Technische Universität Berlin

PROZESSRECHNERVERBUND - ZENTRALE Leiter: Dipl.-Ing. K. Rebensburg

Telefon: (030)314 5154/61 Sekr.: HE 3 Einsteinufer 19 D-1000 Berlin 10 GERMANY

INTRODUCTION OF PEARL

(Process and Experiment Automation Realtime Language)

ON HEWLETT-PACKARD COMPUTER SYSTEMS

Dipl.-Ing. Jörg Grössler

<u>Contents:</u>

1. Programming Requirements f r Process Control

2. History of PEARL Development

3. Characteristics and Standardization of PEARL

4. Experience with PEARL

5. PEARL on HP 3000

6. PEARL on a Computer Network HP 3000 - HP 1000

Appendix A: Example of a simple PEARL Application Appendix B: Collection of PEARL Features and Examples

Dieser Bericht veröffentlicht Ergebnisse aus einem mit Mitteln des Bundesministers für Fprschung und Technologie (Kennzeichen DV 5.505) geförderten Forschungsvorhabens des Projektes "Prozeßlenkung mit DV-Anlagen (PDV)" im Rahmen des 3. DV-Programmes der Bundesregierung.

Die Verantwortung für den Inhalt liegt ausschließlich bei den Autoren bzw. den geförderten Unternehmen.

1. Programming Requirements for Process Control

General Requirements

- Process control programming should not require too much knowledge of the computer internals
- The programming language should allow economical writing and testing of programs
- o Source code should be easy to read
- o The programming language should support portability
- Open ended design of the computer control system should be supported through a module oriented program structure
- The programming language should assist the construction of correct programs and the development of reliable control systems
- o Object code should run sufficiently efficient

Special Requirements concerning Realtime Application

- o Means to describe parallel activities of a program
- o Possibility to describe configuration and capabilities of the system resources to be used in the program
- Special data types and operators for realtime process control

2. History of PEARL Development

- 1969 PEARL workshop is founded composed from the start of users, process computer manufacturers, software suppliers, research institutes, and representators of the German Society of Engeneers (VDI/VDE).
- 1972 Project PDV (directed by a project staff at the Nuclear Research Center, Karlsruhe, on behalf of the Federal Ministry of Research and Technology) takes PEARL under its wings.
- 1973 Preliminary definition of PEARL is set up.
- 1976 Final PEARL definition is completed.
- 1978 DIN Draft Standard of Basic PEARL is published.
- 1978 Basic PEARL is been submitted to the international working group TC97/SC5/WG1 as candidate for IS0 Standard.
- 1979 DIN Draft Standard of Full PEARL will be published until the end of the year.

Status of PEARL Implementations:

Firm	Process Computer Family
AEG-Telefunken	80-20/40/60
BBC	DP 1000/1500
Siemens	330/340
Dietz	Mincal 621
Krupp-Atlas	EPR 1100/1300/1500
MBP	HP 3000
MBP	Siemens 404/3
announced:	
DIGITAL	DEC PDP 11-Family
Werum	Norsk Data Nord 10S
Werum	MODCOMP
TU-Berlin (Werum)	HP 21MX
announced for microcomputers:	
Dornies (GPP)	MUDAS-432
SEL (GPP)	DEC LSI 11
IITB (Werum)	Siemens 310
Uni Karlsruhe (GPP)	Zilog Z80

3. Characteristics and Standardization of PEARL

Basic Concept of PEARL

- Algorithmic language concept mainly based on ALGOL 68 and also influenced by PASCAL
- o Syntax adapted to PL/1 where possible
- I/O structure allows to deal with a large variety of virtual devices (called DATIONs) and communication methods
- Abstract data types (like TIME, DURATION, and BIT-string) needed for realtime application

Principle Layout of a PEARL program

MODULE (module name);

SYSTEM;

- Description of hardware configuration (connection)
- Introduction of freely chosen names for I/O terminals and signals

PROBLEM;

Description of actions to be executed, practically independend of environment, e.g.

- Declaration/Specification of data, tasks, procedures
- Start conditions (schedules) of tasks

MODEND;

Characteristics of PEARL

Algorithmic Features

- Block structured language with scoping rules for objects known from the ALGOL family
- o Comprehensive choice of data types and possible attributes
- o Compound type STRUCTURE (similar to the PASCAL record)
- Communication between processes via GLOBAL objects with optional assignation protection
- PROCEDURE declarations with parameter transfer call-byvalue or call-by-reference
- Definition of abstract data types by using TYPE and OPERATOR declaration

P 20-5

Realtime Features

- o Parallel processing by using TASK blocks and PRIORITY
- o Declaration of events (INTERRUPT and SIGNAL)
- Synchronization of parallel activities by SEMAs and BOLTs

Input and Output Features

- Data-stations (DATIONs), generalizing real or virtual peripherals or I/O channels
- Interfaces, mapping data-stations with different properties onto each other to offer the possibility to define formatting routines (objects of type CONTROL)
- An object of type DATION represents in general a set of one to four channels:
 - Data channel (transfers values of PEARL objects)
 - Control channel (transfers values of type CONTROL)
 - Interrupt channel (signals events of type INTERRUPT)
 - Signal channel (signals event of type SIGNAL)

Standarization of PEARL

- o DIN (German Institute for Norm Control, Berlin) is given the task to care for a PEARL language description
- Means to describe semantics of realtime features of programming languages are based on Petri Nets
- DIN Draft Standard for Basic PEARL written and published in June 1978
- o DIN Draft Standard for Full PEARL is scheduled for late 1979

Basic PEARL is the common and minimal subset of Full PEARL which each implementations must contain. Some of the (Full) PEARL features Basic PEARL does not have are:

- Objects of type Reference (pointers) and BOLT
- Extensibility (new data types and operators)
- LABEL variables
- Multi-dimensional STRUCTUREs
- Nested tasks (subtasks)
- Dynamic priority change
- Interfaces
- Graphic I/O

Basic PEARL has been submitted by DIN to the international working group TC97/SC5/WG1 "Programming languages for the Control of Industrial Processes (PLIP)" of ISO (International Organization for Standardization) as candidate for ISO standard. Full PEARL is to follow in due time.

4. Experience with PEARL

- At present about 130 PEARL systems either in operation (the majority) or being installed (approx. 100 systems are truly industrial)
- o Quantitative results published (up to 80 % savings)

Realtime application area	Number	οf	systems
Metallurgical plants, rolling mills		37	
Power distribution		31	
Power generation		4	
Prime materials, chemical		16	
Water supply services		10	
Other public services (television, traffic, Spacelab etc.)		7	
Other industrial		9	
Warehouse, storage		7	
PEARL R+D and education		15	

5. PEARL on HP 3000

- PEARL subset on HP 3000 is Basic PEARL
 + multi-dimensional STRUCTUREs
 + objects of type Reference and BOLT
 + declaration of data types and operators
- o Machine-independend compiler
- Control of syntax analysis by a list to minimize expenses by changes of the language syntax
- Control of SYSTEM division interpretation by a list written in PEARL
- o Runtime routines using the HP 3000 FORTRAN-library
- Universal PEARL operating system written in GBL1 (PL/1-subset)
- o PEARL operating system implemented on MPE/II and MPE/III without modifications of the MPE operating system
- o Three HP 3000 processes running for PEARL
 - one process containing all PEARL tasks
 - one process realizing I/O operations
 - one process for timing control

- o five software interfaces betweeen MPE and the PEARL operating system
- Code generator to produce HP 3000 RBMs instead of FORTRAN announced

Principle of the PEARL compiler system on HP 3000

P20-8

Method of implementing the PEARL compiler system on HP 3000 $\,$

Advantage of using machine independent compilers by generating IL1 (Intermediate language) as computer output 6. PEARL on a Computer Network HP 3000 - HP 1000

P20-10

The Realtime-Computer-Network of the Technical University Berlin consists of 11 realtime-systems HP 21MX and HP 1000 in star-configuration with a central computer HP 3000. The satellites are used in various fields of process control like psychology, ergonomics or brewery and can have microcomputers as subcomputers. The central HP 3000 is mainly used for program development and remote file access. In order to increase the availability of the system a project has been started in 1978 to introduce PEARL into the process computer network.

The main characteristics of this PEARL implementation are:

- o Introducing PEARL into the process-computer-network is done in three phases:
 - Implementing the excisting PEARL system on the central HP 3000
 - Implementing a cross-compiler system for HP 1000 on HP 3000
 - Implementing a stand-alone compiler system on HP 1000
- For all three phases the same compiler main part is used; a code generator is written to produce HP 21MX relocatable code
- Sophisticated DS-features will be included to make PEARL applicable for realtime-computer-networks
- As a prospect it is planed to implement PEARL cross software on HP 3000 for microprocessors to be configured a subsystem under each satellite computer

References:

- T. Martin: Realtime Programming Language PEARL Concepts and Characteristics Proceedings of COMPSAC 78 page 301
- Full PEARL Language Description, PDV-Report KfK-PDV 130, Kernforschungszentrum Karlsruhe GmbH, 1977
- DIN 66253 Basic PEARL Draft Standard Beuth Verlag GmbH, Berlin, Cologne 1978
- K.Rebensburg: Real-time-computing with the Computer network of the technical university Berlin

P20-11

Example of a simple PEARL application

A pipeline shall be pressure controlled and is properly instrumented for this purpose (Fig. 1).

Fig. 2 shows the function/data block structure of the planned computer control system. The next step would be to choose a hardware configuration and connect the sensors, lamp, and control devices to certain clamps of the computer I/O devices (Fig. 3).

There are two tasks: Task 1 controls the pressure by means of a simple on/off algorithm. The valve is opened and closed by outputting bit pattern "10" or "01", respectively. Task 2, in addition, takes measures to alarm and quickly release the pressure, if a certain high limit is reached. Next the PEARL program can be implemented. (In the following text capital letters are used for designating PEARL language elements.) Before this, the general program structure of PEARL must be explained. PEARL programs are composed of independently compilable units, the so called MODULEs. Connections between MODULEs are established through GLOBAL objects. In general, a MODULE consists of a part describing the hardware configuration (especially the process I/O connections), called SYSTEM division, and another one containing the formulation of the problem, called PROBLEM division:

MODULE (module name);

SYSTEM;

- Description of hardware
- configuration (connections) Introduction of (reely chosen names for I/O terminals (DATIONs), interrupts, and signals

PROBLEH;

Description of actions to be executed, practically independent of environment, e.g. - Declaration/Specification of data, tasks, procedules - Start conditions (schedules) of tasks

MUDEND:

The purpose of this separation is the following: The PROBLEM division which contains the algorithmic and organizing part of the program becomes invariant against hardware changes. Thus, portability of the control program is achieved! The PROBLEM division is structured by means of TASKs and PROCEDURES. TASKs are independently and simultaneously runnable program parts. PROCEDURES (not used in the example) are, as usual, dependent on the CALLing program part.

With this information the reader should be almost able to understand the PEARL program, given in Fig. 4, utilizing the self-documentation feature of PEARL. In the SYSTEM division the transfer direction is defined by arrow symbols. Note how the user names of the devices (i.e. DATIONS) are introduced like labels. The other hardware names are system names known by the compiler.

Figure 1 Pressure control scheme for pipeline

. -

Figure 4 PEARL source program

.

Collection of PEARL Features and Examples

A3. TRANSFER-OF-CONTROL STATEMENTS

	L OBJECTS (DATA TYPES)				END:	STATEMENTS
(1)	PROBLEM DATA			Construction Construction		
	INTEGER Floating Point Bit String	FIXED (Pr FLOAT (Pr BIT (Lenc	IECISION) IECISION) ITM)	CONDITIONAL-STATEMENT (ALTERNATIVE)	IF BIT- THEN ELSE FIN:	ONE-EXPRESSION Statements 1 Statements 2
(2)	CHARACTER STRING TIME INTERVAL POINT IN TIME DATA FOR PROCESS CONTROL	CHAR (LEN DURATION CLOCK	(GTH)	CASE-STATEMENT (Selection)	CASE Ex ALT	PRESSION Statements 1
	Tran				•	
	INTERRUPT Signal Events Semaphore	IASK INTERRUPI SIGNAL SEMA	т		ALT OUT FIN:	STATEMENTS N Statements (Error Exit
(3)	DATA FOR I/O CONTROL	BOLT		REPEAT-STATEMENT (] TERATION)	FOR IDE FROM By	NTIFIER (LOOP INDEX) EXPRESSION (INITIAL EXPRESSION (STER MU
	FILE Device } Data Station Standard Formats		DATION F. E. A. B. T. D. LIST.		TO WHILE REPEAT	EXPRESSION (END VALL BIT-ONE-EXPRESSION LOCAL DECLARATIONS
	C-CHANNEL VALUE		X. SKIP. PAGE. ETC.	•	END.	STATEMENTS
	REMOTE FORMAT USER-DEFINED FORMAT		FORMAT	A4. TASKING AND SCHEDULING	ENU;	
				TASK DECLARATION		
(4)	DATA REFERENCE Pointer		REF	T: TASK PRIO 1: LOCAL DECLARATIONS STATEMENTS		
				END;		
(5)	COMPOUND OBJECTS			TASK EXECUTION		
	Array Structure (Data Hierarch	Y)	IDENT. (BOUND-PAIR-LIST) STRUCTURE	AT ONCE	ACT IVATI Act ivati	T; T PRIO (3°I);
(6)	USER-DEFINED DATA TYPES		TYPE	AT POINT IN TIME	AT 8:30 DCL TIM PER	:O ACTIVATE T; E CLOCK. IOD DUR;
40 EVAN					•	
A2.EXAMI DECL	ARE I FIXED,				TIME PERIOD	= 9:0:0; = 2 HRS;
A2. <u>Exami</u> Decl	ARE I FIXED, (F.G) FLOAT, B BIT (16) INIT ('00FF' C CHAR (4) INIT ('ABCD' A (1:105:5) FLOAT.	'Б4). ').		PERIODICALLY	TIME PERIOD AT TIME ACTIVATI	- 9:0:0; - 2 HRS; ALL PERIOD DURING 12 : T;
A2.EXAMI Decl	ARE I FIXED, (F.G) FLOAT, B BIT (16) INIT ('00FF' C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT, RF REF FLOAT, TAG LABEL RANGE(M1, M2) PIECE_STRUCT	'E4). '),),		PERIODICALLY At interrupt	TIME PERIOD AT TIME ACTIVATE DCL FULL	<pre>9:0:0; = 2 HRS; ALL PERIOD DURING 12 : T; . INTERRUPT;</pre>
A2. <u>exam</u> Decl	ARE I FIXED, (F.G) FLOAT, B BIT (16) INIT ('00FF C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT, RF REF FLOAT, TAG LABEL RANGE(M1, M2) PIECE STRUCT [NR FIXED (10), NAME CHAR (8), DATE STRUC	'E4). ').		PERIODICALLY AT INTERRUPT AFTER 10 SEC	TIME PERIOD AT TIME ACTIVATE DCL FULL	 9:0:0; 2 HRS; ALL PERIOD DURING 12; T; INTERRUPT; L ACTIVATE T; L AFTER 10 SEC ACTIVA
A2. <u>exam</u> Decl	ARE I FIXED. (F.G) FLOAT. B BIT (16) INIT ('OOFF' C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT. RF REF FLOAT. TAG LABEL RANGE(M1. M2) PIECE STRUCT [NR FIXED (10). NAME CHAR (8). DATE STRUC [(DAY, MONTH.]]].	'E4). ').). YEAR) FIXI	ED (2)	PERIODICALLY AT INTERRUPT AFTER 10 SEC PERIODICALLY FOR 5 MIN	TIME PERIOD AT TIME ACTIVATH DCL FULI WHEN FUL WHEN FUL WHEN FUL ACTIVATE	 9:0:0; 2 HRS; ALL PERIOD DURING 12; T; INTERRUPT; L ACTIVATE T; L AFTER 10 SEC ACTIVA L ALL 2 SEC DURING 5; T;
A2. <u>exam</u> Decl	ARE I FIXED. (F.G) FLOAT. B BIT (16) INIT ('OOFF C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT. TAG LABEL RANGE(M1. M2) PIECE STRUCT [NR FIXED (10). NAME CHAR (8). DATE STRUC [(DAY. MONTH.]]; NR	'E4). ').). YEAR) FIXI	ED (2)	PERIODICALLY AT INTERRUPT AFTER 10 SEC PERIODICALLY FOR 5 MIN DELAY FOR TIME SPAN	TIME PERIOD AT TIME ACTIVATH DCL FULI WHEN FUI WHEN FUI ACTIVATH AFTER 5	 9:0:0; 2 HRS; ALL PERIOD DURING 12; T; INTERRUPT; L ACTIVATE T; L AFTER 10 SEC ACTIVA L ALL 2 SEC DURING 5; T; SEC RESUME;
A2. <u>exam</u> Decl	ARE I FIXED, (F.G) FLOAT, B BIT (16) INIT ('OOFF C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT, RF REF FLOAT, TAG LABEL RANGE(M1, M2) PIECE STRUCT [NR FIXED (10), NAME CHAR (8), DATE STRUC [(DAY, MONTH,]]; PIECE MAME PIECE	'54). ').). YEAR) FIXI	ED (2)	PERIODICALLY AT INTERRUPT AFTER 10 SEC PERIODICALLY FOR 5 MIN DELAY FOR TIME SPAN DELAY TILL INTERRUPT	TIME PERIOD AT TIME ACTIVATE DCL FULI WHEN FUI WHEN FUI ACTIVATE AFTER 5 WHEN SES	 9:0:0; 2 HRS; ALL PERIOD DURING 12; T; INTERRUPT; L ACTIVATE T; L AFTER 10 SEC ACTIVA L ALL 2 SEC DURING 5; T; SEC RESUME; SAGE RESUME;
A2. <u>exam</u> Decl	ARE I FIXED. (F.G) FLOAT. B BIT (16) INIT ('OOFF C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT. TAG LABEL RANGE(M1. M2) PIECE STRUCT [MR FIXED (10). NAME CHAR (8). DATE STRUC [(DAY. MONTH.]]; PIECE	(E4). (), (), YEAR) FIXI	ЕД (2)	PERIODICALLY AT INTERRUPT AFTER 10 SEC PERIODICALLY FOR 5 MIN DELAY FOR TIME SPAN DELAY TILL INTERRUPT TEMPORARY STOP	TIME PERIOD AT TIME ACTIVATH DCL FULI WHEN FUI WHEN FUI ACTIVATH AFTER 5 WHEN SES SUSPEND	 9:0:0; 2 HRS; ALL PERIOD DURING 12; T; INTERRUPT; L ACTIVATE T; L AFTER 10 SEC ACTIVA L ALL 2 SEC DURING 5; T; SEC RESUME; SSAGE RESUME; OR SUSPENDT T;
A2. <u>exam</u> Decl	ARE I FIXED, (F.G) FLOAT, B BIT (16) INIT ('OOFF C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT, RF REF FLOAT, TAG LABEL RANGE(M1, M2) PIECE STRUCT [NR FIXED (10), NAME CHAR (8), DATE STRUC [(DAY, MONTH,]]; PIECE NR PIECE DATE DATE	(E4). (). YEAR) FIXI	ED (2)	PERIODICALLY AT INTERRUPT AFTER 10 SEC PERIODICALLY FOR 5 MIN DELAY FOR TIME SPAN DELAY TILL INTERRUPT TEMPORARY STOP CONTINUE	TIME PERIOD AT TIME ACTIVATE DCL FULI WHEN FUI WHEN FUI WHEN FUI ACTIVATE AFTER 5 WHEN SES SUSPEND:	 9:0:0; 2 HRS; ALL PERIOD DURING 12; T; INTERRUPT; L ACTIVATE T; L AFTER 10 SEC ACTIVA L ALL 2 SEC DURING 5; T; SEC RESUME; SAGE RESUME; OR SUSPENDT T; T PRIO 3;
A2. <u>exam</u> Decl	ARE I FIXED. (F.G) FLOAT, B BIT (16) INIT ('OOFF C CHAR (4) INIT ('ABCD A (1:105:5) FLOAT, RF REF FLOAT, TAG LABEL RANGE(M1, M2) PIECE STRUCT [MR FIXED (10), NAME CHAR (8), DATE STRUC [(DAY, MONTH,]; PIECE PIECE NAME PIECE COMPOHENT ACCESS: PIECE	(B4). (), (), (), (), (), (), (), (), (), (),	ED (2)	PERIODICALLY AT INTERRUPT AFTER 10 SEC PERIODICALLY FOR 5 MIN DELAY FOR TIME SPAN DELAY TILL INTERRUPT TEMPORARY STOP CONTINUE KILL ACTIVITY	TIME PERIOD AT TIME ACTIVATH DCL FULI WHEN FUI WHEN FUI ACTIVATH AFTER 5 WHEN FES SUSPEND: CONTINUE	 9:0:0; 2 HRS; ALL PERIOD DURING 12; T; INTERRUPT; L ACTIVATE T; L AFTER 10 SEC ACTIVA L ALL 2 SEC DURING 5; T; SEC RESUME; SAGE RESUME; OR SUSPENDT T; T PRIO 3; E, OR TERMINATE T;

Note: Appendix A and B are taken form "Realtime Programming Language PEARL-Concepts and Characteristics" by T. Martin (see references).