
DISK·

SUB.SYSTEMS

SOFTWARE

CONSIDERATIONS

H.;..j17.1



-Foreign trade" enhances the quality of life of any

nation. In similar fashion, "foreign devices" attached to a

computer's central processor unit (CPU) can often enhance the

performance and cost effectiveness of the computer installa­

tion.

In both cases, protectionist attitudes can limit the

potential benefits. In the world of computers, the first in­

stinct of the user is to protect his system software. The con­

cern is legitimate. Investment in software can easily exceed

the value of computer hardware.

System software has been designed, in most cases, to oper­

ate within the context of a specific hardware configuration.

Even minor alterations in the hardware characteristics can have

far-reaching and often unpredictable effects on the operating

software.

Yet the fact is that nearly every computer installation is

limited not by the capabilities of its CPU, but by the throughput

and capacity of the input/output and mass-storage devices attached

to the CPU. The performance of nearly every computer installation



- 2 -

can be enhanced, therefore, by taking advantage of state-of-the­

art advances in the design of these peripheral elements.

But this is acceptable only if the new equipment is "trans­

parent" to the existing softward. Neither the CPU (for tech­

nical reasons) nor the user (for emotional reasons) should be

disturbed by the switch to a new type of I/O or mass-storage

device.

Software Transparency

These comments apply to any type of equipment attached to

a computer--including terminals, printers, tape transports,

data-communication lines, and disks.

This paper will concentrate, however, on disk drives--for

several reasons. Disks represent the most economical method

for providing fast-access mass storage. Moreover, since disks

are usually treated as an extension of main memory, they are

intimately linked to the CPU and its operating softward. And

if these facts were not enough to give pause, disk technology

has been progressing at a very rapid rate during the past few

years •

. The challenge, then, is to realize the potential of the new

technology (e.g., the new 3330 and Winchester drives) and still

remain "software transparent." Techniques must be found to



- 3 -

attach an advanced (but "foreign") drive, without altering a

single instruction in the operating system software or appli­

cation programs.

Three different methods have been developed to accomplish

this objective:

a) Fixed plug-compatibility

b) Dynamic plug-compatibility

c) Virtual transparency

As one of the industry's leading suppliers of disk systems

for computer enhancement, CalComp uses all three techniques for

achieving software transparency. Each method has its place

depending on the type of system and the volatility of the hard­

ware and software.

Fixed Plug-Compatibility

The original technique was fixed plug-compatibility--dating

back to the 1960's. It was, in fact, the basis for the first

effective penetration by independent disk suppliers, such as

CalComp, into the monolithic IBM marketplace.

Small but significant changes in the mechanical design of

disk drives provided major improvements in reliability and ease

of maintenance--plus a modest increase in system throughput.

H-~7.4



- 4 -

Despite these advantages, however, the new products could not

have found a market unless they appeared (to the CPU) to be

Identical to equivalent products offered by IBM.

The "foreign" drives were provided with cables that could

be plugg~d directly into the IBM mainframe. They also had

electronic logic circuits that could respond, with absolute

fidelity, to IBM's disk~drive commands.

But the fixed nature of the interface was a severe handi­

cap. Independent disc suppliers were inhibited from developing

performance characteristics beyond those that could be controlled

by the mre1 disk prgtocol. They would be" by definition, I1trans­

parent"--and of no practical value. Suppliers had to wait for

IBM to make the improvements, and were therefore in a constant

state of catch-up.

or much greater concern was the fact that IBM could J at any

time, make minor changes in its own operating software. These

could render" overnight, all "foreign" disks inoperative. Some­

times the changes could be anticipated and allowances m~de in

the control circuitry. Just as often, the only· solution ~:az an

emergency retrofit of eXisting units 1n the field.

Despite these difficUlties, the cost savings and perfo~nance

benefits were sufficient to create a Viable plug-compatible



- 5 -

market for independent disk suppliers. Their sales grew at an

accelerating pace and soon extended beyond IBM to systems pro­

duced by other mainframe and minicomputer manufacturers. But

the vulnerability to change has remained as a constant threat

to both users and suppliers.

Dynamic Pl~g Compatibility

One solution to this problem is what can be referred to as

dynamic plug-compatibility. This is the capability of "mapping"

or making one type of disk look like another type which is

recognized by the host system.

Two factors have contributed to the development of this

concept. Of major importance, of course, has been the intro­

duction of LSI. and microprocessor circuitry. A microprocessor

can be readily adapted to the type of control functions required

in a disk interface. Equally important has been the expanding

role of mass storage facilities as the principal method for

enhancing the efficiency and throughput of computer installa­

tions. Disk storage facilities, taking advantage of new, high­

capacity drives, have grown to the billion-byte level--as a

starting point.

In addition to size, there is also a new emphasis on variety.

Disk facilities may include drives with removable or non-removable

media with fixed or moving heads. Small-capacity units may be

added for private files, while maximum-capacity units serve as



- 6 -

basic storage to provide a minimum average cost per byte.

The configuration of the facility may, in fact, change from

month to month, or even hour to hour.

with the new emphasis on size and capacity, the additional

cost of a dynamic, microprocessor-based disk interface can be

easily justified. And as an added bonus, the interface can be

easily altered to meet any changes in the disk hardware or

operating system software.

The functions of a dynamic plug-compatible interface are

dictated by the microprocessor program--stored in easily inter­

changed PROMs or floppy disks attached directly to the interface

controller. Or the operating system itself can define its own

plug-compatibility by downloading a suitable interface program

at the time of system generation. Response to changes can be,

for all practical purposes, instantaneous.

virtual Transparency

Fixed plug-compatibility is still the most direct method

for achieving software transparency in applications where the

system software is static and little advantage can be gained by

changing the mass storage facilities. Dynamic plug-compatibility

can be justified when the storage facilities are large, or when

there is a high degree of volatility in the system software and

physical makeup of the storage facility.



- 7 -

In both of these cases, an assumption is made that the

"plug-compatible" device is recognized by the existing system

software. But this leaves a third situation in which neither

technique is truly applicable. For example, the system software

may have been written without any provision for the newer types

of disk drives (e.g., 300 MB drives with a 1.2 MB/second trans­

fer rate). There is, therefore, no "plug" to be compatible

with. Situations could also exist in which the hardware and

software are evolving at a rapid rate, yet the scope of the

mass storage facility cannot justify the use of a dynamic, micro­

processor-based "mapping" approach.

In both of these instances, a technique which can be referred

to as "virtual transparencyU can be an effective SOlution. CalComp

is using this method to interface a variety of different capacity

Trident disk drives to CPU's produced by many different mini­

computer manufacturers, some offering many distinctly different

operating systems. All of this is accomplished, moreover, with

a microprocessor-based disk-controller design--produced in volume

and thoroushly tested by hundreds of successful applications in

the field.

A Logical Answer

Virtual transparency can best be understood in terms of its

origin: Virtual memory. Originated by IBM and now adopted by

H-}17.8



- 8 -

most minicomputer and mainframe operating systems, virtual

memory was developed as a way to free programmers from any

need to allocate and keep track of the computer's memory

resources. Application programs could be written in abstract

terms. The computer's operating system would translate

Illogical" virtual-memory addresses into physical addresses-­

taking advantage of any memory space available.

As programs grew in size and larger volumes of infcrmation

were processed, much of the data (including application programs

and portions of the operating system itself) were transferred

to mass-storage devices like magnetic tapes and disks. But

these were treated~as I/O peripherals, and soon the computers

wer.e spending a majority of their time on the transfer of files

between mass-storage and memory.

The virtual-memory concept again came to the rescue. Just

as the use of logical addresses, independent of physical loc~­

tions, simplified the life of the progra~~er, an extension of

the virtual memory technique to mass storage devices served to

relieve the main operating software from an equivalent concern

tor the physical configuration of the system. Subsidiary

modules could accomplish the necessary mapping and address

translations.

The benefits are manifold. The programmer and his applica­

tion program can ask for data stored at a logical loc3t1on. The



- 9 -

executive portion of the operating system passes the request

along to the appropriate memory-management module. The subsid­

iary software determines whether the requested data is in main

memory--immediately accessible to the application program--or

is remotely stored on disk or tape. If the latter is the case,

the transfer can be initiated by the lower-level software while

the operating-system executive moves on to other, more demand­

ing tasks.

Device Handler

The first step in the transfer operation would be for the

memory-management module to pass the physical address along to

an even more subsidiary software unit: the dev~ce handler for'

a specific disk-drive controller. Only now,. three steps re­

moved from the application program and two steps removed from

the main body of the operating-system software, would the ad­

dress request take a form that relates to a specific, physical

device.

Virtual transparency takes advantage of the fact that there

are, in truth, two interfaces between the disk storage and the

system software. One is the physical interface at the plug con­

necting the disk-drive controller with the CPU hardware. The

second is the software transition between the virtual addresses

of the system software and the physical location of the stored

data.



- 10 -

Either one of the interfaces can be used to maintain

"software transparency." The plug-compatible techniques use

the physical interface. CalComp's virtual-transparency method

takes advantage of the modular structure of nearly all operat­

ing systems. When the memory-management module IIcalls " for a

specific device-handler module, it can just as easily invoke

a CalComp-supplied segment of software as one supplied by the

computer manufacturer. In neither case is the main body of

the system software affected. Not a single line of the exist­

ing application programming must be changed. Yet the user has

the advantage of the latest technology disks, with capacities

that far exceed those of the largest disks anticipated by the

designers of the original software.

System Generation

The simplicity of the virtual-transparency concept is

evident each time the operator "generates" the computer system

for a specific group of application programs. The complete set

of operating-system modules is rarely used. Instead, to con­

serve main-memory space, the operator invokes a system-genera­

tion program that allows him to specify only the modulas required

for the particular applications.

A CalComp-supplied module is included in his choice of

options. The software itself is supplied on t~pe or disk, depend­

ing on the system configuration. The operator also has a sheet



- 11 -

of load instructions, written in exactly the same format as

that used by the compute~ manufacturer. At an appropriate time

in the system-generation procedure, the operator loads the

CalComp device-handler module--or leaves it out. Moreover, if

~ere is ever a problem with the CalComp disk hardware or soft­

ware, the disk-controller cable can be simply unplugged and the

system regenerated without the CalComp module.

Summary

The true tes~ of "transparency" is whether a foreign device

can be added to a computer system to enhance its performance and

capabilities without affecting, in any way, the user's investment

and confidence in his operating software and application program­

ming.

At least three different methods can be used to achieve this

result. CalComp has used all three techniques to enhance both

exis~q andne~ com~uter installations.


	Papers / Presentations
	System Periphals
	Disk Subsystems Software Considerations



