PERFORMANCE OPTIMIZATION FOR IMAGE

by Bernadette Reiter
S.E. Neely Englewood

Many discussions in earlier days of improving system performance
were slanted toward CPU utilization optimization. Today however,
in the age of faster CPU speed, cheaper memory, and more memory
available on CPU's (including the range of so called mini computers),
optimization strategies have had to take a different approach.
Currently on a one to two megabyte systems, memory constraints no
longer are the prime contributor of system degradation. IO
constraints are now a potential bottle-neck on most CPU'S.

The HP3000 allows for IO optimization strategies when dealing
with files handled by the file system, using methods such as
multi record IO, NOBUF IO, and NO WAIT IO. These few file system
parameter options allow for user IO optimization strategies in
their applications (dealing strictly with sequential or direct
access methods). These optimization techniques became unapplicable
with software technology moving toward structured data
organization spanning beyond sequential and simple direct
access file organization. This thrust toward data organization
launched technology into the era of DATABASE MANAGEMENT.

Image being a friendly DATABASE MANAGER, allowing
for extremely involved and sophisticated interrelationships
of data, lets the user inadvertently misuse IMAGE'S power
to the degradation of preformance. This paper is designed to
give the user an insight into the different aspects of IMAGE,
as well optimization techniques to take advantage of IMAGE's
sophistication and capabilities of outpreforming other data
structures. The suggestions made are based on using IMAGE
in interactive environments, performance analysis of IMAGE
processes, internal structure information, and the IMAGE
reference manual.

SECTION 1-9

A.) OPTIMIZATION FOR MASTER DATA SETS

A MASTER DATA SET uses a hashing algorithm as its method of
of finding the address of a particular key item within the master ‘ﬁ%
file. A hash is a calculation imposed on the key itself and
results in giving a relative record number within the file.
From an efficiency standpoint, using a hashing algorithm has
always been considered a tremendously effective means of
retrieving data in strictly random fashion.

No hashing algorithm is perfect. Based on the algorithm used
and the nature of the data, several key items could hash to the
same location. These collisions are chained together in a linear
linked list by IMAGE. The key to the success of a hashing
algorithm is to optimize for an even distribution of the keys,
over the allocated file space (the capacity), minimizing the
amount of collisions.

IMAGE determines the hashing algorithm used on a particular
master by using a function of the modulous of the capacity
chosen by the user. To optimize for an even distribution
of keys, studies have shown that the modulous of a prime number
or a multiple of prime number is typically a good algorithm.

It is for the above reason that the IMAGE reference manual
recommends that a prime or a multiple of prime be chosen
as the capacity of a master.

The key values typically are extremely random. This
makes is difficult to find an algorithm which will
gaurantee a unique address for every key. There are ' Aﬁ%
going to be incidences where a collision will occurr. Image
will take that collision and put it into the first available
free space. If the MASTER is getting filled to above 80% of
capacity, IMAGE will potentially have to do several IO's
to find the first available free record into which to place
a synonym, and will have to do additional IO's to retrieve
those synonyms (should the synonym be in a different block
than its predecesor in the chain). Therefore, to optimize,
for IO, for the retrieval and placement of synonyms, it
helps considerably to keep at least a 20% pad of free space
in your MASTER DATA SETS.

SECTION 1-10

B.) OPTIMIZATION FOR DETAIL DATA SETS

l1.) Detail data sets are kept in a logical order by
doubley linked lists (with the head and tail of the chain stored
with the corresponding master entry). Due to the chained
entry sequence being reflected in a logical oreder (by
forward and backward chains) rather than a physical order, the
entries of a particular chain could all reside in different
blocks. This would require an I0 per record. Therefore, if
chains are long, and the detail is heavily accessed, it is to
the users advantage, from an IO preformance standpoint, to
periodically reload the database, putting the detail in primary
key sequence. This means that when IMAGE rebuilds the detail,
he will physically put the entries together, as well as
logically. 1In this physical/logical order, when reading down a
particular chain , chances are that the next X records to be read
in the chain will already be in the block in memory, minimizing
the amount of IO necessary to read down a detail chain.

2.) In a DETAIL DATA SET, IMAGE also allows for the entries
to be chained in a sorted fashion by a predefined sort key.
Since the data in detail is kept in a doubley linked list, there
is some overhead involved in maintaining a chain in a sorted
sequence. When adding a particular entry to a detail set,
where sorted chains have been specified, IMAGE could potentially
read the entire chain in order to determine where the entry to
be added belongs within the sort sequence. If the chains are long
this could require several IO's to determine where in the sort
sequence the new entry belongs. From a performance standpoint
use sort chains with care, when designing your data-base, they
incurr more I0's in adds and deletes than a regular chain.

SECTION 1-11

C.) IO OPTIMIZATION WHEN DESIGNING A DATA-BASE

When designing a data-base structure, you may want to
think of some I0 performance considerations. IMAGE allows you the
flexibility of having 1 to 16 MASTER DATA SETS pointing to
a DETAIL DATA SET, or lto 16 DETAIL DATA SETS pointed to by
a MASTER DATA SET. Based on how the data-base structure is
defined, it will have different IO implication. When adding or
deleting entries from a DETAIL DATA SET, that detail change
gets reflected in the corresponding master entry (in chain entry
counts and potentially head and tail pointer information).
This means that to reflect the change in a detail pointed to by
X number of master sets the following amount of IO will occur:

(X * number of masters pointing to the detail) + number
of I0's to reflect chain change in detail

X= (Z * read of master + write of master)

Z= number of IO's required to find a master entry
if it is a synonym.

Therefore, when designing a data-base structure keep in
mind the number of IO's necessary to reflect a change in a
detail.

D.) RUNNING DEFERRED FOR BATCH UPDATING

When making a change to a record in an IMAGE data-base,
IMAGE will immediately post that record to DISC. If you
change X number of records in a block, then the block is
posted X number of times. IMAGE does allow you to, in an
exclusive access mode, to do a DBCONTROL with a deferred mode.
This means that the block is only posted when it is full, or the
buffer is needed, rather than every time a record is changed,
added, or deleted in the block. This option is extremely
beneficial in data processing environments where on line trans-
actions are accumulated all day long, to be posted against the
data-base, in a batch environment at night. You can decrease
substantially the amount of IO done by the batch update
program by running deferred , making run time for that process
significantly less, if it needs to post a large number of
transactions.

* CAUTION If the system crashes while running deffered you
can potentially lose much more data since each
transaction wasn't posted right away. However,
in the above environment chances are that if

you crash you will have to restore your
data-base and restart the batch process again.

SECTION 1-12

E.) PROGRAMMING OPTIMIZATION CONSIDERATION

l) DELETE and ADD vs. UPDATE against a detail.
It requires less IO to do an update to a detail record
(as long as the sort or search item is not altered) than
a delete and an add. An update only requires posting
the detail record since the chain information
didn't change. A delete and an add however requires
reflecting the deleted record change in the corresponding
masters as well as reflecting the absence of the record
in the detail chain. Now to re-add that record requires
doing the IO against the master again and reflecting
the add in the detail also. For IO optimization, when doing
a modification of a detail record, use the update function
versus the delete and add to reflect the detail change.

2) LOCKING strategies.
Use the locking option which will allow the most amount
of IO to go against the data base. 1If the transaction
to be locked around is lengthy in time, consider record
level locking. If the transaction is short consider
data-set or data-base locking (from a CPU standpoint
they are a faster 1lock).

3) Setting up DATA-BASE security.
IMAGE allows you to use security options at the set and
individual item level. This allows for very complex
security options. The more complex the security
structure the more overhead is involved in interregating
the users access capabilities against the data-base.
Where possible allow a user to have write access to
the entire set, therby IMAGE doesn't check the
individual items in the set to determine the read/write
access capabilities.

4) LIST "*" option on DBGETS.
When doing successive reads against a particular
DATA-SET, read the first record with the list of
items you are interested in retrieving. Then
make all successive calls with the "*" as the list
parameter. This allows IMAGE to bypass security
for the subsequent reads on the premise that if you
passed security on the first record, you will also
pass security on subsequent calls. This can cut down
significant processing time since the security
checking overhead per read has been reduced to only
having to be done on the first record.

SECTION 1-13

F.) DISTRIBUTED DATA BASE AND REMOTE DATA BASE ACCESS

The new surge in data processing is to ditribute data bases
and processes across several CPU's and be able to access the data
bases on all the CPU's in the network. In environments
such as these, IO optimization will also give you the most
significant performance improvements. However in the distributed
environment, optimization for IO over the communications lines
between CPU's, especially over phone networks, will give you the
most gains.

In a DS3000 environment we allow the user 3 types of remote
database access:

1) Remote command access (user needs knowledge of DS)
a) user logs on to local system
b) user logs on the remote system with remote HELLO
c) commands are executed on remote system
d) IO communication requirements- all commands, all data,
all output from remote command $stdlist

2) Remote file access

a) user in DBUTIL defines where remote data base is, along
with remote log on

b) when IMAGE issues open against the remote data base
definition, IMAGE establishes communication with
remote system (if dial connection user still
has to dial and respond to dial message on console,
however, user doesn't need remote log on).

C) processes are executing on the local system

d) IMAGE commands, any records retrieved by IMAGE are
sent over communications lines. However, any
reports generated from that data is generated on
local system having no communications demands.

3) Program to program communications (PTOP)
a) master program runs on local system
b) master program start execution of a slave program on
remote system
c) user PTOP programs controls data being transferred
across communication lines.

SECTION 1-14

Guidelines to choosing remote access techniques:

1)The most effecient for IO and the most difficult to implement
is PTOP. The user has total control over the transmission
of data. Performance-wise significant gains can be made
using this technique.

2)Whether to use remote command or remote file access?
a) If the report generated by the retrieval of remote
data is greater than the amount of data necessary
to retrieve the data, use remote data base access to
minimize the data communication I0 (requires no know-
ledge of ds).

b) If the report generated is less than the amount of
data required to retrieve the data (from a command
standpoint) then use remote command access.

(this does require that the user knows how to use
DS to establish communication with the remote CPU)

CONCLUSION:

IMAGE does allow for several optimization techniques.
The afore mentioned sugrestions primarily address optimization
for IO on the premise tihat the most significant gains in
performance can be made by improving IO strategies. When
designing the data-base optimize for DISC IO. When accessing
remote data-base's also optimize for data communication IO.

SECTION 1-15

	Section 1—Database Management
	Performance Optimization for IMAGE

