
ON ERROR Capability - an enhancement to
BASIC/3000 and BASICOMP/3000.

As part of Hewlett Packard's ongoing efforts to
improve current products, BASIC and BASICOMP/3000
will be enhanced to provide user error-handling
capabilities.

This article describes what ON-ERROR will look like
as well as what ON-ERROR will do for the BASIC/3000
user.

The ON ERROR enhancement to the BASIC subsystems
will

1. Allow suppression of BASIC RUN-TIME ERROR
messages.

2. Cause an automatic branch to a USER-SUPPLIED
Run-Time Error routine when desired.

3. Capture and display information as to the" nature of the
Run-Time Error. (Error Number and Error Message)

4. Capture information as to the Line Number of the
Basic program which caused the Error to occur.

REASONS FOR DEVELOPING THIS ENHANCEMENT

Any application written in BASIC/3000 can be intended
to run in an environment which is not a sophisticated
programming environment. Unsophisticated users need to
be buffered from system messages which they may not
understand.

Many of our BASIC/3000 customers are OEM's.
They are sophisticated BASIC software shops who
understand the 3000 SYSTEM, and appreciate the
Basic internal error messages and/or system information
when things go wrong during the development phase.
However, the point at which they release their software
to their customers is the point at which they no longer
want arbitrary error messages coming out.
They need an ON-ERROR capability which allows them to
buffer their customers in a friendly manner. As an
~xtension of that capability, the OEM needs "hooks"
to allow access to the Basic internal
and/or system error information

SECTION 2-11

so that what went wrong in the customer's environment
can be understood.

Thus, the user sees ON-ERROR capability as a way to aid him
in his development of BASIC programs.

He also sees ON-ERROR as a way to buffer the unsoph
isticated users of his software from unsolicited
system information.

FUNCTIONAL DESCRIPTION OF ON-ERROR

The user will have three ON-ERROR options:

1. ON ERROR [THEN] <LABEL>
[GOTO]

2. ON ERROR GOSUB <LABEL>

3. ON ERROR CALL <SUBPROGRAM>

OFF ERROR will restore normal system error
handling to a BASIC program.

The Built-in Function ERRL will return the line number
of the statement where the error was detected.

The Built-in Function ERRN will return the
Basic or Basicomp error number of the error that
occurred.

The Built-in Function ERR$ will translate an error number
to an ENGLISH, printable explanation string.

IMPLEMENTATION DETAILS OF ON-ERROR

Compiled BASIC programs:

a) "For-Next" internal structure will be removed from the
stack only for the "ON-ERROR GOTO" statement.
Thus, if user is within a for-next loop, and
an ON-ERROR GOSUB or an ON-ERROR CALL statement
occurs within the scope of that for-next loop,
and a run-time error occurs, the for-next information
will only be removed from the stack opon return from
the gosub or the call and after the for-next loop is
satisfied.

SECTION 2-12

b) When an ON-ERROR GOSUB or an ON-ERROR CALL occurs,
upon returning, the user will return to the beginning
of the next BASIC statement after the BASIC statement
which caused the run-time error.

c) Code generation for flavors of the ON-ERROR
are as followa:

1) ON ERROR GOTO <LABEL>

BR N (Branch around the code for the "goto")
R: code for GOTO

N: code for statement following ON-ERROR statement

Code will also be generated to place the P-relative
location for "R" into the nON-ERROR GOTO" runtime global.

2) ON ERROR GOSUB <LABEL>

BR N (Branch around the code for "gosub n)

R: Code for GOSUB

N: code for statement following ON-ERROR statement

Code will be generated to place the P-relative location
for nR" into the "ON-ERROR GOSUB" runtime global.

Code within each "RETURN" statement will check whether or
not this return is within scope of an ON ERROR GOSUB.
If so, RETURN will be to statement following the
statement which caused the runtime error.

3) ON ERROR CALL <SUBPROGRAM>

BR N (Branch around the code for "call")

R: Code for CALL

SECTION 2-13

Code to branch to P-relative location
following the place where the run-time
error was encountered will be generated.

N: code for statement following ON-ERROR statement

Code will be generated to place the P-relative location
for "R" into the "ON-ERROR CALL" runtime global.

d) No ON-ERROR statement will be allowed within
the scope of an ON-ERROR GOSUB subroutine.

Interpreted BASIC programs:

a) When an ON-ERROR GOSUB or an ON-ERROR CALL occurs,
upon returning, the user will return to the beginning
of the next BASIC statement after the BASIC statement
which caused the run-time error.

b) No ON-ERROR statement will be allowed within
the scope of an ON-ERROR GOSUB subroutine.

IMPLEMENTATION DETAILS OF OFF-ERROR

When an ON-ERROR statement is implemented, a global
is updated to describe the type of on-error statement
encountered. At the time a run-time error occurs, all
routines which relate to on-error will consult that
global.
If that global has a value of zero, it is assumed that
there is no ON-ERROR statement in the program.
There may be instances where a user wants on-error
capability only for certain parts of his/her program.
Thus, the OFF-ERROR statement will reset the on-error
global until another ON-ERROR statement is encountered.

SECTION 2-14

NEW BUILT-IN FUNCTIONS

a) ERRN in Interpreter and Compiler

The Built-in Function "ERRN" will return the error
number of the last runtime error which occurred in
the program.

It should be noted that if, prior to the occurrance
of this run-time error, there was no ON-ERROR state
ment in the program, it is highly likely that the
run-time error will cause a program abort, and
"ERRN" will be irrelevent.

b) ERR$ in Interpreter and Compiler

The Built-in Function ERR$ will translate an error
number to an ENGLISH, printable string.

It should be noted that if, prior to the occurrance
of this run-time error, there was no ON-ERROR state
ment in the program, it is highly likely that the
run-time error will cause a program abort, and
"ERR$" will be irrelevent.

c) ERRL in Interpreter and Compiler

ERRL will return the line number in which the
offending run-time error occurred.

It should be noted that if, prior to the
occurance of this run-time error, there was no
ON-ERROR statement in the program, it is highly
likely that the run-time error will cause a
program abort, and "ERRL" will be irrelevant.

ON-ERROR VS ON-END

A BASIC program can contain both ON-END and
ON-ERROR statements simultaneously.

SECTION 2-15

The following truth table defines all possibilities
which can occur within a program when a run-time
error "END OF FILE" occurs:

ON-END ON-ERROR
FOR FILE N

WHAT HAPPENS

o

o

1

1

o

1

o

1

PROGRAM DIES

ON-ERROR

ON-END

ON-END

PERFORMANCE OBJECTIVES

For the most part, ON-ERROR capability will not
entail a performance cost.

ERRN will not impact performance.

In the BASIC INTERPRETER, the function ERRL will
have no detrimental performance effects. A Basic
Compiled program, however, will suffer a performance
degradation with ERRL in that the code will be blown
up to include a "label table" to be consulted at
Runtime.

To ensure that only those who need ERRL will have to
pay for it, ERRL will be a Compiler Option.
Default for ERRL option will be OFF.

To turn on ERRL, use $CONTROL ERRL.

SECTION 2-16

SUMMARY

The ON-ERROR enhancement to BASIC/BASICOMP 3000
is a major enhancement consisting of three new
statements and three new built-in functions.
The user will be able to turn ON-ERROR on and
off during the course of anyone run of a
BASIC program. He will also be able to obtain
the Line Number of where a run-time error occurred,
Error Number of the run-time error, and the actual
Error Message which would have come out had
the ON-ERROR statement not been in effect.

SECTION 2-17

I~

~.,,,_J

	Section 2—Language Use
	ON ERROR Capability—an enhancement to BASIC/3000 and BASICOMP/3000

