
Dt:C/3000

AN EXA~1PLF UFo SPECIAL-PURPUSE
LAN GUAc; E I)~:s 1ChAN D 1 ~ PL ~~ M~N l' A 11 UN

Mat t hPo ~ lJ. Hal an <i e r
The ~ & ~ Computer Company

ABSTRACT: Special-purpose prooramminq lanQuaqes are often an
excellent method ot reducina costs ana improving
productivity. This paper discusses some ot tne factors
influencinq the decision to develop and emplOY a
specidl-purpose lanquaqe, and presents an example of such a
language. The languaqe presented, DI::("/3UOO, provit1es
powerful data-entry capabilitip.s tor proqrammers prOducinq
applications In host languaqes. In tests, the use ot tnls
special-puroose language has indeed reduced costs and
improved programmer productivity.

t. wny another lanquage?

Despite the (quite proper) effort to develop good qeneral
purpose programminq lanquaqes in the discipline of computer
science, there are nonetheless still prOblems for which
special-purpose languages should be emphasized regardless of
considerations Of universal applicability or portability.
Factors which motivate the effort to design and implement
such languaqes, to adopt them for use in applications, and to
educate programmers in their use include cost effectiveness,
9rogrammer productivity, proqram reliability, and
maintainability of the final product.

Languages should not of course be implemented to meet every
Whim of each programmer. Problem areas for which languages
should be provided must be very carefully defined, it the
language to be provided is to fulfill its goals of lowered
software production costs anrl improved programmer
productivity. An appropriate prOblem area may be identified
as fOllows:

o It must be possible to clearly define the prOblem
area. It is, for examplp, an inadequate isolation ot
the problem area to state, "A language is needed to
help with data entry tasks." The problem area must be
carefully, clearly, and fully specified. The

E-10.1

construction of a "language" is under conslderation.
It is critical to understand fully eXnctly ;,.-nat. tIle
proposed languaqe is supposed to be ahle to "t-3lK'''
about.

o The programming of solutions in the problem area,
using available languages, is tedious, complex, and
error-prone. ~xistlnq lanquages, in other worns, are
not well suited t.o the pxpression 01 sollltions to
tasKs in the problem area. The deqree ot difficult.y
witn which ~olutions are provided in existing
languages is a measure of the cost of solvin~ oronlems
in those lanquages, and, in oeneral, an indIcation ot
the future costs ot reliability and maintaindhility of
the software. (The cost ot the oroposed languaqe may
thus be measured relativp to the cost ot existinq
languagps by notinq the reduction in comrlexity of
solutions provided in the special-purpose lanquaqe.)

o An area is a candidate for a special-purpose language
if proqrams are frequently producer! to meet needs in
the area, or such proqrams are heavily used. The
ettort involved in designing and implementing a
special-purpose languaqe cannot oe jlJstitiea if the
lanquaqe produced ~ill rarely be llsed.

The decision to proauce a special-purpose language is thus
largely governed by economic factors. If a special lanquage
will reduce costs SUfficiently, it will provide a
cost-effective means ot providing solutions to data
processinq problems. I,anquages achieve cost reductions in
the sottware development cycle In several ways. Some of the
more straight-forward are as follows:

o ~v increasing the power of thp language being used by
programmers (defining "power" loosely as the amount of
work done for the programmer by a line of code) the
size of programs, measured in lines of COde, is
reduced. Given a fixed cost per line of finished COde
regardless of language, there is a direct savings in
proqram development cost in using a powerful
special-purpose language.

o A well-designed language is easy to use. Its idioms
and methods of expression are "natural" for expressing
solutions to the cateqory of problems for which it was
designed. This reduces the complexity of solutions to
prOblems. Complexity ot a orogram varies inversely
with reliability of the program. The less complex a
program is, the more reliable it is. Greater
reliability means lower costs for software
development. As a result of reduced complexity,
testing is simplified, and debugging is both easier
and less time consuming.

E-10.2

o lhe increased power and reduced complexity of a
s ~'ecia 1- r ur r 0 S e 1an quaqe s (:l r vet 0 red uc e s 0 f twa r e
maintenance costs. Adjustments and mOditications of
prooralfiS will re-quire less programmer time, affect
te~er lines ot COde, and mnY with qreater contidence
De undertaken by proarammers who did not originally
~rite the soft~are oeinq modified. ~roqram

mo~itication ifl addition enjoys tn~ s~me benefits from
incr~nSP(l power and reduced complexity thnt are
exnerienced during original sOftware development.

from all these remarks it is plain that the use of
soeclal-purpose proQramming lanquaqes can be very
beneticial. It is nlso plain that tne benefits received
~eoena tleavily on the language design and implementation.

2. HOW is n sppcial-purpose language desiqned?

Once d problem area has oeen defined tor which a
speclal-purpose lanquaqe is beinq considered, the lanQuage
JTl US t t> e de 5 i 9ned. The des i 9not a I an q 11 a qe i san art, not a
technology. It will always remain so, since lanquaqe is an
intensely human activity, and is tundamp.ntally alien to
mechanical processing. It is tar beyond the scope of this
p~per to discuss lan~Udae desiqn in detail, but some central
considerations $hould be mentionerl.

The lanql1iioe designer must know the prOblem area. This
involves not just a ~assing aCQuaintance, but an intimate
familiarity. SUCh knowlectge usually i5 a result only of much
~ork in the field. rhe languaqe desiQner must be tamiliar
with the prohlems of the prOblem area, and with the sorts ot
solutions ~itn Which thP.y are best met. He must be aware of
the limitations of avaIlable lanqllaqeS when applied to
proo!ems in the field, and nave some experience with trying
to "maKe do" witn these languages.

'tne lanqlJdge designed must be powerful. It it is not
sufficiently powerful, many ot the benefits of implementing
the lanqudqe will be lost. IJanguage constructs and idioms
must ue provided which allow the programmer to express as
concisely and unambiguously as possible his intentions.
~riet constructs are preferred to wordy ones, and one line
of COdP to two or more. On the other hand, the APL-ish,
mystical, "does-it-all" one-liner type of language is most
certainly not desirable. Readability should always be
m~intalned.

when providing power, it is necessary to be cautious that
flexibility is not unduly limited. Regardless of the power
of the languaqe, it will not be used by programmers if they
are unable to express solutions to all relevant problems
with It. In zeal for makinq the programmer's life easier, ny

E-10.3

"doing all the worK tor him," care must be taKen not to make
it ditficult or impossible tor him to solve atypical or
unanticipated problems using th~ languaoe.

The lanquage designed must be "natural." that is, it must
express proqrams in much tne same way ttlat the programmer
thinKS, or should thinK, aoout them. A jUdicious compromise
oet~een macnine efficiency and proqrammer comtort must oe
touna. It is here that the art of the lanqunqe desiqner
will be most needed.

3. ho~ is the lanquage to be implemented?

while lanquaae design Is the most critical phase of the
production of a lanauage, implementation is by no means less
important. A good, reliable, easy-to-use implementation of
the language must be provided to proqrammers. It must taKe
Into account their needs dnd work. An implement~tion wnich
is difficult to use, or which is unpredictable or unreliable
in its operation, will not be used. The documentat.ion, not
only ot the language, but also of the implementation of the
language, must be comprehensive, clear and concise. It is
an integral part of the implementation as a whole.

There are three very viable options for implementation of a
language: a pre-processor, an interpreter, and a compiler.
The simplest of these is to implement a pre-processor tor
some existing language. The special-purpose language then
takes the torm of statements embedded in a program text
ultimately intended for some existinq orocessor. Tnis text
is first fed throuqh the pre-processor, whiCh converts the
special-purpose language statements into source statements
of the language in which the special-purpose statements are
embedded, and outputs a program text whiCh may be submitted
to the existing processor. SUCh a concept is familiar and
has been used successtully in such systems as RATrO~, a
pre-processor for fORTBAN programs providing while,
do-until, and similar constructs.

If all existing languages are so unsuited to tne prOblem
area that it is not wise to pre-process special-purpose
lanQuaqe statements into one of them, then the
implementation must provide all the functions of a
source-lanQuage processor. One way in wnich tnis is often
accomplished is to implement an interpreter tor the
language. Interpreters ~ave many tamiliar advantaqes, and
are not as diffiCUlt to implement as most other options. In
addition, the technology of interpreters is well docum~nted

in the literature, and good advice may be found there to
assist In writing the interpreter itself.

Although interpreters have many well known advantages, they
also have many well know disadvantages. They are slOW,

E-10.4

often bulKy, and usually have no convenient mechanism for
accessing the full capabilities ot the operating system and
allied subsystems in which they are used. It tIle
disadvantages of an interpreter weiqh heavily in a
particular situation against its use, the next alternative
is to implement a full compiler. lmplementino a comoller is
undoubtedly the most difficult and time-consuminq ot the
options, but possesses most ot the advantages ot the other
options, as well as some unique to thP use of a compiler. A
well written compiler provides access to all system
capaoilities (assuming the language design has been done
well enough to allow the language itself to express access
to these capabilities). It provides much more efficiency
than an interpreter, and is more congenial to a varip.ty ot
environments, both batch and interactive.

The type of implementation to be used depends on the nature
of the problem area itself, on the time and resources
available for implementation, and the ways in wnich it is
desired to use the finished processor. Pre-processors are
the easiest to write, port, and maintain, compilers the most
difficult, and interpreters are somewhere in oetween.]n
some cases hybrid implementations are most appropriate.
Here the craftsmanship of the programmer implementinq the
language Is of great importance. It the available
programmers are not skilled in compiler writing, or have no
experience In compiler writing, it may be unwise to ask them
to implement a production compiler. On the other hand, the
concepts and engineering of pre-orocessors are not of qreat
difficulty, and most programmers with some experience in
text processing can implement pre-processors in a reasonable
amount of time. Interpreters, as compilers, require some
special SKills, and Should not be undertaken by a staff
without some prior experience in the area.

4. Can you give me an example?

The author has written a number ot data entry programs, each
of whiCh was a portion of a larger nata processinq systenl.
In each case, interactive terminals witn forms and block
mode capabilities were used. These proQrams were
implemented in fORTRAN, COBOL, and SPL, as appropriate to
the data processing system tor which the data entry proqram
was being written. Tne specificdtions tor the programs
indicated that the forms/blOCK mode capabilities of tne
terminals were to be used whenever possible to assist
terminal operators In entering data correctly.

In preparing to write these programs, it was necessary to
learn a great deal about the terminals to oe used (HP~b4X

terminals were used tor these particular orojects). Not
only ~as it incumbent on the programmer to be tully

E-10.5

conversant with the application, but also to be an expert on
the terminal~ themselves. Programming terminals sucn as
HP2b4X terminals is in fact a form of low-level machine
programming, and as sUCh is quite prone to errors. No
special software tools were available to assist in managing
the terminals: all functions had to be explicitly provided
by the applications proqrams.

In one case, eighty lines of SPL code were needed tor the
"DEFINEs" used to code the declaration of a single form in a
fashion which was at least partially readable. In one
FORTRAN program approximately two hundred lines of code were
devoted exclusively to terminal management. In general, it
was found that approximately one third of each of these
programs were devoted to terminal management, with
approximately one hunrired lines per program devoted to
detining and manaqing forms for display on the terminals.

Not only were terminal and form management lengthy, they
were also difficult to code. The escape sequences used with
HP2b4X terminals are meaningless In and of themselves. They
dre simply details which must be coded precisely in order
for the terminal to behave as desired. Programmers who are
not the original author of these programs will find it
difficult to modify the forms involved when data needs
change; the original author himself will find changes
difficult.

A search was of course made for alternative methods of
coping with the problem of managing these types of terminals
during data entry. The only software available at the time
was Hewlett Packard's D~L/3000. It was evaluated, ann
rejected for several reasons. First, it did not relieve tne
programmer of the necessity of being an expert on the
terminals. To declare a form in DEL/3000 the programmer
must actually produce the form from ·the Keyboard of an
HP264X terminal. He must still be familiar with all
appropriate escape sequences. Second, DEL/3000 had to be
used from an HP264X terminal. Not all terminals used for
program development at the installation where this work was
beinq accomplished were HP terminals. Also, because of this
restriction, work on the forms and terminal management had
to be done on-line instead of in (less expensive) batCh.
Third, DEL/3000 held out no hope of ever supporting any but
Hewlett Packard terminals. Other forms/blOCK mOde
capability terminals are available, and it is not wise to
write one's software so that one is locked into a single
vendor. other Objections, such as the "un-aesthetical"
nature of DEL/30UO, were raised, but could not be related to
clearly definable, measurable problems.

The rejection of DEL/3000 was the rejection ot the only
available software tool for forms/blOCK mode data entry with
sufficient power to be considered. The remainder of this

E-10.6

paper discusses the alternatives which we considered, and
aescrioes the solution we reached. We turned to consider
what sort ot tools we should implement ourselves. (In the
mednwhile, the writinq ot data entry programs was undertaken
using the various available languages, since it was not
teasiDl~ to delay their production till more powerful tools
~ere available.) What ever we came up with had to meet the
tollowinq goals:

o The tool produced must perform virtually all terminal
and form management during data entry.

o fhe tool must relieve the applications programmer of
the necessity of understanding the programming of the
terminal being used. The programmer should never need
to Know what escape sequences are used to perform
terminal functions.

o It must not be necessary to have one ot the data entry
terminals available tor the programmer-s use during
COdin1 of the application.

o The tool must provide for adequate documentation of
torms. It is not considered SUfficient for forms to
oe simply entered at the Keyooard; there must be a
permanent, off-line record ot eacn form clearly
showing all protected/unprotected tields, display
enhancements, and so on.

o The tool must allow for future use of non-HP terminals
with a minimal conversion effort. It is acceptable to
need to rework the tool itself, but minimal Changes
snould be necessary in applications programs.

o The tool must dovetail with existing applications, and
existinq dpplication languages, so that a conversion
~rocess may be unoertaken, ann so that programmers and
analysts are not restricted in their choice of
lanquaQe.

Clearly a new programming language was called for. A
carefully designed language, together with a comprehensive
run-time support library, is capable of meeting all these
goals. Implementation method was decided immediately. A
pre-processor is not feasible because ot the last goal. The
new lanquaqe must dovetail with a number of existing
languages (at the least with COBOL, SPL, and FORTRAN), but
pre-processors are oriented to a single application
language. The difficulty of implementing several
pre-processors, and the maintenance nightmares arising from
having three or more programs that do the "same" thing,
caused the firm rejection of a pre-processor. An
interpreter was rejected for the same reasons that tne
pre-processor was rejected. (It is possible to construct an

E-10.7

interpreter wnich is invoKed by a program when needed, but
sucn constructs are difficUlt on the HP3000 under MP~.

Also, the use ot such a ~vstem is burdensome on the
programmer, and is not conceptually straiqht-forward.) we
settled on implementing a compiler.

Since it is desirahle to use the data entry tool with a
variety of applications coded in a variety of languages, a
"host language" concept was adopted. That is, program units
coded in the new, special-purpose language would be used
together with program units coded in some "host language."
It w~s agreed that only the tollowinq restrictions should be
placed on the choice of host language: the host must be
able to call external program units, and to pass simple
integer and integer array parameters by reterence to these
external program units. In this way, the special-purpose
language program units would be accessable from at least
COBOL, BASTC, SPL, and FORTRAN. Since no other potential
hosts were in use at the time, tois was considered to be
sufficient.

The name "DEC" was adopted for the compiler and associated
language. It is an acronym for "Data Entry Compiler." Since
all DEC programs were to be used together with a host
program, DEC could be devoted to solely the data
entry/terminal management tasks which motivated it in tne
first olace. Access to data bases and other files, complex
data checking, and complex program logic could be left to
the host. The following scope for the DEC language was
defined:

DEC is a special-purpose programming language in
which data entry forms and activities utilizing
forms/block mode terminals may be expressed. This
is to inclUde the definition and documentation of
forms, the specification of elementary data editinq
and checking, the specification of type
conversions, and the specification of the
correspondence of data record fields with form
fields.

This definition guided language design. The language
designed, which is described in separate documentation, is
primarily declarative in nature; it inclUdes no explicit
verbs. Actions are implied by the declarations (for
example, type conversion actions are implied by the
declaration of data types), but no actions are explicitly
coded by the programmer. A sample DEC program is included
at the end of this paper. It is heavily commented to
explain the features of the language. •

Terminal management tasks are shared between the compiler
and the run-time support library, "D~CLIB". All terminal
manipulation may be performed via library procedures, and

E-l~.8

DEC-generated procedures. There is a single entry point to
DECL!B for all functions, regardless of terminal type. The
O~CLIB procedures are internally structured in such a way
that additional types of terminals may be easily
accomodated, while requiring norn,ally only a sIngle line in
each apPlication program to be chanqed to taKe advantage of
these additional tyoes.

Since D~C Is a compiler, it inputs a source language file,
and outputs RBM's in a USL tile, and thus may be used
dUring coding and program entry from any sort ot terminal.
It may be used either interactively or in oatch.

The DEC language has been desiqned so that it documents
forms very well, as may be seen by examining the sample at
the end of this paper. All features ot the display are
evident from even a rapid examination of a source program.
In addition, the proqrammer has great flexibility in
placing comments in a DEC program. This encourages gOOd
documentation.

5. what have the results been?

The six goals for the DEC language nave substantially been
met. A six hundred line FOkTHAN program has been reduced to
two nundred lines of FURT~AN and about one hundred lines of
DEC. Again defininq "power" loosely, since one line of DEC
replaced in this application four. of FORTRAN, D~C may oe
said to be roughly four times more powerful than FORTRAN.
This implies that DEC programs cost about one fourth as
much to write as equivalent FORTRAN programs, and this has
indeed neen our experience. All proQrams converted to use
DEC, regardless of language, were substantially reduced in
size.

As an additional benefit, unintended but very welcome, all
converted data entry programs now worK on all our HP2b4X
terminals. This is despite the fact that indiVidual
programs were originally implemented for a particular
model, such as the HP2645A, or the HP2640B. In addition,
there is now complete freedom to use page or line mOde.
The programs were formerly hard-coded to use one mode or
the other.

Programmers have learned DEC in a very short time. A
single afternoon is sufficient to read the manual and begin
applying DEC to actual prOblems. Since VEC is
straignt-torward, concise, and "natural," programmers find
it easy to use.

Changes to a form, and to its associated da~a entry
program, can now be made In a single afternoon, and in many

E-10.9

cases in much less that an afternoon. Formerly one or two
days or more could be consumed 1n such changes, depending
on the extent of the change. Using DEC, a form can be
entirely reorganized, and be back in service the same day.

6. Can you summarize all this?

In general, there are circumstances in whiCh
special-purpose programming languages can be used to good
advantage. The design, implementation, and adoption of
such a language can otten be justified on a cost basis.
while language design is a difficult art, analysts and many
programmers with appropriate experience should be able to
construct a language which would provide tne desired cost
benefits. Several options are available for implementing
the language. The cost effectiveness of these options
depends in part on the experience of the programming staff,
and in part on the expected cost savings from use of the
language.

An example has been presented for which available software
products were unable to fill a well-defined need. Goals
were established Which upon examination indicated that a
special-purpose programming language would be a viable
method of obtaininq a satisfactory software product to fill
the identified need. An appropriate lanquage was desiqned
and implemented using a compiler and host language
arrangement. The result was that the goals which had been
established were SUbstantiallY met, and In fact the cost of
producing software using the new language is significantly
lower than the cost of similar software produced without
this tool.

E-10.10

* <--- LIN~S BEGINNING wITH "*" ARE CUMMENTS
« CDro\MENTS MA Y ALSO BE ENCLOSED I N Ar~GLJLAR BRACKETS »

SCONTHOL USLINIT,LIST,SOURCE,MAP,CODE
* Note that co~piler control is similar to HP compilers. This
* specifies that a listing is to be prOduced, that it should
* include the source images, a symbol map, and code. Code output
* Is in an assembly-like format for readability.

*** A DEC program consists of a declaration of a form, tollowed *
* by one or more "data entry," or "DE," sections which declare *
* data entry information associated with the most recently *
* declared form. *
**
-FORM FORMP~UC «name of procedure will be FORMPROC »

« You could call this procedure in CUBOL with 'CALL fOkMPROC »
« USING ••• or 1n fORTRAN wi th CAI.L rOHMPROC (•••) »

O,O,"THIS IS A SAMPLE FOHM"
* This statment says, beqinnlng in row 0, column 0, place the
* following data: "THIS IS A SAMPLE FORM"

2,0,"* '"
* This statement says, beqinning in row 2, column 0, place a
* two Character unprotected field. The initial contents of
* this field are to be" ".

3,O,"'XX'"
* Same as last statement, except row 3, and initial contents "XX".

4,O,"!B·XX·"
* Same as last, except ro~ 4, and the "XX" is to be in inverse
* video (display enhancement B).

5,4,"\CiDTHIS WILL BE IN ALTERNATE CHAR SET C, ENHANCEM~NT 0"
* At row 5, column 4, place the specitied data using alternate
* Character set C, display enhancement D.

LABEL: 12 , 12,"OATE: !B' 'I' '/' '"
* The terminal operator will see "DATE: / / ", the last eight
* Characters of Which will be in inverse video (display enhancement
* Bl. Note that there are only six unprotected characters. Even
* though these siX unprotected characters are in three separate
* unprotected fields, the fact that the field has a label ("LABEL")
* indicates to DEC that all siX Characters should be considered
* a single data field. The label also allows reference to this
* field in a later data entry section.

-MROF «end of declaration of this form »

E-10.11

-DE IN=IN~UTPROC, OK=OKPROC
« Declare data entry information associated ~ith FORMPROC »
« Can later in host program CALL· INPUTPROC(•••), etc. »

« We can reference fields defined in the form section FORMPROC »
« only by referring to labels declared there. "LABEL" is the »
« only SUCh label in this example. »

O,4,P,LAB~I,; VERIfY NUM~RIC-NO-BLANKS; SAVE
« Beginning in byte zero of a data record, there is a 4-byte »
« long, packed decimal field. Its data source is the form »
« field labeled LABEL. Verify that the data input by the user »
« on the form is all numeric, with no blanks. After data has »
« been successfully input, and you go back to erase all the »
« unprotected fields in the form, do not erase this one, SAVE »
« it. »

* In addition, data editing (including justifying, blanK and zero* filling, and the like) can all be specified. Constants may also
* be specified as a data source, instead of a field declared in a* form section. Totaling of fields and auto incrementing or* decrementing of field contents may all be specified.

-ED «ends the data entry section »

*** The host language program would be similar to the following: *
* ** OPENDETERM(CBUF, •••); «OPEN THE TERMINAL FILE (DECLIB») *
* FORMPROC(C~UF); «DISPLA~ THE FORM » *
* INPUTPROC(CBUF, •••); «INPUT DATA FROM THE FORM » *
* « USER MAY HERE DO ANY DATA MANIPULATION DESIRED. IF NOT *
* SATISFIED WITH DATA ENTERED, RE-EXECUTE THE INPUTPROC *
* STATEMENT AFTER GIVING USER A DIAGNOSTIC. IF ALL IS OK, THEN *
* CONTINUE.» ** OKPROC(CBUF, •••); «ERASE SCREEN EXCEPT "SAVE" FIELDS » *
* « REP~AT THE INPUTPROC/OKPROC SEQUENCE UNTIL ALL DATA IS IN » *
* CLOSEDETERM{CBUF, •• •)i « WHEN ALL DONE CLOSE FIL~ (OECLIB) » *
'***********
-END «ENDS DEC PROGRAM »

E-10.12

	Papers / Presentations
	Languages
	DEC/3000 An Example of Special-Purpose Language Design and Implementation

