to be under­
utilized, though it is an especially powerful and reliable tool for
using RPG in an interactive environment.

RPG/VIEW:

With the announcement of VIEW, Hewlett-Packard unveiled their first
block mode RPG terminal interface (again, the HP264X series must be
used, until the 2621 series terminal supports block mode). As with
RPG/DEL, the terminal is defined as an update file with a special
device class name, but the resemblance stops there. First of all,
instead of using a separate relocatable library, the VIEW interface
intrinsics are handled by the RPG compiler. Through a series of
special output codes, and through READ and EXCPT calculations, the
RPG language is handled similarly to other "real" languages, with
calls to VIEW intrinsics at will. The calculation frame of an
RPG/VIEW program requires much more organization than normal batch
RPG codes (though this exercise is probably good for RPG-only
programmers)," and the learning curve required for implementation
of RPG/VIEW is significant. As compared to RPG/DEL, the terminal
is under the complete control of VIEW; no escape sequences are
allowed, so it is important to have the proper education regarding
the use of VIEW and VIEW form files. RPG/VIEW applies in generally
the same areas as RPG/DEL, but because it is an HP-supported product,
it is certain that major enhancements to the capability will appear
as the RPG/3000 user base grows.

IN~RACTIVE RPG:

The block mode RPG capabilities discussed above make the assumption
that: all users can afford and wish to use HP264X series terminals;
block mode is the most effective treatment of on-line I/O; RPG alone
is not sufficient to handle on-line communication. None of these is
necessarily true; I have found that the use of just a few basic RPG
techniques are sufficient to completely control on~line operations:

1) Operate in character mode: Handle I/O as up-to-80
character strings and manipulate these strings within
the program with MOVE/calculation loops. This will allow
use of any type of terminal.

2) Handle I/O with two files: One defined as Input Demand
with a device class of $STDIN, the other as an Output
file with a device class of $STDLST. This will allow
elimination of file equations for execution; I/O operations
may be handled at will entirely through the use of READ and
EXCPT calculations.

SECTION 2-81

3) Rely as heavily as possible on KSAM files and IMAGE data sets ~
for data retrieval "and updating. Again, this offers more
speed and control over I/O operations.

4) Structure all calculation operations into basic subroutines.
Use EXSR statements to perform I/O tasks, as well as the
more traditional uses of subroutine-oriented calculation
logic.

5) Use SETON and SETOF in conjunction with the above
calculation structure. This, used with all the points
above, will prevent the RPG cycle from controlling program
execution, which is the key to on-line RPG.

6) Place message text, desired escape sequences (if you are
not yet familiar with the use of terminal escape sequences
as output literals, it is a capability well worth pursuing),
and other desired output control characters into a compile­
time array. Used with a variable array index and
subroutines, output can be handled with 2 output
specifications.

This approach, tied with an effective RPG maintenance system and
UDC files for ease of operation, provides us with very quick, easy
to support, RPG programs for use in an on-line environment. No high-
level systems software or applications programming maintenance is ~

required - just the MPEIII file system.]

CONCLUSION

To"briefly summarize, RPG users have been offered a unique
opportunity: we have the opportunity to show our vendor the true
capabilities of a language which has been considered to be pre­
dominantly oriented towards batch processing. In fact, given a
good degree of professional curiousity and a high level of
technical competence, an interactive RPG shop can be one of the
most interesting and creative HP3000 environments. Fortunately,
Hewlett-Packard has shown a very strong desire to enter the RPG
community, and as the events in the marketplace place more RPG­
driven HP3000's on the map, our capability to educate the new HP
community as to the alternatives they may choose from will be more
and more critical.

SECTION 2-82

APPENDIX A
LIVING IN AN RPG/3000 ENVIRONMENT

A SAMPLE RPG/ENTRY SCREEN:

RPG/VIEW CALCULATION SPECIFICATIONS

Line Number-------->[50150]
Statement Type----->[C]

Level/Subr Ind----->[]
Indicators---------> [01] [N99] []
Factor l----------->[FIELDA]
Operation---------->[MULT]
Factor 2----------->[.01]
Result Field------->[PCT]
Result F1d. Length->[5]
Decimal Positions-->[4]
Half Adjust-------->[]
+/-/O-blank Inds---> [] [] [98]
Comment------------>[CALCULATE PCT.

Program Name-------> [SAMPLE]

A SAMPLE EDITRPG EDIT MASK:

CALCULATION STATEMENT FORMAT
Tab Assignments:

1. Spec. Type (06) 5. Operation (28) 9. Decimal POSe (52)
2. Indicator 1(09) 6. Factor 2 (33) 10. Hi/+ Indicator (54)
3. Indicator 2(12) 7. Result Field (43) 11. Lo/- Indicator (56)
4. Factor 1 (18) 8. Length (49) 12. Eq/O Indicator (58)

11111111112222222222333333333344444444445555555555666666666
12345678901234567890123456789012345678901234567890123456789012345678
A A A A A A A A A A A A

/A
58 C 01N99 FIELDA MULT .01

SECTION 2-83

PCT 54 98

	Section 2—Language Use
	Living in an RPG/3000 Environment: Alternative Approaches to Entry and Utilization of RPG on the HP 3000

