
The Pascal Programming Language

Bob Fraley
HP Labs

January 15, 1980

The Pascal language has gained popularity in recent years. It has a
number of features which simplify programming and make programs more
readable. We shall examine some major features of Pascal. The
principal reference for Pascal is the book by Jensen and Wirth [1].

Pascal Basics

Pascal is like most other Algol-based languages. Identifiers (words)
consist of letters and digits. Certain identifiers are reserved
keywords (such as if and end). There are integer, real, and character
constants:

1234 123.4567 1.2e20 'x' 'Pascal string'

Pascal has lots of the expected operators, like "+" and
variety of built-in functions, like nabs" and "sin".

"*" , and a

Statements in Pascal are similar to those of Algol. They may appear
anywhere on the line, and are separated by";". A collection of
statements may be treated as a block by surrounding them with the
keywords "begin" and "end". Pascal programs are divided into
"procedures" and "functions"; functions return results and procedures
do not.

So much for the similarities. The interesting part of Pascal is the
differences.

Pascal Data Types

The most interesting new feature of Pascal is its data type
facilities. These distinguish Pascal from its predecessors. Pascal
allows the declaration of data structures, much like Cobol or PLII,
but differs in allowing the structure itself to have a name, rather
than only naming the data. All other kinds of data in Pascal can also
be named. A type name may refer to some range of integers, to an array
containing some specific element type, to a file or to a pointer.
These named types may then be used in defining variables and other
types.

But we're getting ahead of ourselves. Let's look at some Pascal data
types. When we declare an integer variable, we would normally write
the Pascal declaration:

Var I: Integer;

SECTION 2-45



A person reading the program now knows that I has an integer value.
But the declaration gives neither the human reader or the machine
reader any hint as to the size of the integer which I might represent.
An alternate declaration in Pascal would be:

Var I: 1 •• 10;

This declaration specifies that I may only represent an integer in the
specified range 1 to 10. Different variables may have different
ranges. If a given range is used often, it may be assigned a name:

Type Small = 0•• 255;

This type may be used in later declarations:

Var J: Small;
A: Array [Small] of real;

The second declaration is equivalent to writing the subscript range
directly in the array declaration.

Pascal records describe structured data. Each component of a structure
may have any type. Fortran or Basic programmers get along without
structured data by making several arrays and using the corresponding
entry of each array as components of a structure. The relationship
between the arrays is not documented in the Fortran source code. As an
example, the following declarations could define a table of names and
their definitions. The "Const" portion of the program defines ~
constants which may be used within the body of the program.

Const stringlen = 30;
tablelen = 579;

Type
string = packed array [l •• stringlen] of char;
entry = record

name: string;
value: real;

end;
Var

table array [l •• tablelen] of entry;

A terse version of the same declaration could be made as follows:

Var table array [1 •• 579] of record
name: packed array [1 •• 30]of char;
value: real end;

The first declaration has several advantages. First of all, the sizes
have been placed where they can be found easily. Secondly, by defining
the name "entry", the programmer can declare local variables which
look like entries, or can place an entry inside of another structure.

SECTION 2-46



Some Pascal data types exist primarily to increase readability. For
example, if a programmer wants to define some numeric codes to
represent colors, explicit code numbers need not appear in the source
code. Enumeration types define the code values and keeps the
programmer from confusing different code types.

Type Color = (Red, Orange, Yellow, Green,
Blue, Purple);

Fruit = (Apple, Pear, Plum, Cherry);

A variable of type "Color" can be assigned the value "Red" but not the
value "Apple".

Pascal set types may be used when several values might apply
simultaneously. In the example below, there are three. access rights
which might be granted in any combination.

Type
Access = (Read, Write, Execute);

Var
Rights: Set of Access;

Sets may be specified by listing the elements of a set between square
brackets. A set of brackets containing no elements designates the
empty set. Set operators + (or), * (and), and - (set difference) are
provided, as well as the conditions in (element of), = (equality), and
<= (subset). Here are some sample statements which use set operations:

Rights := [read, execute];
Rights := Rights + [read] - [execute];
if write in rights then •••
if rights * [read, write] = [read] then

Statements

Pascal has a small assortment of statements, which include assignment;
procedure call; if and case selection; for, while, and repeat loops;
and the with statement. Two statements which hold particular interest
are the case statement and the with statement.

The case statement allows the selection of an action based on the
value of a variable. The variable can be an integer, character, or an
enumeration type. Here are some examples [1]:

case operator of case i of
plus: x := x+y; 1: x := sin(x);
minus: x := x-y; 2: x := cos(x);
times: x := x*y; 3: x .- exp(x);.-

end 4: x := In(x);
end

r
SECTION 2-47



The with statement establishes a record whose field names may be ~
referenced like ordinary .variables. This is best understood by an
example. A symbol table entry (using the type declaration specified
earlier) may be created using the statements:

table[i].name := 'John Q. Jones
table[i].value := balance;

, .
I

where "balance" is the name of a variable. Notice that the "table[i]"
specification had to be written twice. This could be time consuming
for both the programmer and the machine. The "with" statement allows
the same statements to be written:

with table[i] do begin
name := 'John Q. Jones
value := balance;
end;

, .
I

This technique is most useful when a record has many fields.

Heap Storage

The Pascal compiler provides a memory management facility which can
simplify many kinds of ~rograms. Pascal's "heap" is a storage
management system which 1S useful for list processing. The "new" )
procedure allocates space from the heap for storing a variable of a
specific type. New returns a "pointer" which may be used to reference
the allocated space. The pointer name, followed by the up-arrow symbol
"A", is used to refer to the data. The value "nil" is a pointer which
points to nothing; it is generally used to indicate the end of a list.
Here is an example for building a stack:

{ Stack points to type node}

Integer;
Stack;

A Node;
= Record

Data
Next

End;

Type
Stack =
Node

Var
P, Top: Stack;

Top := nil;

New (p);
With pA do begin

Data := 17; Next:= top;
End;

Top := Pi

SECTION 2-48



When allocated space
calling dispose(p).

Procedures and Functions

is no longer needed, it may be reclaimed by

Procedures in Pascal are termed "Functions" if they return values and
"Procedures" if they don't. The procedure header lists the parameters
for the procedure, together with their types, and in function headers
the result type follows the parameter list.

The body of the procedure is divided into a number of sections which
are separated by keywords. The sections with their keywords are shown
below:

Procedure
procedure name and parameters;

Label
Labels used within the procedure code block;

Const
Declarations of local constants;

Type
Declarations of local types;

Var
Declarations of local variables;

Local procedure and function declarations;
Begin

statement block
End

Procedures, like all other Pascal constructs, must be defined before
they can be used. When two procedures refer to each other~ one of th~

procedures must be defined with a "forward" declaration. This consists
of the procedure heading (its name, parameters, and result type)
followed by the word "Forward". The body of the procedure must appear
later in the program.

Input/Output

The I/O facilities of Pascal are basic, omitting some features of
other languages. They deal only with sequential files, and are
adequate for most sequential file applications. Files may have records
of any type (except types containing files); the formats of these
files are implementation dependent.

The kind of files which are used most often are "text" files. Such
files contain characters which have been organized into lines. Two
text files are provided by the language as standard input and output
files; they are appropriately called "input" and "output".

SECTION 2-49



The Pascal procedures "Read" and "Write" provide formatted input and
output. The functions eoln(f) and eof(f) are useful for determining
when the end of a line or end of the file are reached. Finally,
Reset(f) and Rewrite(f) open file f for input or for output.
Of all features in Pascal, mor~ people have trouble with input files.
Let's look at input to text files and see where the troubles lie. The
procedure call read (f, x) reads a character, integer, or real from
the file f, and assigns its value to x. Seems simple enough. But
lurking behind the scenes is the file's window variable. The window fA
contains the next character to be read from the file. While this
notion works well for disk files, it throws off the expected
coordination with reading from a terminal. If the procedure read(f, c)
reads a character from file f and file f contains the string 'abc',
then when c is assigned the value 'a', the b has already been read
from the terminal. The consequences of this lookahead are the source
of troubles:

1. At the end of each line a extra blank is inserted in the file.
When this blank is in the file window, the function eoln(f)
returns true. Many people think this means that when read(f, c)
returns a blank in variable c, they whould check the eoln flag.
On the contrary, eoln would have been true when the previous
character was· read (and the blank was in the file window), and
will have been turned off again when c returns.a blank.

2. The procedure readln(f) skips the rest of the current line. The
next read(f,c) returns to c the first character of the next
line. That means that th~ first character of the new line was
placed in fA during the readln(f) procedure. Writing a prompt
line immediately after the readln call will be too late to
prompt for the next input, since it will have been read
already.

3. When the program starts, the first input character is in the
window variable. Therefore a read has already occurred and the
program cannot prompt for input.

Fortunately, there is a movement within the Pascal community to change
the point at which the read operation occurs. Rather than
indiscriminately reading the next input character into the window
variable, the read only occurs when it is needed. A reference to fA or
a call to eof or eoln will read the window character; otherwise, the
read is deferred until the next read(f). This solves the second and
third problems listed above, allowing prompting to be placed as
expected.

Summary

Pascal has a number of features which simplify programming. Data types
make program specifications more accurate and improve the error
checking properties of the compiler. Pascal's statements add structure ~

SECTION 2-50



"to the program to reduce errors and increase readability. I/O has been
~ simplified, but is still confusing.

Pascal has a number of deficiencies, which will become apparent after
some programming experience. There is currently a standardization
effort which will add a few changes to improve the language; future
work will be needed to overcome additional problems. Some of the known
solutions have not been added to Pascal in the hopes that simpler,
cleaner approaches will be discovered in the future.

Bibliography

[1] Jensen and Wirth "Pascal User Manual and Report" Springer
Verlag, New York 1976.

SECTION 2-51




	Section 2—Language Use
	The Pascal Programming Language


