
Programming For Survival

by

Gerald T. Wade
Product Specialist

Hewlett-Packard
Neeley Sales Region
Englewood, Colorado

ABSTRACT

This article deals with programming techniques to
generate maintainable programs which will survive the loss
of their author. It is geared priroarily for the individual
programmer rather than the leader of a programming team but
it should be useful to both. The techniques described apply
both to the creation of an entire program or only to the
creation of one subsystem, as is the case in a team effort.
One of the desires of the author is to promote ULgoless
Programming" with overall program quality rather than
individual programmer mystique as the end result.

G-03.1



FORWARD:

The purpose of this article is to discuss programming
techniques which will aid in the maintainability, hence the
ultimate survival, of programs. I take as a basic premise
that few if any programs are ever written such that they
never require modification. This modification may be
necessary due to changes in program requirements, operating
systems, host computer, etc. or to 'Bugs' found in the
program. Whatever the reason, very few programs escape the
need for maintence. As a corollary I purpose that in many
cases the modification of a program will be made by someone
other than the original programmer. In general programs
tend to be written to satisfy the needs of a particular
site and thus tend to remain at that site even after their
original programmer has left in search of a better
position. The conclusion that must be drawn is that in
general a program will have to be modified and that such
modification may be done by other than the original
programmer.

If I may digress a moment into historical speculation: In
the early days of computer programming the prime constraint
on the programmer was his hardware. Hardware tended to be
bulky and extremely expensive. As a result an installation
would have to operate on the least amount it possibly
could. One of the main hardware restrictions was the amount
of real memory available in the computer. virtual memory
systems came along later to ease the situation but they
brought with them penalties in program speed and
complexity. As a result much emphasis was placed on coding
a program such that it required the least amount of memory
possible. Programming techniques developed with this goal
in mind~ For example: Variable locations might be reused
for several purposes as the program progressed. This saved
using a separate location for each use but made it
difficult to determine the exact contents of that location
as the program ran. Sections of code were often overwritten
with data arrays after they had been executed. This
technique saved much memory but could be very confusing if
a modification tried to use the overwritten code. A
similiar technique was to modify a section of code in order
to configure it to perform various functions as the program
progressed. This was done primarily in assembly or machine
language but it too could cause much difficulty for someone
not aware of what was being done.

All of the difficulties mentioned were dismissed by the
programmers by explaining that they were smart enough not
to do anything like that. While this might seem to be a
valid argument I shall draw on my speculative history to
discredit it. Hindsite shows us two basic occurences.



First, as I have mentioned, these programs were oftenrequired to be maintained by other programmers after theoriginal author left. This means that someone else wouldhave to learn what tricks had been used in order to avoiderrors. If the programs were well documented and told justwhat had been done then this would be no serious problem.This was generally not the case. Program documentation wasskimpy and often even misleading. I attribute this fact tothe programmers ego and his sense of survival. Rememberingthat the prime method for determining a good from a badprogram, and by association a good from a bad programmer,was how little mereory was used, the programmer wasnaturally reluctant to reveal all the tricks he used toachieve this objective. By keeping these techniques tohimself he would be better able to stay one step ahead ofhis competitors and boost his own eqo or 'mystique'.Extensive documentation was often omitted as a timeconsuming task with little reward for the programmer. Thusthe program documentation was not sufficient to allowanother programmer to modify or maintain the program.Second, even if a programmer was modifying his own programat a later date he might have forgotten all the tricks hehad originally used and thus fall into the same traps asthe outside programmer.

The result of these types of problems often was thatprograms became ineptly patched, slower to execute, andunreliable. As an end result they would have to be thrownout and a new program written in their place, even when thechanges to the original program were all small ones. Wehave set the stage for much duplication of programmingeffort and a bad reputation for the computer industry dueto the unreliability of its programs.

What of the present and future? While technology has beenadvancing at a blinding rate and removing most if not allof the original constraints on the programmers, they havefailed to update their techniques to keep pace. Memory costand bulk has been so reduced that most installations cannow afford to buy essentially all they need. with theadvent of high speed secondary storage devices, (drum,disc, and soon magnetic bubbles), virtual memory systemsbecome much more viable. What we have then is a totally newenvironment for the programmer. In the past he had toconserve memory by whatever means possible but today he cansacrifice some program size for clarity andmaintainibi1ity.

The rest of this article will deal with methods to writeprograms such that they will (1) accomplish theirobjectives reliably (2) be as simple as possible to



maintain and modify, even by a programmer other than the
original author (3) possibly survive and remain in use long
after the original author has gone. It is my contention
that the ability to write simple to understand, reliable
programs that remain in use is a far better goal than to be
thought a 'magic man' for the ability to write programs
that no one else can understand.

The first sections of the article deal with general
techniques that reight be applied to any computer system.
The remainder of the article deals with special techniques
that may be used in order to write programs for the HP-3000
system.



PROGRAM STRUCTURE

The term STRUCTURED PROGRAMMING has become a popular buzz
word in todays society. As such its definition has become
so twisted as to make it almost a useless term. Let me
define what I mean when I say that a program should be
properly structured.

A program may be thought of as existing at several
different levels. The outermost level is the grossest look
at the program and answers the question. Just what is this
program going to do ? or Why was this program written? The
next level breaks the program into major functions or
'blocks'. For example, there might be an initialization
block, a function selection block (if the program has
multiple functions), a block to perform each function, a
block to deal with anticipated error handling, and a block
to handle any finishing housekeeping, such as closing
files, printing summaries etc.

Each block within the program may then be further
divided into smaller sub-blocks. A sub block might contain
the code to read the input file, or to perform a sort on
the data etc. The key thing about a sub-block is that it
must be small enough to be fully comprehended by someone
reading the program. This means, in practical terms that it
should absoultely be no longer than one page of source
code, preferable about one half page in length. One and
only one operation should be preformed in the sub-block.
Thus it would be i~proper to create a sub-block that reads
and sorts the input file if indeed those are two separate
operations. The beginning of each sub-block should have a
comment that describes the operation to be performed and
the person reading the program should be able to verify
that the code in the sub-block does indeed perform just
that operation.

This approach to structuring a program is also known as
the "Top Down" programming method or the method of
"sucessive redefinition. 1t Many papers and books have been
written about these methods and I will not elaborate
further here except to say that I normally only follow the
methods in gross structure but not in actual
implementation. Some of them involve large amounts of
formal structuring that I see as time consuming and
appropriate only for the largest of programming tasks. For
most programs it is only necessary to keep the concepts in
mind during the programming, not to generate large amounts
of paperwor k.

(1-03.5



THE PROGRAM DLFINITION STATEMENT

At the start of each program there should be a comment
that states the exact purpose of the program. It should
answer the questions "Why was this program written ? ~hat

does it do "? The answers to these questions ~ight seem all
to obvious at first but their answers must be fully
understood in order to direct any further development of
the program. I was surprised to find the large number of
programs that were written and actually being used without
stopping to ask just what it was that they were trying to
accomplish. An exa~ple might be a program that was written
to "analyze the system log files". Khile this wight sound
like an admirable objective, it leaves many questions
unanswered. v#ill this program allow me to print a report
showing the number of power failures loggeo on a given day
of the week? Can it tell me how many lines each of the
system users have printed on the line printer? Depending
on the answers to this type of question, the program wight
be a small task or a major programming effort. No program
should be attempted with so skimpy a definiticn. A better
statement of program function might be: "This program was
written to read the system log files and to produce a
summary file. The summary file will be one record for every
job or session run and contain the total number or records
transferred to each I/O device by that job." with this
definition it is easier to tell just what the program will
or will not do.

The program should adhere rigorously to its stated
objectives. This is a means of avoiding the program that
starts out to do a simple task and ends up growing in to a
monsterous 'klugde' that attempts more than its modest
original ~ramework can support. The temptation is great to
take a program that does 'almost exactly' what you want and
add to it until it can perform both the old and the new
function. The problem with this is that the ground rules
for the program are being changed. For example, a program
that was designed to read the system log files and print
out a summary of power fails might be a candidate to be
built into one that can also produce a summary of I/O
errors by device. Then it might be modified to create job
summaries and print histograms of system usage (CPU or
CONNECT TIME). This sounds like a viable thing to do since
the original program already has the code necessary to read
the log files and extract some of the information. It seems
that a lot of time might be saved by avoiding the
duplication of that code. I do hereby put it to you that
you should avoid this pitfall like the plague! "Why"? you
might ask. The problem arises in the fact that at the time
the original program was written certain decisions had to
be made as to the best way to handle the task. These
decisions were made based on the original design objectives

G-9}3.6



of the program. By allowing the design objectives of the
program to change after the fact, you may have locked
yourself into some no longer valid decisions. For instance,
when the original decision as to how to handle reading the
logfiles (whether to read record at a time utilizing the
file system or to invest the time necessary to write a
special internal deblocker) was decided, the size of the
task at hand could not justify the time spend in. writing an
internal deblocker vs the time lost in reading the few
powerfail records. Thus the slower file system was used to
read the records. In the later version of the program it
would make a great deal of sense to do internal deblocking
of the log records since the volume of records read was now
very great. At this point, the program is already locked
into the record at a time scheme of reading the log files
and could not be easily converted into a new scheme. Thus,
by revising the design objectives of a program you might
have ended up with a program that has a much poorer
performance than desired, or you will end up spending far
more time to convert the old program to a more efficient
scheme than if you had just started from scratch.

A further effect of allowing the design objectives to
change after the program is written is that the program
will end up looking' 'LUMPY". By lumpy, I mean that you will
be able to see that the original program shell is here, and
a 'LUMP' has been added here for this function, another one
here, one there and so forth. In the end the program may be
so lumpy ano consist of so many different internal
techniques, variable names, that it will be almost
impossible to find and fix any bugs that it has. Indeed if
allowed to continue, the program modifications will
eventually create a program that is non functional and non
maintainable, in short, totally useless.

If there is any question as to how much the initial
program definition statement should encompass, I suggest
the following guideline. Make the original program
definition cover as large an area as the program will ever
be allowed to perform. You may add qualifiers to the effect
that it is envisioned that the program will perform these
functions at a later time and that they are not completed
at the present time. You may then plan the program such
that these non-implemented functions will be possible, even
to the point of including dummy program blocks to mark the
places they will be added. In this way the initial
decisions on the methods used by the program will be valid
even if the program is expanded to its maximum.

The program definition statement serves two functions:
First, it informs the person reading the program source as

G-9J3.7



to just what to expect this program to do (and conversly
what to expect it not to do). Second, it serves as a guide
as to what modifications fall into the original concept of
the program, and thus are vaild changes to it, and what
functions are outside the original concept and should best
be handled in another manner. The program definition
state~ent should always reflect the current status of the
program but should be changed only after a great deal of
thought and soul searching.

r,-03.8



MAJOR PROGRAM BLOCKS

The structure of a program should be broken down into
major blocks, each block responsible for a certain
function. A function might be best described as that
section of the program which performs a logically related
set of tasks. An example might be for a program that is
designed to read the system log files and then either print
a summary of powerfailures or write a summary of the I/O
written for each job or session run on the system. A
possible division into functions might include the
following functional blocks:

Initialization and selection of the desired function.

Extraction of the powerfail records from the log files
and the accumulation of summaries.

Printing the powerfail summary.

Extracting the I/O records from the log files and the
accumulation of summaries.

Printing the I/O summary.

Handling any internal errors or file errors encountered.

Closing the files and finishing up.

Notice that not all functions need be performed for each
execution of the program.

At the beginning of each block should be comments that
describe exactly what function that block is to perform.
This is similiar to the program definition statement at the
beginning of the program. The same rules apply to the block
definition statement as applied to the program definition.
That means that the block definition statement should
rigorously define the function of that block. No deviations
to the block's function should be allowed without verifing
that the statement will still be valid. Also at this point
any interconnections, common files, etc. between this block
and any other block should be stated.

This structuring by functional blocks will make the
program easier to modify and maintain. Thus if the program
is having trouble in the selection of a function, only the
block containing that function need be examined. If you
desire to change the format of the powerfail summary
report, you again need to modify only one block. A
necessary feature of the program blocks then is that they

G-03.9



must be relatively independent. This 'will allow you to make
a change in one block without affecting the function of the
other blocks.

In certain cases it is necessary that two or more blocks
will have to have a certain amount of interconnection. In
the above example, for instance, the block that reads the
logfile records and accumulates summaries must pass those
summaries to the block that prints them. Also, if any block
encounters an error that is being handled by the errors
block then certain information about that error must be
passed. In this case the functional blocks can not be 100%
independent. In order to maintain the desired degree of
maintainability to the program all that need be done is to
ridgidly define the interface between the blocks. This
might take the form of describing the parameters passed
between subroutines or the layout of the program common
areas. It becomes important to also include a description
of just what values each block can modify in these
communications areas. Careful attention to detail in
defining the use of these interconnection areas will save
untold problems later in the .program life. I strongly
suggest that this documentation take the form of comments
within that actual source code rather than as a separate
document whenever possible. This will insure that it is
always carried with the program and not misplaced or lost.
Once the usage of the interconnection areas has been
defined and the program written, it should be strongly
discouraged that any programmer be allowed to redefine them
without carefully examining the entire program for
consequences. Any such redefinitions should also be noted
alongside, not in place of, the original definitions. In
this way any problems of interconnection areas being wrong
can easily ge traced to the offending block.

G-03.1D



PROGRAM SUB-BLOCKS

Within a program block the program should be broken up
into sub-blocks. Each sub-block should be a single entity
that performs only one operation. The size of the sub-block
should be such that it can be easily comprehended without a
great deal of effort. The ideal situation is where a
sub-block can be quickly scanned and verified that the
operation is actually performed correctly. From practical
experience this relates to from one half to one page of
source code.

The sub-block should begin with a comment that states the
operation to be performed. Again, this sub-block definition
statement is important in that is serves as the guiding
rule for the sub-block. The function of the block should be
reflected by simply reading the sub-block definition
statements.

G-03.11



THE RULES OF BLOCKS

The block or sub-block is a special animal. In order to
be useful several rules must be rigidly followed. Failure
to do so may result in a program that only has the illusion
of being properly structured. The rules are:

1). The only place for entry into the block's code is at
its beginning.

2). The only place for exit from a block's code is at its
ending. (The only exception should be an error exit
ESCAPE)

3). Only certain easily recoginzable programming
constructs will be allowed within a block. This list
includes but is not limited to:
a). straight line code (statement follows statement)
b). if then else
c). looping (DO UNTIL, DO WHILE, WHILE DO,

REPEAT n TIMES, DO FOREVER, etc.).
d). case (execute exactly one of the following)
e). escape (escape a loop prematurely or error exit)

4). Certain programming constructs are to avoided
whenever possible. These include but are not limited
to:

a). III defined or ambiguous branches (FORTRAN'S
ASSIGNED GO TO, certain cases of COBOL'S PERFORM,
FORTRAN'S COMPUTED GO TO while not as bad as an
ASSIGNED GO TO should still be avoided)

b). Backward branches. The major program flow should
be strictly from top to bottom. Any backward
branching should always be a part of one of the
constructs in rule 3 and should be easily
recognizable as such. (For example, FORTRAN will
not support the DO FOREVER statement but it can
be simulated by a single backward branch (GO TO).
In this case comment statements should be used to
clearly mark the code as a DO FOREVER.

These rules are not all encompassing nor are they
inviolable but they do represent a collection of guidelines
that I have found lead to programs that will survive the
test of time and maintenance. Not all rules can be
implemented in all languages but the concepts should apply
to any language where the user has central of the program's
flow. In cases where the syntax of the language used does
not support a construct, the construct can usually be
simulated using other features of the language. Always make
sure that it is obvious which construct is being used. I

G-03.12



recomment sticking to those constructs listed since that
comprise the most commonly understood constructs. One of
the objectives of structuring your programs is to make them
readable by others.

The reasons for avoiding such constructs as FORTRAN'S
ASSIGNED GO TO is that they make it very difficult to
interpret the program flow. The destination of an ASSIGNED
GO TO is not known until actual program execution time.
This makes it very difficult for someone reading your code
to determine how your program functions without actually
simulating its execution thru exhaustive cases in order to
find all possible values of the assigned variable at this
point in the program. FORTRAN'S COMPUTED GO TO has some of
the same problems in that it is a multidirectional branch
but at least the possible targets of the branch are listed
in the statement. This statement may be used to construct a
CASE statement but it should be clearly marked that this is
so. Also note that all CASE statements will eventually
return to the same point in order to properly terminate the
statement. COBOL'S PERFORM verb can cause much the same
confusion as FORTRAN'S ASSIGNED GO TO when it is used to
perform different subsets of the same set of paragraphs.
This makes it very difficult to determine if execution of
the paragraphs will have the desired result. This also
violates the rule of always entering a block at the top and
exiting at the bottom or it confuses the definition of the
blocks.

G-03.13



PROGRAM DESIGN VERIFICATION

The program definition statement should state just what
the program is to accomplish. By reading the block
definition statements it should be possible to see just
what blocks should be involved in any subset of the
programs operation. It should be possible, then, to verify
if the blocks within the program are capable or satisfying
the prograro definition statement. You should also be able
to single out any block that is nct necessary to the
programs operations.

~cw that the program definition can be seen to be
satisfied by the block definitions it is necessary to
deterI':line if the blocks actually do what the ir def ini tions
say they do. This is accomplished by reviewing the
sub-block definitions. You should be able to follow the
blocks structure thru each of the sub-blocks, reme~bering

that all entry into the block is at its top and all exit
from its bottom, thus all branching must be between blocks.
If the rules of blocks have been followed it should be a
simple matter to follow the program thru each sub-block,
accepting the sub-block definition as oescribing properly
the action of that block.

Once each block is verified to perform properly, given
that its sub-blocks perform properly, all that is necessary
is to verify that each sub-block will satisfy its
definition statement. This is the first time that we must
actually read the source code in the task of determining a
programs correctness. If the code within the sub-blocks
follow the rules of blocks and is of sufficiently small
size then it should be a simple matter to verify that each
one properly performs its function.

At this point the program will have a very good chance of
performing the program definition as stated at the
beginning of the program. If there are any problems then it
should be easier to isolate them by placing debugging
statements at first the interfaces between the blocks, then
at the interfaces between the sub-blocks and finally within
the sub-blocks if necessary. In this manner, you can
eliminate the majority of code, simply by eliminating the
functions and operations that are not in error. If the
program has been properly structured then isolating a
problem can be the easiest rather than the hardest part of
debugging.

G-03.14



By the same token, program modification has alsc become
much easier. In order to change a programs operation follow
the following steps:

-1). Cxa~ine the desired change to determine if it fits
within the program definition stateffient. If not then
seriously consider not waking the change but rather
writing a new program as any such change will have
major ramifications.

2). Deterroine which block performs the function that needs
to be changed. Alsc consider at this time if the
change is in reality a new function, in which case it
should have its own block.

3). Locate the sub-block within the block that is
perfor~ing the operation to be modified or determine
where in the blocKS program flow a new sub-block
should be located.

4). Make sure that the changes will not alter the block
definition statement. If so then the entire program
structure will have to be exa~ineri. If not, then you
will only be concerned with this block.

5). If the changes are within a sub-block, make sure that
the sub-block definition is still valid after the
changes.

6). If you have altered the program flow within the block
then make sure that the sub-blocks and program flow
will still satisfy the block definition.

7). At this point, if the definition staterrents are still
valid, the program flow is still good, and the rules
governing the interconnecting areas have nct been
violated, the modification should be properly
installed. Now go back and exercise the program
thoroughly in and around the affected functions to
verify proper operation and to verify that the
modification functions properly.

G-03.15



COMMENTS AND DOCUMENTATION

A few words need to be said about commenting and
aocumenting a program. In the past this task was ccnsidered
as separate from writing the program. Indeed, in many
cases, the person writing the documentation was not the one
that wrote the program. There are times when this approach
is not bad, especially when the documentation in question
takes the form of an extensive users manual. It would be a
misapplication of talent to have a good programmer tied
down for six months after each program, writing a book on
how to turn cn the system etc. The thing to bear in mind in
the case of documentation is that there may be various
levels of.it. Some levels of documentation are best handled
by full tiroe docuffientors as in the case above, but there is
a level of docurrentation that is the responsicility of the
programmer anc should always be done by them. This
documentation consists ef the comments within the program
source, and a besic functional description of the program.
The main use of this documentation will be by these persons
that will hnve to rnaintaic and modify the program. This
~eans that the task of documenting should not have to be an
exhaustive effort as the persons using it will at least be
experienced programmers. All that iE necessary is to
explain the baEic flow of the program and the major
decisions about the program's design.

In many cases, documentation by the programmer has been
put aside until the end of the program developement cycle.
This was often justified by citing tight schedules,
uncertainty in the programs final state etc. Documenting
after the fact leads to skimpy or inaccurate documentation
at best and possibly even to no documentaticn if the
schedules are in reality tight.

It is imperitive that the programs internal documentation
be written as the program is written. This will insure that
it truly reflects the actual state of the program. In
attempting to go back after a program is in use and
document it, the reasons a certain technique was used is
often forgotten. The reasons for choosing one technique
over another is one of the most important things to know if
you are contern?lating a modification to that technique. It
would take little actual time for the programmer to add a
few comments at the top of a block or sub-block explaining
how the block functions and either why the technique was
chosen or a brief notice as to under what circumstances it
would not be appropriate. This accomplishes a dual
function: It informs the next programmer, or indeed
yourself if you corne back to this program at a later date,
as to when to consider modifying the technique. It also

G-03.16



forces you to consider such questions as applicability at
the tiwe you are writing the program rather after a
technique is already locked into the program. It is far
better to discover that a technique will not work in all
cases before it is installed rather that having to remove
and replace it after a program is finished.

The time to write the internal program documentation,
then, is while the program is being written. The place to
put the it is as comments in the program source code. This
makes sure that whoever is responsible for maintaining the
program will always have accurate documentation at hand. At
first it might seem that by documenting as the progra~ is
written will take too much tirrie. Upon closer examination
and by actual trials it can be determined that just the
opposite is true. The exercise of docurrenting as you go
will force you into thinking out just what you are doing
and consequently keep you from following too many incorrect
paths. 'I'he end re£ult will be that in the time that you
could have written but not documented a program, you can
have written and documented a program that has a much
better chance of being correct. At the very least the
program will be much more maintainable.

What constitutes good commenting within a program?
Contrary to the beliefs of a lot of progra~Qers, the more
comments does not imply the better the documentatiop. It is
the quality of the comments not the quantity that
determines the quality of documentation. In fact, good
documentation can be ruined by adding a lot of unnecessary
corements and making it difficult to weed out the essential
information. I offer to you the following ~odel. It has
proven to be useful to me in the progranls I wr i te.

1). Variable and Program Names:

Variables, SUbroutines, and programs should be nareed in
such a way as to make their use as obvious as possible.
Thus it might be easier to relate to CUSTOMCR(I~CEX) in a
program rather than to C(I). I realize that certain
languages place restrictions on names. These restrictions
are being lifted as the languages grow, for instance
HP-3000 fortran new allows names to be fifteen characters
long rather than the old five character rnaxiffium. In any
case try to avoid the naming of items within a program by
arbitrary or cryptic names. The best way I know to ~ake a
program almost unmaintainable is to go thru it and replace
all the variable names with a sequence of meaningless
names. The names used become an important part of your
docu~entation. If they are chosen properly then you should
have little commenting to do within your sub-blocks. By the

G-03.17







serVCE as ~ore or less a roadmap to find the block
responsitle for the function yeu are interested in. At the
very least yeu should include the basic progra~ flow thru
the blocks, a brief description of each blocks function
and hew to loc~te it in the source code (subroutine name,
etc. ) •

8}. Program Modification History:

A short running history of the modific~tions to the
program should be included next. It's this history that
will tell you what changes have been ~ade for each
revision of the ~rogram. Items to be included are:

revision code after the changes
date the changes were completed
a brief description of the changes
the narre of the person doing the modifications if other than
the original author.

9}. Author and Modifier ,Names:

A short description of the author(s} and of those persons
responsible for ffiaking modifications to the program
should be listed. This might include the address and/or
phone number of the persons or any other information
necessary to identify them.

IO}. Data Definition sections:

The usage of any data arrays or block interconnection
areas should be set off and commented in such a way as to
make their intended use clear. This might be as simple as
identifying which array is used to buffer data into and
out of the program or as complex as to describe in detail
the format of an internal communications array. Cowment
blocking should be used in order to separate the data
definition areas for the various operations into blocks,
much as the program cede areas are blocked. It is easier
to understand the data structures in a program if you can
concentrate on only the desired subset of them. For
example, if the format of the output records needs to be
modified then it should be a simple matter to locate the
definitions dealing with it and to be assured that all
definitions in that area are strictly for that purpose.
This will allow changes to be made without affecting other
areas of the program and allow no longer needed variables
to be discarded.

G-9)3.20



11). Block Definition Statements:

Each block within a program should begin with a comment
describing the operation to be performed within that
block. The format of the statement and of its data
definitions should be similiar to those for the main
program.

12). sut-block Definition Statements:

Each sub-block should begin with a very short statement of
what that sub-block is to perform. For example "This
section sorts the input array into ascending order by
customer name". Very little additional commenting should
need to be done within the sub-block except maybe for a
simple clarification comment here and there. If the
variable names are properly chosen and the proper code
constructs are being used then the sub-block can be almost
self documenting.

If a program is internally documented well then ~ost

prograffi maintenance and modification can be accomplished
with little more than a source listing. If an additional
document is desired it can often be created by excerpting
the comments directly from the program, block and sub-block
headers.

A word to the modifiers: Once the program has been
written following all these guidelines, it is your
responsibility to insure that by modifying it you don't
invalidate the original program concepts or documentation.
A good rule of thumb should be to try to make any
modifications such that, in the future, you couldn't tell
your code from the original unless it is so marked. This
means that you should not force your own programming
peculiarities into the program unless they match those
already in use. Use the same variable naming scheme as the
original author, even if you can think of a better one.
This prevents confusion later with having to follow several
conventions within the same program. Also try to make your
code look like the original. This might mean doing the same
indenting and following the same commenting scheme. You
should also be responsible for updating any internal
documentation that is affected by your changes. This is a
good exercise in that it will force you to examine all the
areas that your changes might affect. Also can't forget to
add a line to the program history records to indicate the
changes you have made.

G-03.21







and ttl·~r. rc.:sun,c execution. Again, this is a relatively fast
operDticn (~aybe 40 microseconds). If the required segment
is not in liefiior y then r·pe will sus [Jenc the pr og r ar.' and r;ake
u rc(;ucst tc the If,Cn:ory manager in order to have it n~ace

r-resE:nt. 'fhir procez£ invclves reading the segrr1ent from
disc inte ~e~cry and might invclve swa~ping some other
s€gr"cr;t cut cf r.'errcry to Ii-Ia~~e roar:- fer it. Disc transfer
ti~c on the ~P-3UOO is fast but is still orders of
iiCj<jnituc;e slower trlan direct rr-er..ory access. SWDpping a
scgrr'ent froIT. ti1e cisc into Ircfi:ory fiiight take G;r~roxiJrately

500 to 2000 microseconds. If this operation is required
i r. f r ~ (~ Ue n t 1Y t be nit i s not a 9 rea t bur 0e n but if i t mu s t
occur a great nueber of ti~e5 then it can cause a local
t hr as t, in 9 c end i t i Ol"l for t his pr 09 r a ITi •

!-lo\1 ~o ycu centrol local thrG.shing? 'l'he T:"·ain r.-ethoc] is to
reduce the nu~ber of intersegrnent subroutine calls to the
ji-inirr.uli. Lets take the rrogram exan"cple 9 iven above. In the
case of the functicn involving su~routine A, there is one
intersegJi:ent c(jll at tbe: beginning of the functicn and then
one at the e~~ in order to return to the rnain program. This
fits nicely in cur Suidclines. In the second function,
however, cubrcutine u calls subroutine C a great many
tirr~s. If these two subroutines are in cifferent seg~ents

then we G"light enci ufo in the local thrashing situation. It
~akes sense, then, to put subroutine Band C into the saThC
segrr,ent. 'fhat Se~1njent \-Jill be a little larger than if they
wcre in ~iffcrent seg~er.ts but the tine necessary to call
b2Ck and forth has been greatly reduced.

Let~ sumr..arize vlhat we've learnec, sc far. It is good to
reduce the size of our code segments by making a greater
number of smaller segments. this reduces the total real
meroory requirements for the systen:. I f we place two
routines that call each other a lot into separate segments
then we can cause a local thrashing that wastes time and
resources. This means that we have SOllie tradeoffs to
evaluate in the segrrentation of progra~s.

here are sane time tested guidelines for the segmentation
of program code:

1). Try to make the program Eegffients as sroall as possible.
(4000 words is a good size to shoot for).

2). ~ini~ize inter segment calls between routines even at
the ex~ense of larger segments. (Don't worry about
nu~bers as small as 10-20 calls per function but
concentrate on those that might be called huncreds of
tirr:es) •

G-03.24



3). O~ce ycu enter ~ segroent, try to rerrain in that segment
for as long as possible. This might mean making a copy
of a small sucroutine that is used by severul segwents
an~ adding it (under 0 slightly different na~e) to each
segment that requires heavy use of it.

4). Once you leave a segrrent, try to remain out of it fer
as long as possible.

5). Place large and seldo~ used sections of code into their
own routines and their own segments. Error handling
routines that contain a large number of error messages
are prime candidetes (Ascii strings occupy a great ceal
of code space as ccre~ared to machine code).
Initialization and light user interaction sections that
require messages to be written and read are also good
candidates. It is possible that these large sections of
necessary code ffiight only be calleG once, or in the
case of error routines, not at all in the program
execution. This reeans thet they will not often need to
te present in real memory.

HO\-l is the best way to segment our sample progrsrr ? First
of all, we have cetermined that subroutine A can be a
separate segment. Subroutines 8 and C should be in the same
segment since they Cull each other a lot. Subroutine D is
the error handling segment so it can be in its own segment.
The main program is rarely executed and could be in its own
segment. The final segmentation would then be:

S EGr·l1:UT 1:
SCGt·, CL~T 2:
S E::; ~-1 £ i~'r 3:
SEG"'lEN'!l 4 :

!"lP.IN
Sl;~ A
SUB 13 and SLiB C
SUL D

Data segments

!·iPC currently has the restriction that a ~rogrC:lI!iS

modifiable area ~ust be in a data segment called a 'stack'.
It does not currently allow the data stack to be split into
separate data sesments. This means that the only control we
have over duta stacks is in their size. A certain amount of
data stack will be required for the progra~ to execute. The
areas we can control have to do with data arrays and
storage and with dynamic storage.

The storage necessary for data arrays declared in the
main program or in the golbal or COI:'llTLon areas of a program
is always ~lloc~ted in the data stack. Anything we can GO
to reduce the size of this storage area will nake for a

6-9)3.25







In SUnHi1ary, t!1e main point I arr. trying to get across is
that the days are gene when programroing could be considered
a strictly solitary project. A program may be written by
only one person, tut if it is to survive, it must be
written in such a way as to allow others to maintain and
r.todify it. This means that a programmer IT;UEt give sorrle
thou;ht to the basic structure of the program and to
organizing its internals in such a way as to rrake its
operation cbvious to other programmers.

I have outlined several techniques that might help to
achieve this objective. There are probably other techniques
that would also be useful. You might, for instance, make it
a practice to have another programreer try to 'read' your
programs in order to deterffiine if they are properly
commented and written. This would accomplish yet another
benefit in that it will be a method to share programming
techniques and expertise. By having an experienced
program~er read the novice's program, he could hel~ the
novice to develope the proper standards and techniques. The
experienced programmer might also learn a few new
techniques from the novice if he keeps his eyes open. By
having the novice read the expert's programs, he could
learn what techniques should be used in a given situation.
The expert will be able to sharpen his documentation
techniques by having the novice identify any areas of the
program are difficult to follow.

A major point of this whole procedure is to combat the
feeling that a program is the exclusive property of one
programmer. It should be thought of as belonging to the
entire group or to the company. In this way the programmers
will not code cryptic r:-rograrns in order to promote the ir
own mystique. They will instead be writing prorams that
will be understandable by others and as such can survive
long after they are gone. A side benefit of writing
programs that survive should be the writing of more
reliable code and raising the standard of data processing
in general.

G-03.28


	Papers / Presentations
	System Development
	Programming For Survival



