Pascal-P on the HP-3000

Bob Fraley
HP Labs

January 17, 1980

The Pascal-P compiler, available in the user contributed library, is a
derivative of the Pascal-P compiler developed in Switzerland at ETH.
The system compiles to HP3000 machine language, rather than being an
interpretive system. The Pascal-P system has been quite reliable,
although somewhat inefficient. This system is available in the HP User
Group's contributed library.

System Structure

The Pascal-P/3000 system consists of three major components: the
P-compiler, the P-code assembler, and the run-time 1library. The
P-compiler produces P-code intermediate, which is converted by the
assembler ASSM to SPL source. The SPL compiler may be used to produce
a relocatable module:

SOURCE----- >PCODE----- >SPL———-—- >USL-=--- >PROGRAM

PASCALP ASSM SPL SEGMENTER

This sequence of commands may be performed using a UDC (User-defined
command) file, or using the program PPREP which was provided with some
releases of Pascal-P. As the segmenter produces a program file from
the relocatable SPL output, it adds the Pascal runtime library as an
extra segment.

The Pascal P-compiler is a modification of the compiler supplied by
Ammann, Nori, and Jacobi of ETH in Zurich. The principal changes which
have been made are:

1. Correction of errors.

2. Adding standard Pascal features not in the original compiler,
such as string constants longer than 10 characters, most of the
I/0 facilities, several built-in types and constants, and some
portions of record variants.

3. Language extensions, including direct access files, a source
inclusion facility, sub-array access, external procedure
access, and separate compilation.

SECTION 2-53



The compiler implements most of the features of Pascal, as defined by
the book "Pascal: User Manual and Report"” by Jensen and Wirth. Most of
the features which have been omitted are difficult or time consuming
to add, due to the structure of the compiler or the deficiencies of
P-code.

The ASSM program translates P-code into SPL source. It does not
translate directly to a USL file format primarily because of the lack
of reliable, pre-coded, documented routines for generating USL files.
ASSM is a rather simple translator, doing an instruction by
instruction translation. The resulting code has rather poor quality,
but is faster than an interpretive implementation. ASSM relieves the
programmer from the necessity of dividing the program into segments.
It segments the program based on the number of P-code instructions
which it processes. In spite of the arbitrary segmentation, many
programs execute without thrashing.

The Pascal run-time 1library establishes the Pascal environment and
provides the I/0 interface routines. The file support allows
communication with ASCII files as Pascal TEXT files, and also supports
Pascal internal file formats. Formatting routines read and write
integers, real numbers, and characters. Booleans and strings may also
be written. Special care is taken to allow the use of variable record
files in all cases except direct access.

A number of submitted modifications have not been included in the
distributed compiler, primarily due to a lack of time. One of the
important characteristics of this system is 1its reliability; each
change requires additional testing to be certain that the compiler
still works correctly.

Error Messages

The Pascal system produces two types of error messages. Compilation
messages occur during the translation of a program, indicating
deviations of the source code from the implemented Pascal language.
Run-time messages occur during execution when correct results cannot
be obtained or bad values are used in operations.

Compile time errors are noted in the source listing as follows:
*kkk 104 59 ~104,59

The pointers """ point to the token in the line above which was being
examined when the error was detected, and the number is the number of
the error which occurred. The error numbers are defined in Jensen and
Wirth, page 119 [1]. Some error numbers unique to the HP 3000
implementation are given in the manual which is distributed with the
system.

SECTION 2-54

™



Run-time errors are divided into range errors and file errors. When a
bound 1is exceeded or a bad pointer wused, the Pascal error message is
accompanied by the P-code 1location where the error occurred. This
indicates the source line in which the error occurred. Unfortunately,
in the current implementation, there 1is no indication of which

compilation 1is being referenced when separately compiled procedures
are used. '

File errors are reported in a different manner. Unfortunately, the
P-code 1location is not available at the time that file errors occur.
The error 1is 1identified 1instead by the name of the file which was
being used. This seems adequate for most error situations.

The Pascal system allows five run-time errors to occur before stopping
execution. There is a parameter in the DEC file which may be changed
to control this number. Of course, some bounds errors will cause
addressing errors which MPE catches, causing the run to be aborted
anyway. But in many situations the error is 1less important, and
continuing execution will enable testing to proceed. The error limit
in the DEC file may be changed to fit the needs of a specific
installation. An individual user may only change the DEC file by
making a local copy of the UDC file and changing the file associated
with ASSMDECL. «

Separate Compilation

One of the major extensions to the Pascal compiler has been the
ability to divide a program into pieces which may be compiled
separately. Each compilation contains procedures which may also be
referenced from other compilations. One of the compilation units must
contain the main program. The other units look identical except that
the main program is omitted. The procedures which are defined in one
compilation may be referenced from another.

Program P1; Program P2; Program P3;
Prééédure A; P;;éedure C; Pro;ééure G;
Pr;é;dure B; P;;éedure D; . o
Beéiﬁ Péééedure E;

End.

In theory, each of the three compilations above can reference any of
the procedures shown. 1In practice, however, each of the procedures
used within any compilation must be declared, even if they aren't
defined in the same compilation. For example, 1if the main program
calls procedures D and G, the declarations

SECTION 2-55



Procedure D; External;
Procedure G; External;

would have to be included in the main program. If D and G have
parameters, the parameters and their types must be included in the
external declarations like any other procedure declaration.

Separate compilation requires a modification of the command sequence.
The compilation is the same through the SPL compilation. USL files
from each of the compilation units are combined later to produce the
program file. The UDC command PASCALP may be used with the appropriate
parameter to produce this modified command sequence. (PASCALP provides
this parameter to ASSM for generating the appropriate SPL commands.)

After all of the USL files have been created, the PASCJOIN command may
be used to combine the files into a single program file. The BUILD
program used by PASCJOIN may also be used separately to consolidate
several USL files 1into a single USL file. The standard practice of
placing many relocatable programs into a single USL file is not used
due to the generated segment names.

Interfacing Other Languages

Pascal programs may be wused to call programs written in other
languages. The facility for doing this is quite primitive, however, so
care should be taken. The difficulties are caused by Pascal's
ignorance of optional parameters, by the data formats used by Pascal,
and by the requirements that data types be provided for all parameters
of the procedure which is being called.

The first step in calling an external procedure is writing a Pascal
"Intrinsic" declaration for the procedure. Here are some examples:

Function Mail (Pin: integer; Var count: integer)
¢ Integer; Intrinsic;
Procedure Quit (Num: Integer); Intrinsic;

Reference and array parameters should specify "Var" in the Pascal
declaration. The word "Intrinsic" specifies that the called routine is
not written in Pascal; it does not necessarily refer to an MPE
intrinsic. Procedures written in other 1languages, whose calling
sequence 1is equivalent to that of SPL, may be called directly from
Pascal.

The catch, however, is producing the proper Pascal declaration for the
procedure. Pascal does not support double word integers, and at this
time does not pack characters two to a word within character strings.
Some parameters might not be describable as a single Pascal type.
Optional parameters may not be defined in Pascal. The programmer must
use some ingenuity to solve these problems, or write interfacing
procedures in SPL.

SECTION 2-56



One problem which should be solved in the near future is reference to
strings. Pascal will soon implement packed character arrays, where two
characters are ©packed per word as in other HP3000 languages. The
address of such an array will be a byte address when the array is
passed as a reference parameter. This will simplify the use of
Intrinsic procedures.

A second problem 1is the classification of parameters according to
Pascal types. Pascal's type checking may be bypassed by specifying the
type "undefined". This may only be used as a "Var" parameter to an
"Intrinsic" procedure. It allows any type of actual parameter to be
used in the call.

A very ugly problem is caused by intrinsic functions which return a
double word integer. Since Pascal does not allow arbitrary types to be
returned from a procedure, the result type must be a built-in type.
The procedure may be declared to have a "Real" result, which is then
unpacked. The following excerpt illustrates this technique with the
Clock intrinsic:

Var Cvt : Record case integer of
l: (R: real);
2: (Hi, Low: Integer);
End;
Hours, Minutes, Seconds: Integer;
Function Clock: Real; Intrinsic;

Begin
Cvt.r := Clock;
Hours := Cvt.Hi div 256;
Minutes := Cvt.Hi mod 256;
Seconds := Cvt.Low div 256;
End.

Pascal files may not be passed directly to MPE intrinsics. The first
word of a Pascal file, after it has been opened, contains the Filenum
parameter needed by the file intrinsics of MPE. This may only be
accessed by reference. A user wishing to access this value would need
to write a procedure which returns this value as an integer, then use
the integer for the intrinsic parameter. Note that the Filenum is only
present after the file has been opened.

Conclusion

The Pascal-P compiler for the 3000 has a number of quirks which makes
it awkward for advanced usage. Generally, however, it is easy to use
and quite reliable. Pascal is a useful addition to the HP 3000.

Bibliography

[{1] Jensen and Wirth "Pascal User Manual and Report"
Springer-vVerlag, New York, 1976.

SECTION 2-57






	Section 2—Language Use
	Pascal-P on the HP-3000


