
DENNIS DINAN
GLENN ENTIS

MORGAN GUARANTY TRUST COMPANY OF NEW YORK

AN APPROACH TO ON-LINE APPLICATIONS MANAGEMENT

PRESENTED AT THE
HEWLETT-PACKARD GENERAL SYSTEMS USERS GROUP

7th INTERNATIONAL MEETING

OCTOBER 30 - NOVEMBER 3, 1978

G-09.1

DENVER, COLORADO

TERMINAL AND APPLICATIONS MANAGEMENT SYSTEM

TAMP (for Terminal and Applications Management System) is an

integrated system of processes and subprograms which are used to

define and manage an on-line application system. Each application

to be run under TAMP includes one TAMPFILE, which is a multi-key,

variable-length KSAM file designed to provide a compact, flexible,

and easy-to-use interface to the applications environment. This

TAMPFILE, which will be discussed below, defines all processing to

be done within the mon~tor, and includes TAMP terminal configuration,

user/function security matrix, and all data files to be managed by

the system.

The first step in implementing an application under TAMP is the

creation of the TAMP KSAM file. Here the user is asked questions

about the size of his application, such as the maximum number of

functions which he expects to include in the system. If the user

miscalculates the dimensions of his application, he also has the option

of later expanding his TAMPFILE, without affecting its data. The user

also enters the Security Manager's name and password, and in so doing,

restricts all further modification of the file to the bearer of that

password.

The next stage in preparing a TAMPFILE for use is the definition

of the application. This data is entered through a terminal interactive

program and is grouped in logical records which represent the resources

managed by TAMP. These resources are user functions, system utilities,

data files, terminals, and users. A brief description of each of these

records, their relationships to each other, and their use in on-line

processing may be found below.

G-09.2

Although the following outline of TAMP record types greatly

simplifies their structure, it does provide the essential content

and purpose of each type of record.

FUNCTION - There is one function record for each

callable application entry point. Each

function may be one of several types

(program subprogram, SL subprogram,

independent process, MPE stream) and is

invoked accordingly. If the function

expects data file numbers or data from

the terminal as parameters, that is also

included here.

UTILITY - Utility records are almost identical to

function records. However, those functions

which are designated as utilities are

initiated automatically by the TAMP software

and may not receive parameters or be called

by users.

FILE - This record contains a filename qualified by

group and account. The file which this

record represents may be of any type,

including MPE, KSAM, IMAGE, and SMOG (described

elsewhere in this paper). Once defined on a

TAMP record, a file may be opened by the

TAMP software and passed as a parameter to

one or more functions.

G-09.3

TERMINAL - This record contains the logical device

number of a terminal to be included in

on-line TAMP. For each active terminal

TAMP record, a process will be created by

the on-line software which opens and

allocates the corresponding logical device.

USER - The user's record includes his name, encoded

password, processing values, and maps indicating

which functions he may display on his menu and

which functions he may actually call (these

two types of function access are completely

independent). Also included in this record

are the assignments by which a user can expect

each of four terminal soft-keys to call for

him a selected function.

The program which defines a TAMPFILE also serves as the TAMPFILE

maintenance program, and is where the Security Manager really does

his job. As each user (and user password) is added to the system,

the SecQrity Manager also enters which functions that user may see on

his menu and/or actually call. The Security Manager may also assign

for each user two application-defined processing values, which are

handy for such things as data-base user class codes, maximum dollar

amount which may be entered by the user, or whatever else fits the

application.

Other features of the TAMPFILE maintenance program include

terminal configuration, assignment of data-files to functions (the

filenumbers or file-tables of these files will be passed as parameters

to their assigned functions during on-line processing), and definition

G-09.4

of system utilities, such as start-up, batch processing or logging

routines.

The on-line portion of TAMP is the "outer block" within which

all application programs will run. The TAMP software will call

application defined start-up routines, open and allocate terminals,

display sign-on screens, provide all first-level menus, and call

requested application functions. This is accomplished through the

use of a set of related processes which communicate with each other

through a commonly held extra data segment.

On-line TAMP is actually a simple, two-level process tree

consisting of a father process (FATHER'TAMP), and his various kinds of

sons. FATHER'TAMP is the process which is created upon running TAMP.

His first duties include initiating start-of-day application processing,

which may also include restart and recovery procedures, and creating

the extra data segment which will be used as the common communication

area between processes. FATHER'TAMP next reads all terminal records

from the TAMPFILE, and for each creates a terminal sign-on process.

FATHER'TAMP also creates a process whose sole responsibility is

communication with the system console, which here becomes the TAMP

console as well. At this point, FATHER'TAMP suspends himself, and is

reactivated only by sons with specific requests. All further processing

depends on input from the user and console terminals.

The role of the common communication area in the extra data segment,

as well as the orderly regulation of processes through use of Resource

Identification Numbers (RINS) is a vital component of the on-line TAMP

software. However, this processing is invisible to the user and beyond

the scope of this paper. It should just be considered here that

'processes do not haphazardly suspend, terminate, and activate one another.

G-09.5

The task of the terminal sign-on processes is simple. Each

displays a user sign-on screen, and ~hen validates, by user name and

password, attempted entries into the system. Upon a successful

sign-on by a user, the terminal sign-on process for that user's

terminal activates FATHER'TAMP with the appropriate message and then

terminates.

Upon notice that a user has signed-on successfully, FATHER'TAMP

creates a new process for that user. This process displays a welcome

screen for the user, and, depending on the user's response, may display

a menu of those functions which the Security Manager has permitted this

user to see. The user may now request entry into a function in one of

several ways, including selection by menu position, function name, or

the user's own soft-key assignments.

The user's process calls the selected function in the manner

specified in the function's record (e.g., if the selected function's

type indicates that the function is a subprogram in one of the Segmented

Libraries, the user's process will find, load, and jump to this

subprogram). Also, if the function's record indicates that it expects

data files and/or data from the terminal, the user process will open

the appropriate files (if not already open) and pass the necessary data

as parameters to the function.

When a user signs-off, control of his terminal is passed back to a

terminal sign-on process. At the end of the day, FATHER'TAMP again

takes control, signs remaining users off of the system, initiates

application-defined end-of-day processing, and terminates.

G-09.6

SMOG

SMOG is a HP2645A terminal interface and screen processing sub­

system. It provides a convenient access to local and remote terminal

devices using a wide range of the HP2645A terminal capabilities while

keeping necessary terminal knowledge to a minimum.

SMOG makes very few demands on the application programmer. De­

veloping screen images requires no knowledge of escape sequence char­

acters. There are no stringent programming requirements necessary for

accessing terminals in an interactive mode. All housekeeping, work

areas, buffers and data transfers are handled transparently within the

subsystem.

Screens exist in the system as logical records in a KSAM file.

These records consist of the screen image in displayable form, control

data and reporting data. Each record has an associated screen name

which is used as the "key" when adding a s.creen record to a file or

recalling an existing screen within a file. Also, there is a control

record in the file. This contains global file information and sizing

requirements necessary for allocating buffer space for screen records.

Working with screens, it is entirely up to the user how they will

be designed. Then a screen file maintenance program assists the user in

defining and entering the screen. The user must supply the row and

column numbers of the start of each field, their lengths, their field

type: protected or unprotected, any display enhancements and edit

checking, plus any data which is to be used to initialize the fields.

The maintenance program then interprets and assembles this data into a

displayable character string with all appropriate escape sequences.

G-09.7

Counters and indexes are kept internally to accumulate read and write

counts, field descriptions and status information about a screen.

Once entered, a screen may be easily modified, deleted, displayed,

duplicated or renamed. Several reports are available including one

containing a reproduction of the screen image. This report also contains

a description of each field along with entry numbers which are used to

address fields in subsequent screen maintenance or to programmatically

access these fields for changing their enhancements, protection, or

modifying their data content.

Screens in one file may be copied in entirety or selectively to new

screen files. They may also be merged in the same manner with screens

in other existing screen files. Provisions are included for both

keeping and deleting another version of the same screen found during a

merge.

Programmatically, SMOG has many useful features. One call to an

initialization program sets up everything necessary to process. It is

even smart enough to know how its process was started so that a terminal

can be initialized properly. If a user father process was responsible

for its creation, it expects that he also assigns a terminal to use,

otherwise, it defaults to using the logon terminal. Also at this time,

the caller's screen file is opened, the break key is disabled, buffer

areas are dYnamically allocated and a global work area is set up to

maintain file numbers and status information which is necessary for on­

line processing. None of this is ever seen by the programmer.

The programmer can now interact with the terminal using the screens

from the screen file. Intrinsics are available to locate screens, to

modify protected and unprotected data, display enhancements, and protection,

to output a screen image, to read a screen's unprotected data, and to

f,-09.8

dynamically create and read from individual fields on a screen. The

outputting of a screen can optionally include the field at which the

cursor is to be positioned; all reads from the terminal can be armed

with a function key interrupt feature which returns an indicator to the

program, or can optionally be timed out. The programmer has the res­

ponsibility of calling an intrinsic to reset the terminal before exiting

from a program.

SMOG is very versatile. It can alternate the use of both block and

character mode of I/O. It is callable from COBOL, FORTRAN, and SPL. In

each of these languages, it allows a simple approach to screen processing.

G-09.9

KEDS

Keyed Extra Data Segments (KEDS) is a method of organizing

ordered sets of tables within extra data segments. A set consists

of one or more tables. A table is comprised of one or more elements.

Access to these tables is permitted by table element within table

within set.

This access method allows an application to keep all necessary

tables "virtually" memory resident while permitting them to be shared by

several processes within the same job or session. It allows for elements

to be deposited into a table by a relative element number and retrieved

by the same element number or by searching for a table element with a

specific key value.

KEDS is relatively simple to use. Initially, table space must

be allocated. This is done by an intrinsic call with which the

program must supply a set name, the size of the data segments to be

used, the number of tables in the set and a list containing each

table description. Each table in a set must be assigned a name, an

element size, and a maximum number of elements.

Using this information, KEDS calculates the total amount of

memory needed and creates as many extra data segments necessary to

contain all of the user's tables. A parent segment is also created

through which the tables will be accessed. Therefore, by accessing the

parent segment, one can determine if an element exists in a table, the

segment in which it exists, its location within the segment, plus its

length. Once created, the programmer must load table elements in the

order in which they are to be used.

G-09.10

Elements can be deposited and retrieved very efficiently by KEDS,

using relative numbers, but, this is not always the easiest or best way

of accessing tables. If a programmer so desires, KEDS will search a

table for an element with a specific key value. Keys are not restricted

to any size or location within the element. Tables can exist which have

several keys and the choice of which will be used in the search is made

by the calling program. Tables can be ordered in ascending or random

key sequence.

Data transfers are very flexible. One can specify that all, part

or none of an element is to be transferred if it is found during a

search. This is a powerful tool for validation tables or tables whose

elements are suited for mul~iple purposes.

The complete capabilities available to the programmer are: crea~e

tables, append element, update "element, read element, read element by

key (random or sequential), and delete tables. Combined, they provide a

simplified approach to me~ory resident table management.

G-09.11

~ Morgan Guaranty Trust Company
•.....
I\J

·ofNew York

G)
I

s
U).
.....
w

• Automated Banking System

• Euro·currency Automation

• Global Exposure System

• N.Y. Profitability System

ENVIRONMENT

• HP 3000 Series 11/111
G")
I
~

~ • On-line & Batch
~

• Multi -user

REQUIREMENTS

• Self ·contained system

• .Computer management
G),
IS)

\0

~ • User & function oriented
security

• Terminal management

• Full screen support

TERMINAL.·

ApPLICATION

MANAG·EMENT

PROGRAM

®CREEN

~ANAGEMENT

@FF-LINE

@ENERATION

~EYED

~ XTRA

[Q) ATA

®EGMENTS

Appl ications environment

APPLICATION
PROGRAMS

home terminal

stdlist

stdin
MPE
disc
files

TAMP

~ t ~t
J l.

~ KEDS
APPLICATION ~

PROGRAMS

~t"SMOG •
~ ~

,
"~I disc

\ \1

..... -------------~

stdlist or terminal assigned
by father process

Tampfile

TAMPFILE

USERS

fUNCTION.S

FILES

TERMINALS

UTILITIES

U.SER

• name

• password
G1

• function (view)IS •\D.
II..)
I\)

•• function (call)

• processing values

• softkeys

FUNCTION

• name·

• type·.·

• ent ry point

• segmented library

• run priority

• description

• data files

FILE

• name

• type

.• multi ·access

TERM1NAL

• name

• logical device no.

• hardware data

UTILITY]

• name

• type
Gl

•s • entry point\D.
'"m

• segmented library

• run priority

:RUN TAMP

FATHER
TAMP

..._-_
I

T·UP I KEDS TAMP
I CONSOLE• I---_.

Initialize
communication "area

)

,-----

.,.----
I
I STAR
I ?
I

FATHER
TAMP

t I 1
G)
i

CS)

\0

terminal terminal terminal.
I\J
CD no. 1 no. 2 no. n

Terminal •sign· on processes

suspended

FATHER
TAMP

G).
JOE

EDS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Terminal
•sign-on

act ivate!

GJ
f

CS)

\0.
USER
SON

FATHER
TAMP

terminate

USER MENU

99/99/99
USERNAME

C) 1 ADDCUST Add a customer
I
~

\0

2 FUNCNAME This is a function description. sk1w.....

3 CHNGCUST Change a customer

sk2 4 REPTCUST Report on a customer

5 DELCUST Delete -a customer

• Block mode transfers

• Modify protected &
unprotected fields

• Modify & reset display
enhancements

• Cursor positioning

• Cancel notification

• Field level 1/0

Build files

Add screens

SMOG Display ~ ,

G) Modify ~ ,
•~

"".
Deletew ,,

w

Report ' ,

KSAM

Smogfile

j~

" e Copies screens

- Duplicates screensG1,
SMOGUTIL

~

Renames screens
\0 -.
w
~

I - Merges files

Smogfile

open
terminal

INITERM

allocate
buffers

open
screen

file

t initialize
communication

area

!
i

GETSCREEN

MOVEDATA & ENHANCE

G)
t

\D.
W
-.J

11 02 78

for demos

program data

+

screen buffer

--
11/02/78

a good screen
for demos

final screen

PUTERM

w
co

SCREEN BUFFER display screen TERMINAL DISPLAY
&

position cursor

GETERM

III
I II

1

1IIIIIIIIIfllllllllllllllllllllmllllll.lIIl!lllllmllll!III!II!11IIIWI!li'II"I'
II Il11/02 I 78:' I'

i I 1111111 li!111111 lin!!' liili!llill!ll! Il!llliilii!!!jjii!iii illi liill!!I!11 illlllill
a user enters 'I!IIIII!

j
1111

'111' 'III 1111'''' Ii ,I "II !rsome data :ili'il!i'!!!!'I:'!!
1 11111;11!'!'IIIIIIIIIIII'III!!I!!Illl'~~llill'!Iillll'll!~lI'!I!~::!I;m,!:!:i:':Ill!:!!:.!:!:!~.:.

111 1111111"';I"I~lllillill"'III 1··I'lIlll1ltil;'I".",.II""I"'III"I"
t I 111 11'1"11 I: Ill, 1,1111'"::1"'1:"1:;,1 01 :,:11 1'1':1,,:::11 .. , ul kt....~ ~..~."I ,iu.1.

PROGRAM DATA
FIELD

CANCEL! a user enters
some data

reset
enhancements

TERMINAL SCREEN
BUFFER

W
\0

GETLINE & PUTLINE

I getline >
<putline

hello

what?

TERMINAL SCREEN PROGRAM DATA

• MANAGES
VIRTUAL

TABLES IN
MEMORY

o Builds tables

__ Shares tables

e Reads elements

fa Writesl updates elements

e Reads elements by keyvalues

e Purges tables

, ,

data element 1

table 2

n
table 3 0

1 ' ,
2
•

•
n

table 1

global

~ .

\ ~ getabykey
i.

~ :

r· ;:: ..: ..t.. :z:- .~ .::::; m:--;.:4'#.. t¥§"1
~ ..,.:

H
t: ~4" r- ~.. , ..~

L~" .' ~I' ~ ~"" ",.. ., ~

~': ~:. '" '..I~· .. ;'-~

Program
Interface

Parent EDS Children EDS

	Papers / Presentations
	System Development
	An Approach to On-line Applications Management

