
DOLLAR-FLOW: FIN~NCIAL PLANNING ON THE HP3000
(users write their own programs)

By Jack Darnrn, Principal, The Palo Alto Group, Sunnyvale, Calif. (408) 735-8490

Good afternoon. I am going to talk about financial planning on the
HP3000 with the Dollar-Flow plannin~ language. My discussion will focus
on three areas: 1) What financial planning is, and why there is a need for
computerized planning; 2) Design considerations for "friendly" user
oriented applications; ann 3) How the language Dollar-Flow is used for
applications like profit planning.

THE NEED FOR FINANCIAL PLANNING

First, let's start with two questions: What is financial planning?
And why is it necessary? Financial planning is making decisions about allo
cating the scarce resources of an organization so as to best achieve its
goals. In the private sector, this usually means how best to allocate money
and people to achieve profitability goals. In the public sector, it may mean ~ ..
how best to allocate people and dollars to provide a desired level of service.
The main idea here is that the resource is scarce and, as a manager, hard
decisions have to be made about how to use it. More specifically, financial
planning is setting budgets, making pricing decisions, and estimating future

·demand for products and services, in order to achieve profit and/or perfor
mance ~oals.

Why is formal planning necessary? First, of course, because a scarce
resource (typically money) is involved. If we had enough money for everything,
then we could simply raise our salaries and retire early. Secondly, it is very
important to· have general agreement within an organization about how goals
are to be achieve~. No assumptions should he made without clearly stating
and documenting them. With a good financial plan, trouble signs· can be
spotte~ earlier and corrective action taken sooner. Businesses which fail
to plan effectively are the best illustration of the need for planning.

Let me offer one last reason why planning is important. For many
companies, planning is a necessity because of the complexity of their opera
tionso A typical manufacturing company ~ay purchase thousands of parts for
use in a vast array of products, and assemble them in many different locations.
They cannot wait until there is no money in the till to decide that it's time
to raise prices. And the current rates of inflation make this an even more
important consideration.

THE TYPICAL PLANNING PROCESS

Okay, let's assume that one accepts the need for financial planning.
So what's the big deal? Well let's look at the typical planning process and

P32.1



I'll show you.

First, planning involves lots of numbers. And these numbers changeoften. Financial planning involves projections into the future and isa very uncertain process. When you're uncertain, then you have to do contingency planning. Play "what if" games. What if sales are 20$ higher thanplanned? What if the cost estimates are too optimistic? What if our product.sales mix is differ~nt? Because of uncertainty, alternative plans are necessary, increasing the amount of work required to plan several times over.
And that's not all. The attempt to reach a targeted objective such asprofit adds to the work. It may take several passes before all of the budgetscombined with the sales estimates, cost estimates, and so forth, sum up to thedesired results. The task soon becomes monumental.

The following is not an uncommon occurrence: You work many hours preparing budgets and doing sales forecasts. With a board meeting just a few daysaway, you finish your plan. The company president takes one look at the results of the combined numbers and gives it back, requesting a 15% cut in thebudget. You prepare a revised budget, repeat all of the calculations, this t~meunder increasing pressure to get the job done fast. The day before the boardmeeting, marketing revises the forecast. All of the budgets must be revisedagain. And now it is getting late into the evening the day before the meeting.The planning process finally ends. With a good plan? No, with exhaustion.Dops this seem like a doomsday tale? It's not. I've seen this happen manytimes. No wonder people dread bUdgeting time.

Combine the sheer effort required to plan effectively with the requirements for a good plan: It must be TIMELY. In a dynamic, grOWing company, aplan must reflect today's expectations, not yesterday's. It must be ERROR FREE.Late-night, reworked plans suffer from simple calculation errors. Errors dueto using the wrong set of estimates, because they keep on changing. Imaginethe embarrassment of a summation error. And with all this, the plan must remainFLEXIBLE. I worked on a profit plan for a company a few years ago which addedan entire product line between iterations of the plan. And finally, when youare all done, a ~ood plan must be WELL DOCUMENTED. What factors were used foroverhead? What was the basis for the final sales figure? .How was a particularnumber calculated? All too often, there is little documentation on how a planwas actually prepared.

To summarize: A typical financial plan involves lots of numbers, whichchange often. The need for many iterations makes this process time consumingand exhausting. At the same time, the plan must be timely, error free, andwell documented. In short, good financial planning is not easy.
WHAT IS THE BEST WAY TO PLAN?

Given that this is the nature of planning, what is the best way toplan? How can it be done with a minimum of difficulty? Traditionally, therehave been two ways of planning. Planning by hand (and calculator) and planningusing the computer. Let's take ~ look at both of these methods and evaluate thepluses and minuses of each.

P32.2



Preparation of plans manually has several drawbacks. First, because of
the amount of rlata involved and the number of iterations, it is slow and time
consuming. After many iterations, accuracy becomes a problem. The wrong es
timates may be used, particularly if they keep changing. Calculation errors
seem to increase with each iteration. And documentation is usually not very
good.

On the other hand we have financial planning on the computer using the
traditional programmi~g languages like BASIC, FORTRAN, or COBOL. Onc~ set up,
a model written in one of these languages will run on the computer in a matter
of minutes or seconds. Great! But here's the catch. The model will run very
quickly once it has been set up, but it may take months to get it developed.
And you need a programmer. Let's see what can h~ppen. You start your plan
well in advance of the next budgeting cycle. With six months lead time you give
a precise set of specifications to an enthusiastic programmer who dutifully sets
about coding your model. At the end of the first three months, he comes back
to you ~ith his first try. You patiently point out where the model is not
consistent with the specifications, settle on a set of revisions, and the
model is reprogrammed to your satisfaction. All set, right? No. As you begin
usin~ the model, the company president starts to change his mind (even though
he reviewed the original specifications). Add a decimal place here, another
line item there. Why aren't all twelve columns of dnta on the first page?
Frustration. .

What is the moral of our story? Programming a planning application
with the traditional programming languages lacks flexibility. The programmer
needs lead time to set up the application and has difficulty in reacting to
short term changes. How about adding another division to a multi-divisional
company? Try changing every format statement in the model in an hour. And
add to that the bother of documentation.

To summarize, manually prepared plans can be flexible, but they take
a long time to do and lots of effort, especially if several passes are done.
They often lack rlocumentation. Planning with traditional programming lan
guages takes too lon~ to set up, is inflexible, and requires the services of
a programmer. .

PROBLEM ORIENTED LANGUAGES

Let me dirress for a moment. For several decades now, computer scien
tists have been searchin~ for a "universal" programming language. ALGOL?
PL/I? APL? PASCAL? The search goes on. Each has its merits, each its disadvan
tages. But these "procedure oriented" languages have one thing in common: You
have to be a programmer to use them. And it is altogether too easy to include
bugs in even the simplest of programs. As long as there is a programmer acting
as midrlleman between the user (or analyst) and the computer there are going to
be corn~unication problems. Maintenance problems. Resource and priority problems.

What's the answer? A planning oriented application language which
incorporates the good aspects of traditional programwing, but eliminates the
problemso Where plans can be set up and revised easily, without having to be
a programrnero What I am describing here is one example of another class of
programming languages, "problem oriented" languages. Languages which have been

P32-3



desi~ned to provide solutions in a general way to classes of problems. Simple
enough to be used hy non-programmers. Easier to debug. Self-documenting.
QUERY is an example of a proble~ oriented language. It provides access to
IMAGE data bases in a fashion simple enough to be used by non-programmers.
Dollar-Flow is a problem oriented language, designed as a tool for non-program
mers who want to set up tabular planning reports.

Financial plannin~ is an area well suited to problem oriented languages.
There is a considerable amount of generality in what planners do, although no
two plans are the same. A financial plan typically involves mathematical
operations on rows and columns of numbers. With well defined rules for the
calculations. And the burden of planning in any other way gives the financial
planner considerable incentive to try new appproaches.

This is a good start. But we still have to get the planner onto the
terminal and communicating with the computer. How is this done? By giving him
an effective tool. One which is both friendly and enables him to get the job
done in a way that .he understands.

DESIGNING FRIENDLY SYSTEMS

This leads us to the next point: What Mal<es a system "friendly"?
How can a system be designed so the novice or non-computer type feels com
fort~ble with it? I ofer here a few of my ideas and techniques for develop
in~ friendly systems.

SIMPLICITY

Keep the system simple at all cost. Do not let the internal struc-
ture on the computer dictate how a system looks to the user. Let him express
his ideas in his own terms. For example, the original design for the Dollar
Flow language was hased on a set of documentation which I prepared for a group
of accounting types. This documentation described the workings of a particular
customized model on a line by line basis. I figured: What could be a better
set of design specifications for ~ language than actual documentation? As you
document your model you are also writing your program! Another example.
Dollar-Flow re-orders calculation rules automatically. Thus, line 1 on a report
can reference data on line 10, which, in turn, can reference data on line 20.
Dollar-Flow automatically figures out the proper sequence for calculations
(calculate 20, then 10, then 1) without ·any intervention by the user.

It is important that the application be self rlocumenting. For example,
Dollar-Flow is a menu driven system. At each step of operation, the user knows
his alternatives. There is little need for a "pocket guide" to the language.
This is not to say that there is no need for manuals. A good manual is impor
tant. But it is a fact that few people actually read manuals. The less a sys
tem forces a user to read the ~anual, the more usable it will be.

Not only should th~ user be told what his alternatives are, the system
should also help him to choose the proper response. Throughout the Dollar-Flow
prompts, the most likely response is shown in brackets as the "default" res
ponse. In some cases, he can use the default response without bothering to

P32.4



even understand the question! For example, the prompt:

USE STANDARD OVERALL REPORT FORMAT «Y>,N,W-WIDE PAGE)?

In one brief prompt, the user can see his options and pick one. A simple car
riage return will cause the system to use the default response. And his entire
report format is set up. No PRING USING or FORMAT statements. Very simple.
And it can he changed easily. As the user becomes more familiar with the
language, he can begiOn to exercise more options. '~i th an 'N' response, Dollar
Flow leads the user through a review of the many formatting alternatives.
Report formatting can even be done on a trial and error basis. Start off with
the standard format, then change the column width or number of decimal places
shown as needs require.

As i already mentioned, the design for the Dollar-Flow calculation
rules was based on a set of user oriented documentation. Ask a user to describe
how the values on the report are to be calculated in his own terms. With the
addition of a few uote marks here and there, he has already written a program
in the Dollar-Flow language. Self-documenting languages not only save the
effort requirerl for documentation, but make debugging easier as well.

One last com~ent about simplicity. Save the user concerns about
internal structure through structure independent (or data base) approaches
to data relationships. One of the beauties of QUERY is that the user doesn't
hAve to concern himself with all of the netails of the data base to get a sim
ple report. In Dollar-Flow, all reports are programs, all saved programs are
files, and all save files contain reports. To reference data on a saved
Dollar-Flow report, simply indicate the line name and the report save file
name:

MARKETING BUDGET = 'BUDGET' OF 'MKTG';

There is no need for the user to know how the data is stored or even which
line on the 'MKTG' report is the 'BUDGET' line which he is using.

ERROR HANDLING

Okay, so let's say you have iMplemented a simple system. Does this mean
that users won't make mistakes? Of course not. In fact, the friendlier a
system is, the greater the likelihood that the users will not be computer types.
So, keep in mind that "too err is human, to forgive is good systems design."
Of course, you must edit all inputs. But then use a friendly approach when
the user has made an error. BecAuse Dollar-Flow is menu driven, simple typing
errors cause the system to repeat the prompt. Errors of a more complex nature,
such as where a report is referenced hut does not exist, generate intelligible
error messages. Along with each error message give a message number. And
provide a glossary with the documentation which gives even greater detail on
the possible cause of the problem.

At the same time that it is informative, a system should help the user
to work around problems. For example, in the case of an invalid report refer
ence in Dollar-Flow, the user can interactively specify a different report
name, or values, or zeroes. He can also indicate that computation should cease

f 32-5



after a scan for further errors. Again, unless a particular error is extremely
serious, warn the usei and proceed (with his permission). Another example.
As far as the mathematician is concerned, division by zero gives unworkable
results. In Dollar-Flow, division by zero yields 'invalid' numbers (which
print as asterisks), but doesn't stop computation. It's amazing how much more
satisfying a user finds a report filled with asterisks than just a list of
error messages. At least he can look at the format to see if it's to his lik-
ing.

If you must tell the user that he has made an error, tell him as early
as possible. One of the most enl'ightened things done by the MPE operating
system is to edit the job statement when a joh is being streamed from an inter
active session. It sure is better to,find out right away than waiting for
the job to begin execution to find out that a simple error has been made on
the JOB statement. Report development in Dollar-Flow is completely interactive.
If a user is setting up a report and he enters a calculation rule with invalid
syntax, the system .responds with a message immediately, and permits him to edit
his error (not unlike the BASIC interpreter). It is not necessary to go into
the computation step to find many errors •.

MAINTENANCE AND SUPPORT

Let us assume that as an enlightened designer of friendly systems you
have now designed and iwplernented your masterpiece. Are you done? Of course
not. This is only the first step. There are two more important aspects which
are critical for good, friendly systems: Continuing improvement and good sup
port. Let me talk about continuing development first. No system is great on
the first try. I am a believer in the iterative approach to systems develop
ment, if you can afford it. I am not talking about sloppy design. I am talking
about the tremendous wealth of ideas that you can get from your users, AFTER
you have implemented a system. Try to be receptive to the suggestions of your
users (even if they are infeasible). Never give a critical user the impression
that you think he has just offered a bad idea. Go out of your way to solicit
ideas from your users. If the situation merits it, ~et involved in several of
their applications. You can learn about ways the system is being used that you
never thought about. Ways in which its use may be awkward. Which messages are
more annoying than useful. Which features are badly needed. I send periodic
questionnaires to my users (some of them even respond). This helps to priori
tize new· features. And users group meetings are a great boon to information
flow.

How should this wealth of new ideas be intesrated into an already deve
loped system? Carefully. Do not rush a new version of a system out to users
just because they need a particular feature. You must let a new version of a
system be "burned in" first by a test site. Software bugs cost you credibility.
Once lost, credibility is very difficult to reestablish, so reliability is
extremely important. After all, would a user prefer a system with the bells
and whistles he wants but doesn't work, or one which works with a few less fea
tures?

Speaking of bugs and user suggestions leads me to the question of sup
port. There is nothing more frustrating to a user than to get 95~ of the way
to his computer solution only to be stopped by the application package he is



using. For any reason. If you can afford to do it, good support pays great
dividends. Dollar-Flow is supported in an "on-line" fashion. This means that
if a user has a problem, he picks up the telephone and calls. If his problem
is with an existing report, we may even log onto his system and take a look at
that report. This kind of support not only helps to find and eliminate system
problems qUickly, but we also find out about areas where the documentation may
be confusing (or incorrect). Where another feature might simplify the user's
application. In short, on-line support can be another source of good ideas
from users.

Let me summarize these techniques for creating friendly systems. First
KEEP IT SIMPLE. Try to think like the user instead of, a computer expert. Use
his terms. Assume that he won't read the manual. Try to make it self-explana
tory. Second, be INFORMATIVE but FORGIVING with your error h.andling. Edit a,l1
inputs, but don 't bother the user with minor errors. When the applic,ation
merits, CONTINUING ENHANCEMENT will make a,much more usable system. Respond to
user suggesti.ons. But exercise good jUdgment in the trade-off between adding
new features and degrading SYSTEM RELIABILITY.

PRO'FIT PLANNING

I am not going to take too much time on the last part of my talk~ I
am just going to show you a few sample reports prepared using Dollar-Flow. At
the risk of violating my agreement not to make a sales pitch, I invite you to
visit the PALO ALTO GROUP's booth during the vendor ·exhibits for a demon
stration of Dollar-Flow in action.

Let me first describe the typical company profit planning cycle
and the environment in which a planning tool like Dollar-Flow is used. The
typical Dollar-Flow user is the'~ccountant or company controller who is respon
sible for preparing the reports. Not a programmer. Most users are worki"ng on
In~house HP3000 systems. With access to CRT's and a system line printer nearby.
Reports are written interactively, and manual inputs are also entered via the
terminal. Usu,a'11y, reports are printed on the CRT for review then saved when
the user is satisfied with th~ report. If' hard copy is desired, the reports can
be routed to the line printer. For generating large numbers of reports, the
"batch cotmnand mode" is used, where' w'i th very lit tIe terminal input a large
Dum'ber of reports can be generated.

Profit planning typically begins with a preliminary sales forecast.
Preliminar'y. Sales forecasts always change. And at the last minute, too.
Often the sales forecast is done on a product-by-product basis for the first
year or so, then combined with overall dollar sales projections further in the
future. The near term unit forecasts are sometimes adjusted based on an over
all dollar figure. The forecast is iterated several times. To make a change,
the product manager just runs Dollar-Flow~ inputs whichever figures ·have chang
ed, pushes a few buttons, an,d the new s~les forecast is ready. Since many
parts of the profit plan depend on this sales forecast, the typical plan is
usually set up with· reports referencing the sales forecast report. If the
fi~res are changed on the sales fore~ast, these changes will be automatically
reriected on the other reports the ne,xt time they are run. Some man,ufacturing
companies even use a multi-level sales forecast step, ~here a build plan (or

32-7



production plan) is generated from the sales forecast.

Meanwhile, departmental budgets are prepared. Some D611ar-Flow users
centralize the bUdgeting function and .only distribute budget w~rksheets to each
depa rtment or location. Th is is usually done if there a re only one "or two
budget iterations. On the other hand~ some of our customers" distribute the bud
get preparation, with each location setting up its own budget in Dollar-Flo\~.

In this case, figures can be input to Dollar-Flow, changes can be made, and
several iterations of the budget can be done' all 'i n a matter of minute s. And
budget consolidations are fun! With a few simple commands to Dollar-Flow, a
whole series of budgets can be consolidated into a departmental or diyisional
budget. When changes are made to the low level budgets, they automatically are
reflected on the consolidated budget the next time it's run.

The profit/loss projection is next. Using the data from the sales fore
cast, th~ build plan, and the budgets, and adding factors for ite~s like sales
discounts and "returns, a pro forma op.erating st'atement" is prepared. Often, the
bottom line (profit) on this report determines what (if any) changes need to be
made to the budgets. With a flexible tool like Dollar-Flow, a financial execu
tive can even do sensitivity analysis: What if sales are 20$ lower then fore
cast? What if our discount schedule is more aggressive and our volume is
larger?

Some companies that rely on substantial amounts of' debt to finance their
operations combine the profit/loss-projection with a cash flow projection.
This is because interest paid (an item of expense on the profit/loss statement)
has ·an impact on the amount of money required to run the business. T~is deter
mines the level of borrowing, which, in turn, affects· the amount of iriterest
which is paid. Dollar-Flow, and most good financial planning languages, can
solve the "simultaneous equations" this circular logic represents, and determine
a level of debt and debt service which are consistent with each other. This
is far more difficult when done manually •.

. Another procedure which is laborious when done-· by han-d is the aging of
accounts receivable and accounts payable projections. Using Dollar-Flow, once
the rules for aging have been set up, a change i:n the sales forecast or the"
build plan will automatically be reflected in new receipts and payables pro
jections.

And, finally, some companies prepare pro forma balance sheets as the
last step in their profit planning cycle. This is not necessarily the way all
companies plan. Or even the way all- Dollar-Flow users plan. In fact, many
Dollar-Flow users are not even responsible for profit planning.~ Instea~, the
system is used for a wide variety of ad hoc applications involving calcula
tions on rows and columns of numbers. It is ·even used as' a desi gn ·tool for
systems which will later be hard-coded in COBOL, FORTRAN, or BASIC.

Some of the other application~ of Dollar-Flow that I am aware of
include:

Product prIcIng. Comparing alternative prices for a single product
(the plotting capability is great·for comparisons). Or comparing profit per
centage across an entire product line. Financial ratio analysis. Comparing

32.8



selected financial ratios against industry standards or company objectives.
Capital bUdgeting. Rates of return and discounted cash flows can be calculated
easily using built-in financial functions.

Performance reporting.- Variance reports showing actual budgets or
profits versus plan. How sales are doing against target. (One Dollar-Flow user
generates 500 graphs every month showing product line sales performance for
every branch of every distributor who markets his products!)

SUMMARY

Let me leave you with a few parting thoughts. Financial planning is
not an easy process. Figures change. The whole approach to a plan may change.
And you need your results yesterday. Traditional systems design and program
ming m-ethods are not going to be effecti ve in thi s kind of 5 i tuation. Use a
better approach. With a friendly, problem oriented planning language like
DOllar-Flow, applications nightmares can become applications successes.

32-9


	Proceedings
	Dollar-Flow: Financial Planning on the HP3000


