
DEBUGGING COBOL II/3000 PROGRAMS

Greg Gloss
Hewlett-Packard General Systems Division

This paper provides some tips for debugging programs compiled with the
new COBOL II/3000 compiler. A discussion of compile time aids is
followed by a description of the run time environment and guidance for
using DEBUG/3000 to debug your programs interactively.

COMPILE TIME AIDS

Users of COBOL/3000 will notice three major changes in compile time
debugging aids with COBOL II/3000. The first change is that
diagnostic messages are now listed together at the end of the listing.
In the following sample program the hyphen was left out of N-2 in line
22. Note that the diagnostic listing references both a compiler
generated line number (5 digits) and the 6 digit sequence field.

PAGE 0001

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027

HEWLETT-PACKARD 32233A.00.00 COBOL II/3000

001000$CONTROL CROSSREF,VERBS,MAP
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. SAMPLE.
001300 ENVIRONMENT DIVISION.
001400 DATA DIVISION.
001500 WORKING-STORAGE SECTION.
001600 01 GRP.
001700 05 N-1 PIC S9(4) VALUE 0
001800 SIGN IS LEADING SEPARATE.
001900 05 N-2 PIC S9(4) VALUE 0
002000 SIGN IS LEADING SEPARATE.
002100 05 N-3 PIC S9(4) COMP-3.
002200 PROCEDURE DIVISION.
002300 SEC-1 SECTION 01.
002400 BEGIN-HERE.
002500 DISPLAY "ENTER N-1, 4 DIGITS".
002600 ACCEPT N-1 FREE.
002700 DISPLAY "N-1 = ", N-1.
002800 SEC-2 SECTION 02.
002900 PAR-2.
003000 DISPLAY "ENTER N-2, 4 DIGITS".
003100 ACCEPT N2 FREE.
003200 DISPLAY "N-2 = ", N-2.
003300 MOVE N-2 TO N-3.
003400 SEC-1A SECTION 01.
003500 STOP-HERE.
003600 STOP RUN.

SECTION 2-19

COBOL ERRORS:

LINE i SEQ i COL ERROR SVRTY TEXT OF MESSAGE

00022 003100 21 356 Q UNDEFINED DATA NAME N2

o ERRORS, 1 QUESTIONABLE, 0 WARNINGS

The other new features which have been added are a cross reference
capability and a verb map listing. The CROSSREF option on the
$CONTROL command generates an alphabetical listing of user-defined
symbols in the program with the line numbers in which they are
referenced. The following listing shows the cross reference generated
after the above program was corrected.

COBOL CROSS REFERENCE LISTING

BEGIN-HERE
00015

GRP
00007

N-l
00008 00017 00018

N-2
00010 00022 00023 00024

N-3
00012 00024

PAR-2
00020

SEC-l
00014

SEC-lA
00025

SEC-2
00019

STOP-HERE
00026

For example, N-2 is referenced in 4 places: lines 10, 22, 23, and 24.

SECTION 2-20

The third change is the capability to list the starting address of
code generated for each verb instead of just each paragraph. The
VERBS option of the $CONTROL command lists these addresses which are
relative to the starting address of the RBM (Relocatable Binary
Module) as shown in the PMAP. The following listing shows the address
of the ACCEPT statement in line 17 to be 33 relative to the start of
the RBM SEClOl'. This address can be used with DEBUG/3000 to set a
breakpoint at the start of this statement.

LVL SOURCE NAME BASE DISPL SIZE USAGE

WORKING-STORAGE SECTION

01 GRP Q+2: 000350 000015 DISP
05 N-l Q+2: 000350 000005 DISP
05 N-2 Q+2: 000355 000005 DISP
05 N-3 Q+2: 000362 000003 COMP-3

PAGE 0003/COBTEXT SAMPLE SYMBOL TABLE MAP
LINE # PB-LOC PROCEDURE NAME/VERB INTERNAL

r 00014 000003 SEC-l SEClOl'
00015 000003 BEGIN-HERE
00016 000003 DISPLAY
00017 000033 ACCEPT
00018 000042 DISPLAY
00019 000003 SEC-2 SEC202'
00020 000003 PAR-2
00021 000003 DISPLAY
00022 000033 ACCEPT
00023 000042 DISPLAY
00024 000071 MOVE
00025 000003 SEC-1A SECIAOl'
00026 000003 STOP-HERE
00027 000003 STOP

SECTION 2-21

RUN TIME ENVIRONMENT

[NOTE: All information presented in this area is for help in
debugging programs. The run time structure is subject to change in
future releases so applications should not be developed which depend
on this structure remaining constant.]

The stack layout for a COBOL II program is shown below. Each program
unit (Main program or subprogram) has two areas in the data stack: a
data area and a pointer area. For main programs and non-dynamic
subprograms, the data areas are located between DB and Q initial. The
pointer areas for all types of program units are dynamically allocated
starting with Q+l upon entry to the program unit. For dynamic
subprograms, the data area is allocated after the pointer area.

DB-5

D8-4

DB

Qi

Q

Ptr. to current Data Area

Data Areas for
(a) Main Program
(b) Non-dynamic subprograms

-Pointer Area

Parameters

Stack marker

. Pointer area

Data Area for dynamic
subprograms

SECTION 2-22

Pointer Area

The pointer area contains the addresses of data structures in the data
area and other information local to the program unit. All types of
COBOL II program units have the same format for the pointer area
except that main programs do not have an area for Linkage Section
addresses. For subprograms, each 01 or-77 level item in the Linkage
Section is assigned a I-word location at or above 0+13 for the word
address. This address is moved from the appropriate O-negative
location upon entry to the subprogram. In addition, another I-word
location is allocated for the corresponding byte address. If a
Linkage Section item is not referenced in the USING phrase of the
Procedure Division header or ENTRY statement, these locations will
contain an illegal address. The format of the pointer area is shown
below:

0+1 -Word address of data area

0+2 --byte address of data area

··File Table address

Stait Table address

·SORT~MERGE switch

prevIous value in DB-5

COMMA

byte address of 9-word temps.

word address of I-word temps.

DECIMAL PT.

-byte pointer of numeric lits.

SElF liparams.1 CURRENCY SIGN

0+3

0+4

0+5

0+6

0+7

0+8

0+9

0+10

0+11

0+12

0+13

reserved

word addresses of 01 and 77
items in LINKAGE SECTION (N)

0+13+N
byte addresses of 01 and 77
items in LINKAGE SECTION

DECIMAL PT. and COMMA are character representations
of DECIMAL-POINT and COMMA.

SECTION 2-23

F(l bit)=First-time flag for PERFORM statements
SE(l bit)= SIZE ERROR flag: 1- size error occurred
iparams(6 bits)= no.of parameters
CURRENCY SIGN = character' representing currency sign

Data Area

The data area contains a combination of compiler
generated structures and user defined data areas. These
areas are described below:

First Time Flag (Non-dynamic)

. -Index Names

Start Table

-GO TO Table

-DISPLAY buffer

'Fi Ie Table

~rogram collating seq.table

Data reeds.and working-storage

""Running-PICTURE table

-g-word temp.cell area

-l~wordEemp-=-cell area

1. First Time Flag (Non-dynamic Subprograms only). A I-word value
indicating whether or not it is the first call to a Non-dynamic
sUbprogram.

2. Index Names (Optional) One word is allocated for the value of
each index-name declared in the program.

3. Start Table. Each paragraph/section generates a two-word entry
containing its starting PB-address and segment number.

4. GO TO Table (Optional). Each Alterable GO TO (a paragraph
whose first or only statement is a simple GO TO) generates a
three word entry for use with the ALTER statement.

SECTION 2-24

5. DISPLAY Buffer (Optional) A 200-byte buffer for values to be
DISPLAYed.

6. File Table (Optional). Contains information pertaining to each
user specfied file.

7. Program collating seq. Table (Optional). A table containing
the mapping for characters if a PROGRAM COLLATING SEQUENCE is
specified in the Environment Division.

8. Data Records and Working Storage (Optional). This area
contains the values of User defined data items declared in the
File and Working-Storage Sections.

9. Running Picture Table (Optional). Contains information
pertaining to data items and is used by the run-time library
for certain constructs.

10. 9-word temp cell area (Optional). Used for intermediate values
in arithmetic computations.

11. I-word temp cell area (Optional). Used for intermediate values
in arithmetic computations.

12. Numeric Literals (Optional). Contains representations of some
of the numeric literals used by the program.

Code Segmentation

Each COBOL II program unit generates at least two RBMs. The first RBM
is an initialization module. For main programs, this unit is the
Outer Block where control is transferred when the program is started.
The name of this module is the same as the PROGRAM-ID name (stripped
of hyphens). For subprograms, an apostrophe is appended to the
PROGRAM-ID name to form the name of the initialization module. The
Procedure Division will generate one or more RBMs depending on the
segment numbers (if any) which are specified in the section headers.
If no segment numbers are specified, the entire procedure division
goes in one RBM. Consecutive s.ections with the same segment number
are placed in the same RBM. The RBM name is listed in the
compile-time MAP under the heading "INTERNAL NAME." The
initialization RBM is put into the same code segment as the last RBM
of the Procedure Division. Non-contiguous sections with the same
segment number will generate multiple RBMs but they all will be put
into the same code segment.

SECTION 2-25

The PMAP from the sample program is shown below:

~SEC202' 0
NAME STT CODE ENTRY SEG
SEC202' 1 0 0
C'DISPLAY 2 ?
C'DISPLAY'FIN 3 ?
C'DISPLAY'INIT 4 ?
C'DISPLAY'L 5 ?
ACCEPT'FREE'C 6 ?
SEGMENT LENGTH 124

SEC101' 1
NAME STT CODE ENTRY SEG
SEC1A01' 1 0 0
TERMINATE' 4 ?
QUIT 5 ?
SAMPLE 2 6 6
DEBUG 6 ?
COBOLTRAP 7 ?
SEC202' 10 0
SEC101' 3 216 216
C'DISPLAY 11 ?
C'DISPLAY'FIN 12 ?
C'DISPLAY'INIT 13 ?
C'DISPLAY'L 14 ?
ACCEPT'FREE'C 15 ?
SEGMENT LENGTH 334

~
Notice that sections SEC-1 and SEC-1A generate different RBMs (SEC101'
and SEC1A01'), but are both in the same code segment because they both
have a segment number of 01. Since SEC-lA is the last section of the
Procedure Division, the initialization module SAMPLE is also put in
this segment. If the program were changed such that SEC-1A came
between SEC-1 and SEC-2 then both SEC-1 and SEC-1A would be in the
'same RBM and the initialization module would go in the same segment as
SEC-2.

Implementation 'of PERFORM and GO TO

The implementation of PERFORM and GO TO statements has been changed
with COBOL 11/3000. Three new instructions have been added to the
machine instruction set to perform these operations. For GO TO
statements across section boundaries, the new External Branch (XBR)
instruction is used as follows:

SECTION 2-26

The two word value from the Start Table for the paragraph
being branched to is loaded onto the top of the stack

PB-address

S Segment Number

and the XBR instruction transfers control to the
specified location, deleting the 2 words from the stack.

For all PERFORM statements, the Paragraph Call (PARe)
instruction is used to initiate a PERFORM. First, the
two word Start Table entry for the starting paragraph of
the PERFORM is loaded onto the top of the stack followed
by the ordinal of the last paragraph being performed.

PB-address

Segment Number I

S Paragraph Ordinal I

The PARC instruction replaces the PB address and Segment
Number with the appropriate return values and then
transfers control. To return from a PERFORM statement, the
End Paragraph (ENDP) instruction is used. First the
ordinal of the paragraph being concluded is loaded onto
the stack.

S-3 PB-address

S-2 Segment Number

S-l Paragraph Ordinal

S Paragraph Ordinal

The ENDP instruction compares the two paragraph ordinals
and if equal returns control to the location specified in
S-2 and S-3 and deletes the four words from the stack.
If the paragraph ordinals are not equal only one word is
deleted from the stack and control falls through to the
next paragraph.

SECTION 2-27

USING DEBUG/3000

To use DEBUG/3000 you should have a compilation listing of the program
units with the MAP and VERBS options specified on the $CONTROL command
together with the PMAP for the program file. The CROSSREF option on
the compilation listing may also prove useful. There are two ways to
get into DEBUG with a COBOL II program. The first is to specify DEBUG
on the :PREPRUN or :RUN command. The second is to specify the DEBUG
option on the $CONTROL command when the program is compiled. This
option sets the CONTROL-Y trap so that pressing Control-Y when the
program is executing will invoke DEBUG.

To debug the sample program shown earlier,

:RUN SAMPPROGiDEBUG

To set a breakpoint, get the offset from the VERBMAP for the statement
and add the starting address of the code module as shown in the PMAP.
For example, to set a breakpoint at the ACCEPT statement -in line 17,
get the logical segment number of the segment containing SEC101'
(which is 1) and the starting address of the module (which is 216).
From the VERBMAP, the offset for the ACCEPT statement is 33. So, when
the program starts,

DEBUG 1.6
?B1.216+33

sets a breakpoint at the start of the first ACCEPT statement. To set ~
another breakpoint at the STOP RUN statement in line 27, you will
notice that module SEC1A01' starts at PB+O and the STOP RUN statement
starts at 3.

?Bl.3
?R

The R will resume execution of the program.

ENTER N-l, 4 DIGITS

BREAK 1.251
?

Now we are at the start of the ACCEPT statement. To verify the
initial value of N-1 as 0, display its contents.

?D ('Q+2'+350)/2,3,A
DB+l64 +0000+

SECTION 2-28

The 'Q+2' means the contents of Q+2 which contains the byte address of
the data area. The 350 is the byte address of N-l as shown in ~he

MAP. The /2 converts the byte address to a word address and the 3
specifies the length as 3 words. Since the item is USAGE DISPLAY, the
A specifies to display the value in ASCII.

Since the item is actually only 5 bytes long, displaying 3 words picks
up the first byte of the next item also. For items in the Linkage
Section the Q+2 would have to be replaced by the value shown in the
BASE column of the MAP. This value is currently displayed as a
positive decimal value (Q14 means Q+l4 (decimal». To use this value
in a DEBUG command, precede the numeric offset by #; for example,
Q+#l4. A future release will probably change this to an octal
representation to ease using DEBUG.

To continue running until the other breakpoint, the following is keyed
in:

1R

123 Value of N-l keyed in
N-l = +0123
ENTER N-2, 4 DIGITS
-1 Value of N-2 keyed in
N-2 = -0001

BREAK 1.3
1

Now we are at the STOP RUN statement. To verify that N-3
did get the proper value from the MOVE statement,

10 ('Q+2'+362)/2,2,H
DB+171 0000 1000

Since N-3 is a COMP-3 item, the H (for Hexadecimal) representation was
displayed. The value of N-3 is shown as 000010 (The 0 being the
representation of minus).

Using the same information sources (the MAP, VERBMAP, and PMAP),
values of data items may also be changed in the middle of executing a
program.

SECTION 2-29

	Section 2—Language Use
	Debugging COBOL II/3000 Programs

