
DESIGN AND IMPLEMENTATION OF REX/3000:
A NATURAL LANGUAGE REPORT WRITER

LANCE CARNES
GENTRY, INC

KENSINGTON, CALIFORNIA

This paper presents a natural language report writer, REX/3000
(Report EXpediter), designed for the casual user as well as the
experienced programmer. The language design and compiler imple
mentation are discussed from the point of view of meeting the
needs of the two user classes. For the casual user, the language
is natural and English-like. For the programmer, the language is
a mixture of natural and procedural constructs. The PASCAL-based
compiler has been implemented to serve each user class
appropriately.

INTRODUCTION.

REX was developed to facilitate writing reports from IMAGE
databases and MPE files. The users will range .from the casual
(infrequent) programmer attempting to formulate reports to
the experienced programmer with more complex goals.

The time allotted for the design and implementation was eight
man-months. The project consisted of the following:

1) Design the syntax of REX, i.e. the form of the language.

2) Design the semantics of REX, i.e. the function of the
compiled programs, to properly execute for both the casual
user and the programmer.

3) Write a compiler for REX.

This seemingly tight schedule was supported by several resources:

1) The author of a report writer similar to the required
package (though unfortunately written in IBM 360 assembler
language [1]) was available for consultation;

2) A PASCAL compiler had been transported to the HP by a user
and graciously contributed to the user's library [2] ;

3) A copy of the production PASCAL-P compiler source (written
in PASCAL) had also been contributed to the users library.

This paper will treat these topics, discussing the design
considerations and the solutions implemented.

SECTION 2-59

SYNTAX.

The careful design of the syntax of a language is important. From
the compiler writer's point of view, the syntax should be simple
and have as few rules and exceptions as possible. From the
language user's point of view, "especially the casual user, the
syntax should be natural and English-like as well as consistent
and unambiguous.

The syntax of a language is the way the elements of the language
are put together to form statements. For example, in English many
statements have the syntax

subject verb object.

In computer languages the syntax of assignment statements is
commonly:

variable = number
or

variable = number + number
or, in the general case,

variable = expression

The syntax of REX lies somewhere between a typical programming
language and a natural language. The total logical precision of a
programming language is not wanted since the casual user is not
trained in the use of these languages. Nor do we want the full
complicated syntax of English since the language must be
translated by a computer program (the compiler).

The syntax of REX is modeled after the syntax of many of the
currently used "natural language" report writers: SYNTAX II [1],
QUERY [3], NATURAL [4], RII [5], and RAMIS II [6]. The intent of
all the. natural language report writers is to avoid the
"procedural" or programming details of programming languages and
to allow the user to formulate English-like specifications which
can be interpreted by a compiler.

Consider Example 1, a REX program which reads and prints selected
values from a database called PAYROLL.

SECTION 2-60

1
2
3
4
5
6
7
8

« LIST EMPLOYEES IN SALES DEPARTMENT FROM MARIN COUNTY»
database PAYROLL password "READER" access 8

dataset EMPLOYEES
title; print "SALES PERSONNEL FROM MARIN COUNTY"; end
get EMPLOYEES with DEPT = "SALES"

select ZIP isbetween 94100,94199
print EMPL-NAME, EMPL-ADDR, EMPL-NUM

end.

Example 1. A complete REX program.
(Words in lowercase are keywords - in actual practice
upper and lower case letters are treated the same.)

This is a complete REX program and will produce a listing of the
desired values. (Its actual function will be discussed in the
next section, "Semantics". See Appendix B for sample programs
with printed output.)

The point here is that REX has an English-like syntax which
serves the casual user. Notice that there are no procedural steps
(i.e. there is no explicit opening or closing of the database, no
explicit test for end-of-chain, etc). In a sense, the syntax
closely resembles the specification of the program.

For the experienced programmer, who must deal with more complex
programming requests, there are more complete constructs
available. However, these constructs are not always "natural
language" in nature and would not be used commonly by the casual
user. The constructs are available for completeness and are not
in ordinary demand by the non-programmer.

For example, suppose the user wishes to read an MPE file
containing employee numbers, look up each employee number in the
PAYROLL database, and write a new file with employee name,
address and number.

SECTION 2-61

1
2

« READ EMPLOYEE i, LOOK UP i IN PAYROLL DATABASE,
« WRITE NAME, ADDRESS, EMPLOYEE i

3 file EMP#FILE = "EMPLNO.PUB.ACCOUNTS" flO «INPUT FILE »
4 EMPi 1-4 n7 «4-BYTE FIELD, 7-DIGIT INTEGER »

5 database PAYROLL password "READER" access 8
6 dataset EMPLOYEES

7 file EMP-NAME-FILE = "EMPLNAMS.PUB" f72 « OUTPUT FILE »
8 E-NAME 1-20 a20 «20-BYTE ALPHA FIELD »
9 E-ADDR 21-50 a30
10 E-NUM 51-54 n7 « 7-DIGIT INTEGER »

11 progvar REC-CTR n8« 8-DIGIT COUNTER, RECORDS READ »
12 NOT-FOUND n8 « 8-DIGIT COUNTER, INVALID EMPi »

13 begin« MAIN PROGRAM »

14 read EMP#FILE «READ NEXT RECORD FROM FILE »

15 REC-CTR = REC-CTR + 1 «COUNT INPUT RECORDS »

16
17
18
19
20
21
22
23
24
25

get first EMPLOYEES with EMPL-NUM = EMPi «LOOK UP » &
at end begin

NOT-FOUND = NOT-FOUND + 1 « LOOK UP FAILED »
print "EMPL i " EMPi " NOT IN PAYROLL"

end
E-NAME = EMPL-NAME «MOVE VALUES TO OUTPUT RECORD »
E-ADDR = EMPL-ADDR
E-NUM = EMPL-NUM
write EMP-NAME-FILE « WRITE OUTPUT RECORD »

loop «DO NEXT read EMPiFILE »

26 « ALL RECORDS PROCESSED, PRINT TOTALS »
27 if NOT-FOUND <> 0 then &
28 print "TOTAL EMPL #'S NOT FOUND = "NOT-FOUND &
29 else print "ALL EMPL its FOUND
30 print "TOTAL RECORDS PROCESSED = " REC-CTR
31 end.

Example 2. A complex program.

This example illustrates many of the constructs available to the
programmer or the adventuresome casual user. See Appendix A for a
summary of the REX language.

SECTION 2-62

SEMANTICS.

The syntax of a language provides a framework of correctly
formatted statements which may then be converted to meaningful,
functioning programs. The conversion of statements into
functional programs is called the semantics of the programming
language. The semantics for REX are such that the constructs used
by the casual user require a great deal of implicit function,
while the procedural constructs for the experienced programmer
are explicit.

For example, in English the request

"Look at your watch and recite the exact hour and minute."

may also be stated as

"Tell me the time."

The first form is correct English syntax and there is no
difficulty understanding what is desired, although this is not
the usual way to ask the time. The second form has the same
meaning and can be understood with slightly more effort; i.e. you
must subconsciously recall that you need to look at your watch,
and recite the hour and minute. The first form is procedural and
explicit; the second form is natural and requires a great deal of
implicit function.

The semantics of REX are designed to cover both cases - the
casual user can express a natural request while the programmer
can code the same function procedurally. To illustrate, recall
Example 1. Nowhere was it indicated explicitly that the dataset
was to be read using a chained read on the DEPT search item,
looping back to the "get EMPLOYEES" statement after each entry
had been printed. The explicit statement of this program is shown
in Example 3.

1 database PAYROLL
2 dataset EMPLOYEES
3 title; print "SALES PERSONNEL FROM MARIN COUNTY"; end
4 find EMPLOYEES with DEPT = "SALES" «FIND CHAIN HEAD »
5 get next EMPLOYEES at end stop «NEXT ENTRY ON CHAIN »
6 select ZIP isbetween 94100,94199
7 print EMPL-NAME, EMPL-ADDR, EMPL-NUM
8 loop «END OF get LOOP »
9 end.

Example 3. Explicit statement of Example 1.

SECTION 2-63

The program in Example 3 will produce the exact same result as ~
the program in Example 1. Details are described which were filled '
in by the compiler in Example 1. The clause "at end stop"
indicates that processing is to cease at the end-of-chain. The
"loop" statement indicates that the processing loop ends
precisely here, so that statements may be written following the
loop which are not executed until the loop is terminated (see
Example 2).

In all aspects of REX, the functions which are most used by the
casual user have a "natural language" or non-procedural default.
Another example of this aspect of REX is the report block. The
following program produces a result similar to the program in
Example 1 - except here the output is sorted by employee name,
and a report title and column headings are provided:

1 database PAYROLL
2 dataset EMPLOYEES
3 report
4 title; print "SALES PERSONNEL FROM MARIN COUNTY"; end
5 select ZIP isbetween 94100,94199
6 list EMPL-NAME, EMPL-ADDR, EMPL-NUM &
7 sorted by EMPL-NAME
8 end
9 get EMPLOYEES with DEPT = "SALES"
10 end.

Example 4. A sorted report.

Here we have specified the contents of a report (report ••• end)
and the method of obtaining items for the report
(get EMPLOYEES •••). What is left out of the specification (but
included in the implicit function) is the linkage between the
"report" and the "get", and the indication of when to sort the
data and print the report.

SECTION 2-64

Consider the explicit version of this same program:

1
2
3
4
4
5
6
7
8
9
10
11
12

database PAYROLL
dataset EMPLOYEES

report
title; PRINT "SALES PERSONNEL FROM MARIN COUNTY"; end
select ZIP isbetween 94100,94199
list EMPL-NAME, EMPL-ADDR, EMPL-NUM &

sorted by EMPL-NAME
end
get EMPLOYEES with DEPT = "SALES"

call MARIN-RES «UPDATE REPORT DATA »
loop
print MARIN-RES « SORT AND PRINT THE REPORT »
end.

Example 5. Explicit statement of Example 4.
Notice that the report block now has an identifier "MARIN-RES"
which allows it to be "call"-ed, much as a procedure block. The
statement "print MARIN-RES" explicitly specifies the exact point
at which the report is output.

Thus the semantics of REX are intended to appeal to both the
casual and programmer user. The programmer is not saddled with a
restrictive language set and may tackle more complicated
programs; the casual user may ignore the procedural aspect of REX
or may, with some assistance or experimentation, improve his
results by venturing into the procedural constructs of the
language. Acceptable results may be achieved from either level of
expertise.

SECTION 2-65

THE COMPILER.

One of the original goals underlying the implementation of REX
was the low-cost development of a compiler which could be
tr.ansported to other machines. Most of this goal was achieved.
The compiler was developed at low cost (eight man-months) and is
transportable (written in PASCAL). However, since the object code
produced by the compiler is SPL, the package will run only on the
HP at present.

A compiler is a program which processes source text in a
pre-defined language to produce some form of object code. The
syntax and semantics of the language to be compiled can greatly
affect the complexity, and therefore the cost, of developing and
maintaining a compiler. When aiming at low-cost development, it
is important to keep it as simple as possible without sacrificing
the utility of the language.

REX is not an easy language to compile. However, the task was
reduced because a production compiler was used as a model (the
PASCAL-P compiler written in PASCAL). Also, some language design
decisions eased the translation effort without reducing the
capability of the language.

As an example, the element <expression> was used everywhere that
it made sense. This allows any production in the language which
uses <expression> to share a common compiling procedure. Of
course, if the statement needs an expression of a certain type,
say logical in the case of "if <expression>", the compiler will
flag an expression of any other type as an error.

In contrast, the language SYNTAX II [1] has several expression
types which are compiled distinctly, depending on the expected
type. In the case of the assignment statement SYNTAX II has
several different syntactic forms depending on the destination
data type.

SECTION 2-66

1
2
3
4

A EQ B
SET A = B + 1 or A = B + 1
RECODE A TO B
T TEST A < B

A,B CHARACTER TYPE
A,B NUMERIC TYPE
A,B ANY SAME TYPE

T LOGICAL TYPE

Figure 1. Sample assignment statements from SYNTAX II.

The result is that there are several additional compiling
procedures that must be developed and maintained.

Using a construct wherever it makes sense is desirable from the
compiler writer's point of view and also from the user's point of
view [7] [8]. When the user must formulate his idea differently
for each data type used, the language designer has burdened the
user with additional effort. For example, in the SYNTAX II "SET"
statement it is legal to write

SET A = B * 100

while in the "TEST" statement it is not legal to write

T TEST A < (B * 100)

even though A and (B * 100) are of the same type. The user must
remember which operators can be used in which contexts. This
requires an additional level of expertise that we wish to avoid.
However, if there is only one set of rules for the formation of
expressions, the user need not recall a lot of exceptions to the
rules.

The REX compiler was implemented in PASCAL, a high-level
recursive language [9]. The production PASCAL-P compiler source
code [10] was used as the basis and as a model for writing the
REX compiler. SPL was chosen for the compiler's object code
primarily because it is the language closest to the machine
level. SPL compiles to produce the most resource-efficient
run-time programs. It runs with the least memory usage and
fastest execution time compared to other compiled object code
(FORTRAN or COBOL). Output in re10catab1e code was not chosen
since there is no documentation currently available from HP on
its format.

The appearance of the compiler from the user's standpoint is much
like any other HP compiler. There are UDC's for invoking the
compiler which resemble the commands for invoking the SPL, COBOL
or FORTRAN compilers. Error messages are clear and point to the
place in the text where the error occurred:

select ZIP isbetwee 94100,94199
A

**** UNKNOWN SYMBOL (GCPERR 72)

SECTION 2-67

Should the user want more information, he can refer to the user's
manual under "GCPERR 72".

CONCLUSIONS.

REX has many powerful features which will allow the user to
generate accurate, timely, and complete reports with minimal
program development effort. Results with comparable packages show
a decrease in development time by as much as a factor of ten [6],
compared with developing the same application in COBOL or
FORTRAN.

The casual user can benefit greatly from bypassing the data
processing department and writing his own ad hoc reports. The
programmer can increase his productivity by reducing the
development effort required to produce routine reports and
queries.

The initial response from the first users has been enthusiastic.
Estimates indicate program development time has been reduced
overall by 80%, compared to producing the same program in a
typical procedural language (COBOL or FORTRAN). Maintenance and
revision of production program source code has been reduced by
80% also. Programmers tend to write more reliable code indicated ~,

by the fact that most bugs are problem-based rather than ,
implementation-based.

The casual users (users who are not programmers by profession
but who have a good grasp of basic data processing concepts)
have been surprisingly successful using REX to generate reports
from databases. Using existing programs as a reference, they have
been able to turn out complex reports within a few hours time.
Typically very little training time has been required to get the
casual user to the point where he or she can produce useful
results.

Future extensions include full IMAGE access (DBPUT, DBDELETE,
DBUPDATE), and full KSAM access.

REX will be marketed by
GENTRY INC.
609 Kearney Street
Kensington, California 94530
U.S.A.
(415) 527-4451

The first release of REX will be available January 1980.

SECTION 2-68

ACKNOWLEDGEMENTS.

My thanks to John Fitz, Richard Gentry, and Ron Frankel for many
valuable discussions during the language definition phase of the
project; and my special thanks to Grace Gentry, who provided me
the opportunity to do this project and who assisted in the
preparation of this paper.

REFERENCES.

1.

2.

3.

4.

5.

~
6.

7.

8.

John Fitz, SYNTAX II USER'S GUIDE. University of
California, 1977.

Bob Fraley, PASCALP, HP User's library.

QUERY. Hewlett-Packard Product # 322l6A.

NATURAL Users Manual, Software AG, 1978.

RII, Computer Sciences Corp.

RAMIS II, Mathematica Corp.

G. Weinberg, The Psychology of Computer Programming,
Van Nostrand Reinhold, 1971.

W.M. McKeeman, "Programming Language Design" from
Compiler Construction, F.L.Bauer,ed.,
Springer-Verlag, 1976.

9. K. Jensen and N. Wirth, PASCAL User Manual and Report,
Springer-Verlag, 1974.

10. Urs Ammann, PASCAL P4 compiler source code, Zurich, 1976.

SECTION 2-69

Appendix A: Summary of REX/3000 Language.

REPORT
LIST •••

SORTED By· •••
END

TABLE
ROW
COLUMN

END

PROCEDURE name...
END

TITLE name

END

DATABASE basename
DATASET setname

FILE filename
fieldl
field2

Sorted report.

Cross-tabulation.

Procedure.

Report title.

IMAGE declaration.

MPE file declaration.

PROGVAR varl
var2

... Variable declaration.

Database access.

GET setname [WITH searchitem = expression]
FIND [AT END statement]

READ filename [AT END statement]

WRITE filename

PRINT expression [, expression, •••]

SORT filename [INTO filename]
BY keyl, key2, •••

File access.

Unformatted print.

Sort/Merge.

MERGE filename, filename [, filename, •••]
INTO filename
BY keyl, key2, •••

SECTION 2-70

IF expression THEN statement
[ELSE statement]

GOTO label

CALL blockname

Control statements.

REPEAT statement [; statement; •••] UNTIL expression

WHILE expression DO statement

FOR ident = expression TO expression DO statement

BEGIN [statement; statement; •••] END Compound statement.

ident = expression

+ - * / DIV MOD

GT GE LT LE EQ NE ISBETWEEN CONTAINS
> >= < <= = <> IB <*>

AND OR NOT

Assignment statement.

Arithmetic operators.

RelatiQnal operators.

Logical operators.

Nw
Fw.d
L
Aw

w <= 10
d <= w <= 15

w <= 256

Integer
Real
Logical
Alpha

Data types.

SECTION 2-71

APPENDIX B: SAMPLE REX/3000 REPORTS.

The following are several reports generated by REX/3000
from MPE files and IMAGE databases.

Sample 1. Sorted report using MPE file.

FILE PARTS F80
PN 1-4 AS "PART NO"

PD 5-14 AS "PART DESC"
PL 15-17 AS "LOCATION"
QTY 18-22 n5 AS "QUANTITY"

REPORT
TITLE; PRINT "WAREHOUSE PARTS SUMMARY"; END

LIST PN, 5X, PL, 2X, PD, 2X, QTY &
SORTED BY PN, PL &
SUMMARIZING QTY ON PN &
TOTALING "TOTAL", QTY

END
READ PARTS «READ FILE RECORDS »
END.

1785BOLT 1 X 1/4 101 2000
2142BRACKET 100 750
3122MANUAL #177 101 100 Contents of the
2142BRACKET 102 250 PARTS file.
2142BRACKET 101 100
1785BOLT 1 X 1/4 100 1000

The REX/3000 report:

WAREHOUSE PARTS SUMMARY

PART NO LOCATION PART DESC QUANTITY

1785 100 BOLT 1 X 1/4 1000
101 BOLT 1 X 1/4 2000

------- --------
1785 3000

2142 100 BRACKET 750
101 BRACKET 100
102 BRACKET 250

------- --------
2142 1100

3122 101 MANUAL #177 100
-------- --------
3122 100

TOTAL 3200

~

SECTION 2-72

Sample 2. Sorted report with IMAGE/3000 database.

The following is an IMAGE/3000 schema for a database
to hold the same information from Sample 1:

BEGIN DATABASE WAREHOUSE;

ITEMS:
PART-NO, X4;
PART-DESC, XlO;
PART-LOC, X4;
PART-QTY, I2 ;

SETS:

NAME: PARTS, DETAIL;
ENTRY:

PART-NO,
PART-DESC,
PART-LOC,
PART-QTY;

CAPACITY: 100;

END.

The following REX/3000 report specification will produce the
same report as in Sample 1:

DATABASE WAREHOUSE
DATASET PARTS

REPORT
TITLE; PRINT "WAREHOUSE PARTS SUMMARY"; END

LIST PART-NO, 5X, PART-LOC, 2X, PART-DESC, 2X, PART-QTY N5 &
SORTED BY PART-NO, PART-LOC &
SUMMARIZING PART-QTY ON PART-NO &
TOTALING "TOTAL", QTY

END
GET PARTS «READ DATASET ENTRIES »
END.

SECTION 2-73

Sample 3. Cross-tabulation with IMAGE/3000 database.

This sample uses the same database as in Sample 2.

DATABASE WAREHOUSE
DATASET PARTS

TABLE
TITLE; PRINT "PARTS DISTRIBUTION"; END
ROW PART-NO BINS("178S","2142","3l22")
COLUMN PART-LOC BINS(100,10l,102) ACCUMULATE PART-QTY

TOTAL-PARTS LABEL "TOTAL PARTS" ACCUMULATE PART-QTY
END
GET PARTS «READ FROM DATABASE »
END.

The following cross-tabulation will be produced:

PARTS DISTRIBUTION

PART-NO
PART-LOC

100 101 102 TOTAL PARTS

1785

2142

3122

1000 2000

750 100

o 100

o

250

o

3000

1100

100

SECTION 2-74

	Section 2—Language Use
	Design and Implementation of REX/3000: A Natural Language Report Writer

