
TIPS ON CONVERTING IBM FORTRAN PROGRAMS

TO THE

HP 3000

BY

GARY ANDERSON AND DEEPAK SINHA

McMASTER UNIVERSITY

A. INTRODUCTION

This paper will be useful to anyone wishing to embark
on the task of converting IBM FORTRAN software'to the HP
3000 Series II or Series III computers. It should also be
helpful to anyone who wishes to consider the general
question of program portability to the HP 3000.

The material presented here is based primarily on the
experience of the authors resulting from the successful
conversion of the BMDP and SPSS statistical systems to HP
3000 Series II.

The problems encountered during these projects arose
largely from the following four sources:

1) Incompatibilities
3000/FORTRAN.

between IBM/FORTRAN and HP

2) Architectural features of HP 3000 Series II
computer which impose certain restrictions on
programs it can run.

3) Difference between the EBCDIC and ASCII character
sets.

4) Difficulties with some library functions on the
HP 3000.

The following sections attempt to cover the above
problem areas and our proposed solutions in detail.

E-8.1

B. FORTRAN incompatibilities between IBM and the HP
3000

B.l) Type declaration order:

The order in which type declarations can be made is
more restrictive on the HP 3000 than on IBM. All type
declarations must be made before any DATA statements on
the HP 3000. Further, the data declarations cannot be
interspersed with type spe~ifications. For example,
consider the following FORTRAN code for IBM and its
equivalent on the HP 3000:

IBM

SUBROUTINE EXl
.

REAL B(3) 11 • ,2. ,3. I , A, D
INTEGER*2 I, J/9/,K
DATA K/5/,A/4.5/
INTEGER*4 INTI, INT2

END

HP 3000

SUBROUTINE EXl

REAL B(3), A,D
INTEGER*2 I,J,K
INTEGER*4 INTI, INT2
DATA Bf 1. ,2. , 3 • f
DATA J/9/, K/5/, A/4.51

END

B.2) REAL and INTEGER specifications:

IBM FORTRAN allows REAL*8 and REAL*4 type
specifications. On the HP 3000 REAL*8 must be replaced by
DOUBLE PRECISION and REAL*4 simply by REAL wherever they
occur.

The use of INTEGER*4 and INTEGER*2 specification on
IBM is compatible with the HP 3000 and needs no change.

It must be pointed out that the default integer size
on IBM is 32 bits, i.e. any variable specified as
INTEGER*4, INTEGER, or any integer constant (e.g. 1,2,99,
etc.) has a length of 32 bits. On the HP 3000, the default
integer length is 16 bits. This incompatibility can be
easily removed, however, by including the $INTEGER*4
command ahead of the source-code before compilation.
Consider the following equivalent examples on the two
machines.

E-B.2

The lengths of the REAL and DOUBLE PRECISION
variables on both the machines are 32 bits and 64 bits
respectively.. (Remember, though, that the length of
DOUBLE PRECISION variables on the HP 3000 CX machine is 48
bits).

B.3) Mixed specifications:

IBM FORTRAN allows double preclslon and real
variables to be declared in the same statement by
appending *2 or *4 to the variable name. The IBM
convention of appending *(number) to a variable or
function name is totally unacceptable on HP 3000.
Consider the following equivalent examples:

E-8.3

IBM

REAL FUNCTION EX3*8(N)
REAL *8 A,B*4,C
INTEGER I,J*2,K*4

END
INTEGER FUNCTION INT*2(I)

END

B.4) Logical variables:

HP 3000

FUNCTION EX3(N)
DOUBLE PRECISION A,C,EX3
REAL B
INTEGER*4 I,K
INTEGER*2 J

END
FUNCTION INT(I)
INTEGER*2 INT

END

There are two kinds of logical variables in IBM
FORTRAN; One byte logical variables, which are typed using
the LOGICAL*1 declaration, and 4 byte logical variables,
which are typed using the LOGICAL declaration. All
logical variables in HP 3000 FORTRAN have a length of 2
bytes.

LOGICAL*l variables or arrays in IBM programs are
often used to store character strings only, and logical
tests are not performed on them. In this case, these
variables or arrays can simply be typed as CHARACTER*1 on
HP 3000 and they become exactly equivalent.

When LOGICAL*' and LOGICAL variables or arrays are
being used in the logical context (i.e. logical tests are
being performed on them and they are set to TRUE or FALSE,
etc.) then there are clearly two options:-

a) Declare them as LOGICAL on HP 3000, but with
caution. What if those variables or arrays are
equivalenced with some other arrays? Or, what if
they are a part of some other big array, the
starting address being passed through a
subroutine .call? Clearly, the IBM calculations
for the space required by the array will need
readjustment in HP 3000 programs. Also, since
the lengths of IBM LOGICAL, REAL and INTEGER
words are the same, an array declared as REAL or
INTEGER in one subroutine can be declared as
LOGICAL and interpreted logically in another
subroutine and vice-versa. This operation is

E-8.4

obviously invalid on the HP 3000 because of thelength difference of a logical variable.

b) Declare a LOGICAL*1 variable as CHARACTER*1 and aLOGICAL variable as an INTEGER or REAL. All thelogical tests, initializations and assignmentstatements will then have to be changed.Consider the following equivalent examples forthis case:

IBM HP 3000

PROGRAM EX4
LOGICAL*1 A,B
LOGICAL X,Y
IF (A) G=G+1
IF (X) Y=FALSE
B = FALSE

END

PROGRAM EX4
CHARACTER A,B,CTRUE, CFALSE
INTEGER X,Y,ITRUE, IFALSE
DATA CTRUE/%1C/, CFALSE/$OCI
DATA TRUE/1/, IFALSE/O/
IF (A.EO. CTRUE) G = G + 1
IF (X. EO. ITRUE) Y = IFALSE
B = CFALSE

END

Another fact to note is that the bit representationfor the constant TRUE is different on the two machines:

Bit

IBM HP 3000

Bit 0 1 14 15

6,- --1· ". q.... '1· 1"' " OJ =-1)J= L__ ._~--.... °-0 I 6-r:-.. 0 : 0 (=0)
••_ - < 1_ ..••• _ I . I.. ..-

In view of the above facts it is not possible to givea pat solution for every problem arising out of the use ofLOGICALs but it is recommended that every situationinvolving these variables should be examined carefully.
B.5) Hexadecimal constants:

IBM FORTRAN allows initialization of variables usinghexadecimal constants (e.g. Z18005024 etc.). They are notallowed in HP 3000 FORTRAN and must, therefore, bereplaced by octal or some other equivalent constant.
B.6) Branching control in subroutine calls:

The character n&" in an IBM subroutine call statementis used to control branching on return from the

E-8.5

subroutine. It must be replaced by "$" on HP 3000.
Consider the examples:

IBM

PROGRAM EX5
DATA A/Z123456781
CALL SUB (A,B, &10)

HP 3000

PROGRAM EX5
DATA A/%0221505317R/
CALL SUB (A,B, $10)

10 I = I + 1

.
END

10 I = I + 1

END

B.1) Type incompatibilities:

IBM FORTRAN allows incompatibility between the types
of the actual arguments (those provided in a CALL
statement) and the dummy arguments (those within a
subroutine). For example, a REAL argument can be passed
to a subroutine whose corresponding dummy argument is
INTEGER. The HP 3000 allows such incompatibilities only
if a $CONTROL CHECK=2 statement has been included ahead of
the subroutine before compilation. The following
equivalent examples further clarify this point.

IBM HP 3000

PROGRAM EX6 PROGRAM EX6
REAL A REAL A
CALL SUB (A) CALL SUB (A)

END END
SUBROUTINE SUB (I) $CONTROL CHECK = 2
1NTEGER*4 I SUBROUTINE SUB (I)

INTEGER*4 I

.
END END

8.8) Array bound s:

A dynamic array bound must be a dummy argument of the
subroutine statement in HP 3000 FORTRAN. Two equivalent
examples are given below and some comments are made:

E-8.6

IBM

SUBROUTINE EX7 (A,B)
REAL A(N), B(M), C(L)
COMMON/ABC/M,N
READ (5,10) A
WRITE (6,11) B

ENTRY DUMB (C,L)

.
END
SUBROUTINE XYZ (P,I)
REAL P(l)..
END

HP 3000

SUBROUTINE EX1 (A,B)
REAL A(1), B(1), C(1)
COMMON/ABC/M,N
READ (5,10) (A(I), I=1,N)
WRITE (6,11) (B(I), I:1,M)

ENTRY DUMB (C,L)

END
SUBROUTINE XYZ (P,I)
REAL P(I)

END

It should be noted in the above examples that
subroutine XYZ needed no modification because I, the
dynamic bound of array P, is a dummy argument of
subroutine XYZ; but M, Nand L were not dummy arguments of
subroutine EX7 and hence could not be used for
dimensioning A, B, and C. Note that L is a dummy argument
of entry DUMB but that is not sufficient. The implicit
length of the arrays A, B, and C was changed to 1 but this
required the modification of all the READs, WRITEs or any
other statements using the implicit length of the arrays.

\

B.9) Basic external functions:

All
FORTRAN,
require
must be
but this

the basic external functions in the HP 3000
particularly the double precision functions,

explicit typing in a program. For example, DSQRT
declared as DOUBLE PRECISION in the HP program,

is not necessary in an IBM program.

B.10} Scientific subroutine library functions:

Certain IBM scientific subroutine library routines
like GAMA, DGAMA, LGAMA and DLGAMA are available on HP
3000 but under the names GAMMA, DGAMMA, LGAMMA and DLGAMMA
respectively. (Note the two Mis in the spellings).

B.11) Length of common blocks:

IBM FORTRAN allows the length of a labelled (or
named) common block to vary from one subroutine to
another. HP 3000 FORTRAN permits this phenomenon only for

E-8.7

a single blank (or unnamed) common block. All the
labelled common blocks must be of the same length in every
sUbprogram or else a segmenter error results. The
following equivalent examples contain one proposed
solution.

IBM

PROGRAM EX9
COMMON/A/A,B,C(10)

END
SUBROUTINE ONE (I,J,K)
COMMON/A/P

END
SUBROUTINE TWO (X)
COMMON/A/A,Y,Z(100)

END

HP 3000

PROGRAM EX9
COMMON/A/A,B,C(10), PAD (90)

.
END
~UBROUTINE ONE (I,J,K)
COMMON/A/P, PAD (101)

END
SUBROUTINE TWO (X)
COMMON/A/A,Y,Z(100)

END

In order to determine the maximum length of a common
block, the source should be compiled with the $CONTROL
MAP, CROSSREF ALL option. This enables one to know which
surbroutines use a particular common block and what the
lengths are of the common blocks in those subroutines.

C. RESTRICTIONS DUE TO HP 3000 SYSTEM ARCHITECTURE

C.1) Variables in COMMON or DATA:

The total number of variables declared in different
COMMON blocks or DATA statements must not exceed 255 on HP
3000. The reason for this is that the compiler places the
address of each such variable or array in the primary DB
area of the stack and the DB relative addressing is not
allowed to exceed 255 words by the system.

The problems imposed by this restriction have proven
to be extremely difficult, especially in the conversion of
a big system like SPSS.

One solution is:

a) Eliminate a common block by including all or some
of its variables in the argument list of the
affected subroutines.

E-B.B

b) Eliminate a DATA declaration by initializing its
variables using assigment statements in the code.
This process, however, cannot be carried out
indiscriminately. There is one very important
consideration to keep in mind when comtemplating
this change. A DATA variable is like a global
variable, in other words it retains its value
throughout the program execution. For example,
suppose that a subroutine, when entered once, set
the value of some variable A; now, when it was
entered again, if A was not a global variable,
its value would be indefinite. By being removed
from a DATA declaration, the status of a variable
is changed from global to local. Hence, before
removing a variable from a DATA statement one
needs to understand the program logic to
ascertain whether or not this particular variable
needs to be global. Only those DATA variables,
not required to be global, may be initialized by
assignment statements.

It is the experience of the authors that this process
can be tedious, time consuming and has the potential for
introducing an unending string of "bugs" in a program.

A new capability likely to be available in the future
version of the FORTRAN compiler may remove this
restriction, at the expense of execution time, by
providing the $MORECOM compiler option.

C.2) Subroutine arguments:

The maximum number of arguments in a single
subroutine on HP 3000 cannot exceed 54. The reason for
this limitation is that whenever a subroutine or function
is called, the address or values of the actual arguments
and a four word stack marker are placed on the stack and
Q-minus addresses are assigned to them. Q-minus
addressing cannot exceed 63 words, hence the limit.

C.3) Local variables:

On an IBM machine, the local variables within a
subprogram retain their values between calls to this
subprogram, unless this subprogram happens to be overlaid
with another subprogram. In particular, programs with
only one overlay always retain the values for local
variables throughout a run of the program. This is never
true on HP 3000 because the system stack is dynamically
increased when a subroutine is called and decreased when

E-8.9

the subroutine is exited. Consequently, all the local
variables are lost with the updating of Q register.

The only solution to this problem is to understand
the program logic so as to determine which variables need
to be removed from the list of local variables and be made
global. Once identified, these variables must be placed
in a common block.

C.4) Addressing:

IBM and many other machines use a byte oriented
addressing scheme. This means that given an address, the
system can identify the proper byte in memory which mayor
may not be at a word boundary. HP 3000 system uses
related .but different addressing schemes for words and
bytes. The right most bit of a byte address indicates
whether it is the left or the right byte of the word whose
address is given by the remaining bits. The implication
is that given an address, the system also has to know
whether it is a word or byte address.

The HP 3000 FORTRAN compiler generates word addresses
for REAL, INTEGER, DOUBLE PRECISION or LOGICAL variables
but byte addresses for CHARACTER type variables or
strings. For this reason, it is not possible in HP 3000
FORTRAN, as opposed to IBM FORTRAN, to pass a character
string or variable in a subroutine CALL statement when the
corresponding dummy argument is not of a CHARACTER type.
The converse also holds true.

One can use equivalencing of variables to solve this
problem but a more innovative solution, and one that has
been used in the SPSS and BMDP-71 conversion projects, is
to use an SPL program to modify the address in question
and pass this modified address to the called subroutine.
The following examples should clarify this concept.

E-8.10

IBM

PROGRAM EX10
REAL A
CALL SUB1 (A)

END
SUBROUTINE SUB1 (B)
LOGICAL*1 B(1)

.
END

HP 3000

PROGRAM EX10
REAL A
CALL SUBIM(A)

END
SUBROUTINE SUB1(B)
CHARACTER B(1)

END
$CONTROL SUBPROGRAM
BEGIN
PROCEDURE SUB1(B);
BYTE ARRAY B;
OPTION EXTERNAL;
PROCEDURE SUBIM(B)j
REAL Bj
BEGIN TOS:= @ B & LSL(1);
SUB1(*); END;
END.

Conversion of a word address to a byte address is
straight forward but while converting a byte address to a
word address one must note that if the byte address is not
at a word boundary then there is no way it can be
converted to a word address. However, such a situation
rarely arises.

C.5) Code se~mentation:

As opposed to specifying overlays on an IBM system,
one needs to define code segments on HP 3000. All the
code must belong to some code segment. There is an
allowed maximum size and an allowed maximum number of code
segments which are fixed at the time of system
configuration.

The implication is that there is a limit to how large
a program that runs on HP 3000 can be and how large a
subprogram can be. If a subroutine, or any other
subprogram cannot fit within one code segment then it must
be split up into two or more subprograms. The task of
splitting subroutines is a difficult one and genera~ly

introduces "bugs" in the program. We have found that a
code segment size of 8K bytes will generally handle the
largest of FORTRAN subroutines or programs.

E-8.11

C.6) Data stack iimitation:

The entire data stack used by a HP 3000 program must
not exceed 32,767 words. This restricts the size of
scratch areas and other arrays in a program. In order to
use the stack judiciously, one must have as few global
variables and arrays as possible so that there is more
space available for local variables. There is a permanent
allocation of stack for the global variables but a dynamic
allocation for the local variables. This is one reason
why a lot of DATA declarations in SPSS had to be
eliminated.

It
stack
STACK
32767.

may be
size, the
parameter

noted that in order to use the maximum
program should be prepped or run with

set to 819 and MAXDATA parameter set to

C.7) Real word configuration:

The exponent and fraction parts of a real word on the
two machines are as shown here:

In add i tion, on tile HP 3000, ali s al ways impl ied to
left of the binary point. Real 0 is the only exception to
this rule.

It should be obvious that the range of magnitude for
the real numbers is more on HP but the precision is
smaller by one bit compared to IBM.

C.8) Distinction between BLANK and ZERO:

The IBM formatter upon detecting blanks in a field
being read using Fw.d specification, turns the left most
bit of the real word ON (the remaining bits are 0). This
real word, while being distinct from +0, has an arithmetic
value equal to O. The HP 3000 formatter returns a +0 upon
detecting blanks under the same conditions. Hence there is
no way of distinguishing between blanks and zeroes while
reading a field under Fw.d specification.

E-8.12

It may be noted that even if one, somehow, manages to
turn the left most bit ON, the value of the real word will
not be -0, it will be -.863617 E-77 because of the biased
exponent and an implied 1 to the left of the binary point.

D. INCOMPATIBILITIES DUE TO EBCDIC & ASCII CHARACTER
SETS

D.1) Alphabetic and numeric tests:

Very often, in order to determine whether a character
is alphabetic or numeric, its numerical value is tested.
As one would expect, the numerical values for the EBCDIC
character set used by IBM are different from those for the
ASCII character set used by the HP 3000. The following
table compares some of the values assuming that the
character in question occupies the right most byte of the
word.

EBCDIC ASCII
A - Z 193 - 233 65 - 90
0-9 240 - 249 48 - 57
BLANK 64 32

The following equivalent
instance of such a test.

examples include one

IBM

PROGRAM EX11
LOGICAL *1 A(4)
INTEGER *4 I
EQUIVALENCE (I,A)
DATA I/4Hbbb9/
IF (I.GE.240 AND
I.LE.249) GO TO 10

10 INUM = I - 240

END

D.2) Alphabetic sorting:

HP 3000

PROGRAM EX11
CHARACTER A(4)
INTEGER *4 I
EQUIVALENCE (I,A)
DATA I/4Hbbb9/
IF (I.GE.48 AND
I.LE.57) GO TO 10

10 INUM = I - 48

END

Imagine a real or double precision array which needs
to be sorted in alphabetic order. One method is to
compare the numerical values of the words and take the
appropriate action. The left most bit of every EBCDIC
alphabet or numeral is 1, which in the position of a sign

E-C.13

bit makes a number negati ve .. The impl ication is tha t the
value of A is greater than the value of B etc. In ASCII
character set the left most bit of alphabets and numerals
is 0 which implies that the numerical value of A is less
than the numerical value of B etc. Hence, the logic of
all the tests, performed on EBCDIC character strings to
sort them in an ascending alphabetical order, will have to
be reversed to sort ASCII character strings in the same
order.

E. PROBLEMS WITH HP 3000 SCIENTIFIC SUBROUTINE LIBRARY
FUNCTIONS

E.1) DFLOAT:

This double preclslon function, on HP 3000, always
returns a zero regardless of the input. One has to supply
his or her own DFLOAT function in the program or replace
DFLOAT(I) by DBLE(FLOAT(I)) type of conversion.

E.2) LGAMMA:

This function on HP 3000 aborts when the input is
smaller than 1.0. One way to get around this problem is
to use DLGAMMA which seems to work correctly.

E.3) Initialization of DOUBLE PRECISION words:

As the HP 3000 FORTRAN manual suggests, it is not
possible to initialize a double preclslon word using
%"ABCDEFGH"D form. Only the first four characters of the
string are stored. To get around this problem, one has to
equivalence the double precision word with real words and
initialize the real words.

F. CONCLUSION

Although there are many potential areas of
incompatibilities between IBM FORTRAN code and that on the
HP 3000, the potential gains from converted software can
make the effort well worthwhile. There is a great wealth
of well written and thoroughly debugged software on IBM
systems which will run on the HP 3000 once converted. We
feel that our effort in converting the SPSS and BMDP-71
systems, for example, has been an extremely successful
one. In fact, we are actively pursuing other FORTRAN
software packages to convert to the HP 3000 as we have
found that programs compiled from FORTRAN seem to run
surprisingly efficiently on the HP 3000 computer system.

E-B.14

G. ACKNOWLEDGMENTS

The authors would like to acknowledge thecontributions of the members of the software group in theComputation Services Unit at McMaster and their assistancein finding solutions to the conversion problems describedin this document. Their general support role in makingthese two rather massive conversion projects successful isalso greatfully acknowledged. Dr. Khursheed Ahmed'sassistance in the initial assessment of the projects andin the conversion design as well as his ongoing supporthave been most helpful. Mr. Kim Clark has proved to be arich source of useful suggestions. Maria Wong hasprovided valuable input all through the projects with userinterfacing problems and with testing and improving thefinal products.

Lastly, the authors would like to acknowledge thesupport of Hewlett Packard, SPSS Inc. and the personnel ofthe Hea~th Sciences Computing Facility at UCLA.

H. REFERENCES

1) Anderson, G. D., "Converting IBM 360 and 370FORTRAN to the HP 3000 Series II" Journal on theHP 3000 Users Group, Vol 1, #3, Sept.IOct. 1977.
2) Anderson, G. D., "BMOP Program Conversion to theHewlett Packard System 3000 Computer" Internaldocument available from Department of C.E.B.,McMaster University, Hamilton, Ontario, L8S 4J9.

3) HP 3000 Series II Computer System, FORTRANReference Manual.

4) IBM System/360 and System/370 FORTRAN IV LanguageReference Manual.

E-8.15

	Papers / Presentations
	Languages
	Tips on Converting IBM FORTRAN Programs to the HP 3000

