DEC/3000

AN EXAMPLE (OF SPECIAL-PURPUSE
LANGUAGE DESLICGKh AND IMPLEMENLALION

Matthes J. Balander
The B & B Computer Company

ABSTRACT: Special=purpose programming lanquages are often an
excellent method ot reducina costs and improving
productivity. This paper discusses some of the factors
influencing the decision to develop and employ a
special=-purpose language, and presents an example of such a
language. The language presented, DEC/3000, provides
powerful data-entry capabilities for programmers producing
applications in host languages, 1In tests, the use ot this
special=puroose language has 1indeead reduced costs and
improved programmer productivity.

1. Wnhy another language?

Despite the (quite proper) effort to develop good genheral
purpose programming lanauages in the discipline of computer
science, there are nonetheless still problems for which
special=purpose languages should be emphasized regardless of
considerations of wuniversal applicability or portability.
Factors which motivate the effort to design and implement
such languages, to adopt them for use in applications, and to
educate programmers in their use include cost eftectiveness,
programmer productivity, program reliapility, and
maintainability of the final product.

Languages should not of course be implemented to meet every
whim of each programmer. Problem areas for which languages
should be provided must be very carefully defined, it the
language to be provided is to fulfill its goals of lowered
software production costs and improved programmer
productivity. An appropriate problem area may be identified
as follows:

o It must be possible ¢to clearly define the problem
area. It is, for example, an inadequate isolation ot
the problem area to state, "A language is needed to
help with data entry tasks." The problem area must be
carefully, clearly, and fully specified, The

E-10.1



construction of a "language" 1is under consideration.
It is critical to understand fully exactly wnat tiue
proposed lanauage is supposed to be able to "talk"
about.

o The programming of solutions 1in the problem area,
using available 1languages, is tedious, complex, and
error-prone. kEkxisting languages, in other words, are
not well suited to the expression ot solutions to
tasks 1in the problem area. The degree of aifficulty
with which solutions are provided in existing
languages is a3 measure of the cost of solvinyg proolems
in those languages, and, in aeneral, an indication ot
the future costs ot reliability and maintainability of
the software. (The cost of the proposed language may
thus be measured relative ¢to the cost of existing
langquages by noting the reduction 1in complexity of
solutions provided in the special=-purpose lanquaye.)

0 An area is a candidate for a special-purpose language
if proarams are freaquently produced ¢to meet needs in
the area, or such programs are heavily used. The
eftort involved 1in designing and implementing a
special=-purpose language cannot be Jjustitiea if the
language produced will rarely be used.,

The decision to proauce a special=purnose language 1is thus
largely governed by economic factors. If a special language
will reduce costs sutficiently, it will provide a
cost-eftective means of providing solutions to data
processing problems. IlL,.anguages achieve cost reductions in
the software development cycle in several ways. Some of the
more straight-forward are as follows:

0 By increasing the power of the language being used by
programmers (defining "power" loosely as the amount of
work done for the programmer by a line of code) the
size of programs, measured in 1lines of code, is
reduced. Given a ftixed cost per line of finished code
regardless of language, there is a direct savings in
program development cost in using a powerful
special=purpose lanquage.

0 A well=-designed language is easy to use. 1Its idioms
and methods of expression are "natural" for expressing
solutions to the catedory of problems for which it was
designed. This reduces the complexity of solutions to
problems. Complexity of a orogram varies inversely
with reliability of the program, The less complex a
proaram is, the more reliable it ({is. Greater
reliability means lower costs for software
development, As a result of reduced complexity,
testing 1is simplified, and debugging is both easier
and less time consuming.

E-1002



0 lhe 1increased gpower and reduced complexity of a
special=purpose lanauage serve to reduce software
maintenance costs. Adjustments and moditications of
proaraims will require 1less programmer time, atfect
teser lines ot code, and may with greater contidence
be uyndertaken by proarammers who did not originally
alite the software peing modified. Program
modgitication in addition enjoys tne same benefits from
increasea power and reduced complexity that are
exnerienced during original software development.

From all these remarks it is plain that the use of
soecial-purpose programming langquages can be very
beneticial. It is also plain that the benefits received
aepena heavily on the language design and implementation.

2. How is a special=-purpose language designed?

Once a problem area has bpeen defined for which a
speclal-purpose languaqe is being considered, the language
must be designed. The design of a language is an art, not a
technology, It will always remain so, since language is an
intensely human activity, and is tundamentally alien to
mechanical processing, It is far beyond the scope of this
paper to discuss lanuuaae design in detail, but some central
considerations should be mentioned.

The lanyunaae designer must Kknow the problem area. This
involves not Jjust a passing acaquaintance, but an intimate
familiarity. Such knowledge usually is a result only of much
work in the field. T'he language designer must be tamiliar
with the problems of the problem area, and with the sorts of
solutions with which they are best met. He must be aware of
the 1limitations of available languages when applied to
proplems in the field, and have some experience with trying
to "make do" witn these languages.

The langquage designead must be powerful. It it 1s not
sufticiently powertful, many of the benefits of implementing
the lanquage will be lost. l,anguage constructs and idioms
must be provided which allow the programmer to express as
concisely and unambiguously as possible his intentions.
Brief constructs are preferred to wordy ones, and one line
of code to two or more. On the other hand, the APL-ish,
mystical, "does-it=-all" one-liner type of language is most
certainly not desirable. Readability should always be
maintained,

when providing power, it is necessary to be cautious that
flexibility 1is not undu)y limited. Regardless of the power
of the language, it will not be used by programmers if they
are unable to express solutions to all relevant problems
with it. In zeal for making the programmer’s life easier, by

E-10.3



"doing all the work tor him," care must be taken not to make
it aitficult or impossible for him to solve atypical or
unanticipated problems using the languagqge.

The language designed must be *"natural." That is, it must
express programs in much the same way that the programmer
thinks, or should think, about them. A judicious compromise
petween machine efficiency and programmer comtort must ope
touna, It is here that the art of the language designer
will be most needed,

3. How is the lanquage to be implemented?

while languaae design is the most critical phase of the
production of a landquage, implementation is by no means less
important. A good, reliable, easy-to-use implementation of
the language must be provided to programmers. 1t must take
into account their needs and work. An implementation which
is difticult to use, or which is unpredictable or unreliable
in 1its operation, will not be used. The documentation, not
only of the language, but also of the implementation of the
language, must be comprehensive, clear and concise. 1t is
an integral part of the implementation as a whole.

There are three very viable options for implementation of a
language: a pre=-processor, an interpreter, and a compiler.
The simplest of these is to implement a pre=processor tor
some existing language. The special-purpose language then
takes the form of statements embedded in a program text
ultimatelvy intended for some existing processor. This text
is tirst fed throuah the pre=-processor, which converts the
special=purpnose language statements 1into source statements
of the language in which the special-purpose statements are
embedded, and outputs a program text which may be submitted
to the existing processor. Such a concept is familiar and
has been used successtully in such systems as RATFOR, a
pre=processor for FORTRAN programs providing while,
do~-until, and similar constructs.

If all existing " lanquages are so unsuited to tne problem
area that it 1is not wise ¢to pre=-process special=purpose
language statements into one of them, then the
implementation must provide all the functions of a
source-language processor. One way in wnich tnis is often
accomplished is to 1implement an interpreter for the
language. Interpreters have many familiar advantages, and
are not as difficult to implement as most other options. In
addition, the technology of interpreters is well documented
in the 1literature, and good advice may be found there to
assist in writing the interoreter itself,

Although interpreters have many well known advantages, they
also have many well know disadvantages. They are slow,

E-10.4



often bulky, and usually have no convenient mechanism for
accessing the full capabilities of the operating system and
allied subsystems in which they are used. It tne
disadvantages of an interpreter weigh heavily in a
particular situation against its use, the next alternative
is to implement a full compiler, Implementina a compiler is
undoubtedly the most ditficult and time-consuming ot the
options, but possesses most ot the advantages of the other
options, as well as some unique to the use of a compiler. A
well written compiler provides access to all system
capapilities (assuming the lanquage design has been done
well enough to allow the language itself to express access
to these capabilities). It provides much more efficiency
than an interpreter, and is more congenial to a variety of
environments, both batch and interactive.

The type of implementation to be used depends on the nature
of the problem area itself, on the time and resources
available for implementation, and the ways in wnich it is
desired to use the finished processor. Pre=processors are
the easiest to write, port, and maintain, compilers the most
difficult, and interpreters are somewhere 1in petween. 1In
some cases hybrid 1implementations are most appropriate.
Here the <craftsmanship of the programmer implementing the
language is of great importance, 1f the available
programmers are not skilled in compiler writing, or have no
experience in compiler writing, it may be unwise to ask them
to implement a production compiler. On the other hand, the
concepts and engineering of pre-processors are not of great
difficulty, and most programmers with some experience in
text processing can implement pre=processors in a reasonable
amount of time. Interpreters, as compilers, regquire some
special skills, and should not be undertaken by a staff
without some prior experience in the area.

4, Can you give me an example?

The author has written a number of data entry programs, each
of which was a portion of a larger data processing system,
In each case, interactive terminals witn forms and pblock
mode capabilities were used. These programs were
implemented in FORTRAN, COBOL, and SPL, as appropriate to
the data processing system for which the data entry program
was being written. The specifications for the programs
indicated that the forms/block mode capabilities of tne
terminals were to be used whenever possible to assist
terminal operators in entering data correctly.

In preparing to write these programs, it was necessary to
learn a8 qgreat deal about the terminals to pne used (HP264X
terminals were wused for these particular orojects). NoOt
only w#as it incumbent on the programmer to be fully

E-10.5



conversant with the application, but also to be an expert on
the terminals themselves. Programming terminals sucn as
HP264X terminals {is 1in fact a form of low-level machine
programming, and as such 1is quite prone to errors. NoO
special software tools were available to assist in managing
the terminals; all functions had to be explicitly provided
by the applications progranms,

In one case, eighty lines of SPL code were needed tor the
"DEFINEs" used to code the declaration of a single form in a
fashion which Wwas at least partially readable. In one
FORTRAN program approximately two hundred lines of code were
devoted exclusively to terminal management. In general, it
was found that approximately one third of each of these
programs were devoted to terminal management, with
approximately one hundred 1lines per program devoted to
defining and managing forms for display on the terminals.

Not only were terminal and form management lengthy, they
were also difficult to code., The escape sequences used with
HP264X terminals are meaningless in and of themselves. They
are simply details which must be coded precisely in order
for the terminal to behave as desired. Programmers who are
not the original author of these programs will find it
difficult to modify the forms 1involved when data needs
change; the original author himself will £ind changes
difficult.

A search was of course made for alternative methods of
coping with the problem of managing these types of terminals
during data entry. The only software avallable at the time
was Hewlett Packard’s DEL/3000, It was evaluated, and
rejected for several reasons. First, it did not relieve tne
programmer of the necessity of being an expert on the
terminals. To declare a form in DEL/3000 the programmer
must actually produce the form from the keyboard of an
HP264X terminal, He must still be familiar with all
appropriate escape sequences. Second, DEL/3000 had to be
used from an HP264X terminal. Not all terminals used for
program development at the installation where this work was
peing accomplished were HP terminals. Also, because of this
restriction, work on the forms and terminal management had
to be done on-line instead of in (less expensive) batch.
Third, DEL/3000 held out no hope of ever supporting any but
Hewlett Packard terminals. Other forms/plock mode
capability terminals are available, and it is not wise to
write one‘’s software so that one is 1locked into a single
vendor. (ther objections, such as the "un-aesthetical"
nature of DEL/3000, were raised, but could not be related to
clearly definable, measurable problems.

The rejection of DEL/3000 was the rejection of the only

available software tool for forms/block mode data entry with
sufficient power to be considered. The remainder of this

E-10.6



paper discusses the alternatives which we considered, and
aescripves the solution we reached. We turned to consider
what sort of tools we should implement ourselves. (In the
meanwhile, the writing of data entry programs was undertaken
using the various available 1lanquages, since it was not
teasible to delay their production till more powerful tools
were available.) What ever we came up with had to meet the
tollowing goals:

o The tool produced must perform virtually all terminal
and form management during data entry.

0 fhe tool must relieve the applications programmer of
the necessity of understanding the programming of the
terminal being used. The programmer should never need
to Know what escape sequences are used to perform
terminal functions.

0 It must not be necessary to have one of the data entry
terminals availatle tor the programmer’s use during
coding of the application.

o The tool must provide for adequate documentation of
forms. It is not considered sufficient for forms to
bpe simply entered at the keypoard: there must be a
permanent., off-line record of each form <clearly
showing all protected/unprotected tields, display
enhancements, and s0O0 on.

o The tool must allow for future use of non=HP terminals
with a minimal conversion effort. It is acceptable to
need to rework the tool itself, but minimal changes
should be necessary in applications programs.

o The tool must dovetail with existing applications, and
existing application languages, so that a conversion
process may be unaertaken, and so that programmers and
analysts are not restricted in their —choice of
lanquage,

Clearly &a new programming 1language was called for. A
carefully designed lanquage, together with a comprehensive
run=-time support library, is capable of meeting all these
goals. Implementation method was decided immediately. A
pre=processor is not feasible because of the last goal, The
new language must dovetail with a number of existing
languages (at the least with COBOL, SPL, and FORTRAN), but
pre=processors are oriented to a single application
language, The difficulty of implementing several
pre=processors, and the maintenance nightmares arising from
having three or more programs that do the "same" thing,
caused the firm rejection of a pre=processor. An
interpreter was rejected for the same reasons that tne
pre-processor was rejected, (It is possible to construct an

E-10.7



interpreter which is invoked by a program when needed, but
such constructs are difficult on the HP3000 under MPEL.
Also, the wuse of such a system is burdensome on the
programmer, and is not conceptually straight-forward.) we
settled on implementing a compiler.

Since it 1is desirable to use the data entry tool with a
variety of applications coded in a variety of languages, a
"host language" concept was adopted. That is, program units
coded 1in the new, special-purpose language would be used
together with program units coded in some "host language."
It was agreed that only the tollowing restrictions should be
placed on the choice of host language: the host must be
able to <call external program units, and to pass simple
integer and integer array parameters by reference to these
external program units, In this way, the special=purpose
language program units would be accessable from at least
CnoBOL, BASIC, SPL, and FORTRAN, Since no other potential
hosts were 1in wuse at the time, this was considered to be
sufficient.

The name "DEC" was adopted for the compiler and associated
language., It is an acronym for "Data Entry Compiler." Since
all DEC programs were to be used together with a host
program, DEC could be devoted to solely the data
entry/terminal management tasks which motivated it in tnhe
first oplace. Access to data bases and other files, complex
data checking, and complex program logic could be left to
the host. The following scope for the DEC language was
defined:

DEC 1s a special-purpose programming language in
which data entry forms and activities utilizing
forms/block mode terminals may be expressed. This
is to include the definition and documentation of
forms, the specification of elementary data editing
and checking, the specification of type
conversions, and the specification of the
correspondence of data record fields with form
fields.

This definition guided 1language design. The language
designed, which is described in separate documentation, is
primarily declarative in nature; it includes no explicit
verbs. Actions are implied by the declarations (for
example, type conversion actions are implied by the
declaration of data types), but no actions are explicitly
coded by the programmer, A sample DEC program is included
at the end of this paper. It is heavily commented to
explain the teatures of the language, °

Terminal management tasks are shared between the compiler

and the run-time support 1library, "DeCLIB". All terminal
manipulation may be performed via library procedures, and

E-10.8



DEC=-generated procedures. There is a single entry point to
DECLIB for all functions, regardless of terminal type. The
DECLIB procedures are internally structured in such a way
that additional types of terminals may be easily
accomodated, while reaquiring normally only a single line in
each application program to be changed to take advantage of
these additional tyoes.

Since DEC is a compiler, it inputs a source language file,
and outputs RBM‘s in a USL tile, and thus may be used
during coding and program entry from any sort of terminal.
It may be used ejither interactively or in patch.

The DEC language has been designed so that it documents
forms very well, as may be seen by examining the sample at
the end of this paper., All features of the display are
evident from even a rapid examination of a source progranm,
In addition, the programmer has great tflexibility in
placing comments in a DEC program. This encourages gqood
documentation.

5. what have the results been?

The six goals for the DEC language have substantially been
met. A six hundred line FORTRAN program has been reduced to
two nundred lines of FURTKAN and about one hundred lines of
DEC. Again defining "power" loosely, since one line of DEC
replaced in this application four. of FORTRAN, DEC may be
said to be roughly four times more powerful than FORTRAN.
This implies that DEC programs cost about one fourth as
much to write as equivalent FORTRAN programs, and this has
indeed been our experience. All programs converted to use
DEC, regardless of lanquage, were substantially reduced in
size.

As an additional benefit, unintended but very welcome, all
converted data entry programs now work on all our HP264X
terminals. This 1Is despite the fact that individual
programs were originally implemented for a particular
model, such as the HP2645A, or the HP2640B. In addition,
there 1is now complete freedom to use page or line mode.
The programs were formerly hard-coded to use one mode oOr
the other.

Programmers have learned DEC in a very short time. A
single afternoon is sufficient to read the manual and begin
applyina DEC to actual problems, Since DEC 1is
straignt-forward, concise, and "natural," programmers find
it easy to use.

Changes to a form, and to its associated data entry
program, can now be made in a single afternoon, and in many

E-10.9



cases 1in much less that an afternoon. Formerly one or two
days or more could be consumed in such changes, depending
on the extent of the change, Using DEC, a form can be
entirely reorganized, and be back in service the same day.

6. Can you summarize all this?

in general, there are circumstances in which
special~purpose programming languages can be used to good
advantage, The design, implementation, and adoption of
such a language can often be justified on a cost basis.
while language design is a difficult art, analysts and many
programmers with appropriate experience should be able to
construct a language which would provide the desired cost
benefits. Several options are available for implementing
the language. The cost effectiveness 0of these options
depends in part on the experience of the programming statf,
and 1in part on the expected cost savings from use of the
language.

An example has been presented for which available software
products were unable to fill a well-defined need. Goals
were established which upon examination indicated that a
special=purpose programming language would be a viable
method of obtaining a satisfactory software product to fill
the identified need. An appropriate langquage was designed
and implemented using a compller and host language
arrangement. The result was that the goals which had been
established were substantially met, and in fact the cost of
producing software using the new lanquage is significantly
lower than the cost of similar software produced without
this tool.

E~-108.10



* <=== LINES BEGINNING WITH "*" ARE CUMMENTS
<< COMMENTS MAY ALSO BE ENCLOSED IN ANGULAR BRACKETS >>

SCONTROL USLINIT,LIST,SOURCE,MAP,CODE

* Note that compiler control is similar to HP compilers. This

* specifies that a listing is to be produced, that it should

* include the source images, a symbol map, and code. Code output
* 1s in an assembly-like format for readability.

R Ry Yy R R I I T I I ™™™

* A DEC program consists of a declaration of a form, tollowed *
¥ by one or more "data entry," or "DE," sections which declare ¥
* data entry information associated with the most recently X
¥ declared form, ¥

e I S I Ittt

=-FORM FORMPROC << name of procedure will be FORMPROC >>
<< You could call this procedure in CUBOIL with °‘CALL FOKMPROC >>
<< USING . « . Or in FORTRAN with CALL FORMPROC(. « ) >>

0,0,"THIS IS A SAMPLE FORM"
* This statment says, beginning in row 0, column 0, place the
¥ following data: "THIS 1S A SAMPLE FORM"

2’0,n' L8 ]

* This statement says, beginning in row 2, column 0, place a
* two Character unprotected field. The initial contents of
* this field are to be " ",

3,0,"°Xx°"
* Same as last statement, except row 3, and initial contents "XX".

4,0,"'B°XX""
* Same as last, except row 4, and the "XX" is to be in inverse
¥ video (display enhancement B).

5,4,"\C!DTHIS WILL BE IN ALTERNATE CHAR SET C, ENHANCEMENT D"
* At row 5, column 4, place the specitied data using alternate
* character set C, display enhancement D.

LABEL: 12,12,"DATE: 'B* °*/* */°

The terminal operator will see "DATE: / / ", the last eight
characters of which will be in inverse video (display enhancement
B). Note that there are only six unprotected characters. Even
though these six unprotected characters are in three separate
unprotected fields, the fact that the field has a label ("LABEL")
indicates to DEC that all six characters should be considered

a single data tield., The label also allows reference to this
field in a later data entry section.

L R BE K BE L BE B

-MROF << end of declaration of this form >>

E-10.11



-DE

INSINPUTPROC, OK=0KPROC

<< Declare data entry information associated with FORMPROC >>
<< Can later in host program CALL.- INPUTPROC(. . .), etcC. >>

<< We can reference fields defined in the form section FORMPROC >>
<< only by referring to labels declared there. "LABEL" is the >>
<< only such label in this example, >>

0,

4,P,LABEL; VERIFY NUMERIC=-NO-BLANKS; SAVE

<< Beginning in byte zero of a data record, there is a 4-byte >>
<< long, packed decimal field., 1Its data source is the form >
<< field labeled LABEL. Verify that the data input by the user >>
<< on the form is all numeric, with no blanks. After data has >>

<< been successfully input, and you go back to erase all the >>
<< ynprotected fields in the form, do not erase this one, SAVE >>
<< {t. >>
¥ In addition, data editing (including justifying, blank and zero
* filling, and the like) can all pe specified. Constants may also
¥ pbe specified as a data source, instead of a field declared in a
¥ form section, Totaling of fields and auto incrementing or

*

=ED

decrementing of field contents may all be specified.

<< ends the data entry section >>

3333212331332 1T T T I I s I T2t It IITIIIITITI:

%
%
*
X
%
X
X
¥
¥
%
x
¥
x

=END

The host language program would be similar to the following:

OPENDETERM(CBUF,. « +)7 << OPEN THE TERMINAL FILE (DECLIB) >>
FORMPRUC (CRUF) ; << DISPLAY THE FORM >>

INPUTPROC(CBUF,. « +)7 << INPUT DATA FROM THE FORM >>

<< USER MAY HERE DO ANY DATA MANIPULATION DESIRED, IF NOT

OKPROC(CBUF,. « +)3 << ERASE SCREEN EXCEPT "SAVE" FIELDS >>

<< REPEAT THE INPUTPROC/0OKPROC SEQUENCE UNTIL ALL DATA IS IN >>
CLOSEDETERM(CBUF,. o .); << WHEN ALL DONE CLOSE FILE (DECLIB) >> *
ERREERRERERRRRE KRR R KRR R R R RN RN RN RN R KRR R R KRR KR KK

SATISFIED WITH DATA ENTERED, RE-EXECUTE THE INPUTPROC
STATEMENT AFTER GIVING USER A DIAGNOSTIC. IF ALL IS OK, THEN
CONTINUE. >>

O M W N W W

<< ENDS DEC PROGRAM >>



	Papers / Presentations
	Languages
	DEC/3000 An Example of Special-Purpose Language Design and Implementation



