AN EXTENDED OPERATING ENVIRONMENT FOR THE SUPPORT OF
APPLICATION PROGRAMS
RICHARD A. BERGQUIST AND STEVEN M. COOPER
AMERICAN MANAGEMENT SYSTEMS, INC.

The Brownboard Order and Rollstock Distribution System (BOARDS)
supports order processing, invoicing, inventory control, and planning
for the Shipping Container and Containerboard Marketing Division (SCD)
of the Weyerhaeuser Company. The function of BOARDS is described more
fully in the paper, "Decision Support System for the Management of
Containerboard Logistics" by P. DiGiammarino and R. Schwartz.

American Management Systems, a management consulting and system
development firm, began work on BOARDS with Weyerhaeuser in September,
1976. Several subsystems are in production use; the system will be
fully operational in early 1979.

BOARDS is written in COBOL, SPL, and FORTRAN, in order to utilize
the advantages of each language. COBOL was chosen for the majority of
the system because of its widespread use and report generating abilities.
SPL was chosen for its efficiency and ability to interface with all
aspects of the Operating System. FORTRAN was chosen for number process-
ing routines such as those that employ linear programming techniques.

In order to provide an enhanced environment for the programmer without
the need of becoming familiar with all aspects of the system, sets of
common routines were developed. These routines also insure consistency

and compatiability across the system and allow for easy maintenance of
these technical functions.

Sets of common routines have been provided that extend the services
provided by MPE, KSAM, IMAGE, and DEL. These sets of routines are sum-
marized in Figure I and are described in more detail in the remainder of
this paper.

BATCH JOB SUBMISSION COMMON RGUTINES

MPE provides a convenient method of introducing batch jobs through the
use of the STREAM command. However, one problem associated with STREAMing
jobs is security. To be STREAMed, the User ID must be provided along with
all appropriate passwords. The problem here is that either the user must

D-p2.1

FIGURE I

COMMON ROUTINES FUNCTION

BATCH JOB SUBMISSION Handles User ID's and passwords.
Parameter substitution.
Provides interactive front-end for
batch job submission.

FORMS Replacement for DEL, enhancements
include:

- Protected variable data.

- Dynamic screens with multiple
forms and repetitions.

- Mixed Tline and page mode trans-

fer.
VERSION NUMBERS Solves concurrent update problem with-
out locking data base for entire
transaction.

Identifies transactions that failed
during data base modification
either because of program failure
or system failture.

Extends data base lock across process
boundries.

DATA BASE ACCESS Performs IMAGE calls.
Performs 'before' logging to protect
against program aborts.
Performs ‘'after' logging to protect
against file system errors.
Prevents 'Deadly Embraces'.

D-p2.2

be prompted for the password, the password must be hardcoded into a program,
or passwords must be kept within the jobstreams on disc. Prompting the user
is unacceptable for human engineering reasons, hardcoding does not allow

for changing of User Id's or passwords, and leaving passwords on disc leaves
them accessible to anyone who can STREAM the file. Finding none of these
alternatives acceptable, a common routine to stream batch programs was
designed. The common routine is passed the name of a template file, job
parameters, and a parameter string,

The common routine creates a jobstream from a JOB statement which it
creates and the statements contained in the template file. The JOB state-
ment is based on the user running the program and includes all needed pass-
words. The User ID and passwords are kept in a table in a separate, hidden
SL procedure. This allows passwords to be changed by simply modifying an
SL segment, while allowing only legitimate procedures to access the pass-
words. As a further security measure, the User ID which is used does not
have interactive capability -- i.e., it is restricted to batch access.

The remainder of the jobstream comes from the template file. The
streaming procedure substitutes the run parameters which where passed to
it into the jobstream wherever an ampersand occurs as the first character.
This allows an interactive program to prompt the user for parameters and
to then substitute the parameters into the batch system.

HP2645A COMMON ROUTINES

The BOARDS terminal network consists of HP2645A terminals with 12K
memory connected at 2400 baud via multiplexers (one time-division mux and
one statistical mux), as well as various other. ASCII devices that dial
into standard BELL-103 type modems. Early in our design phase, we
determined the needs of programs that would use the HP2645A's in Forms
Mode, and evaluated the Hewlett Packard product, DEL/30002, in 1ight of
these requirements. This analysis resulted in two observations: 1) We
needed certain features not provided by DEL/3000; and 2) DEL/3000 had
features we did not need or want to pay for in terms of processing time.
We therefore developed a set of COBOL-callable, SPL common routines,
that are used as a total replacement for DEL/3000. Some of the differences
between DEL/3000 and the BOARDS routines are described below.

A DEL form is made up of protected fields, whose contents are fully
defined when the form is created, and unprotected fields, whose contents
are alterable by the user and are read back to the computer whenever the
form is read. In addition to these field types, we have defined variable-
data protected fields. These fields may be filled by the program at run-
time, but are protected on the screen so that they are unalterable and are

not transmitted when the form is read. Three examples where these fields
proved useful are:

D-p2.3

° The user specifies that (s)he would like to enter an order for
customer code 'ABC'. The name and address for this customer
are then retrieved from the data base and displayed on the
screen in variable-data, protected fields, for visual-
verification by and information for the terminal user.

e Whenever an unprotected field is found to be in error, it is
set blinking and a two-character error code is written to a
variable-data, protected field at the beginning of the line
that contains the field in error.

] The second line of every screen in the system is called the
Message Line. It is an 80-byte variable-data, protected
field in which the application program can inform the user
as to the status of the processing and inform the user as to
what is next expected of him/her.

DEL/3000 allows only one form to be on the screen at one time. Forms
may be chained together, but this means that after one form has been dis-
played and processed, the screen will be cleared and the next form will
be displayed. The BOARDS form routines allow multiple forms and multiple
repetitions of forms to be displayed on the screen (and in terminal memory)
at one time. This feature has -given us the capability of having dynamically
sized screens whose length is determined at run-time. It has also given
us the ability to produce composite screens where each piece is selected at
run-time from the form file. Similarly, the same form may be used as part
of more than one screen.

The BOARDS common routines allow for the programatic control of the
memory-lock feature of the HP2645A. A1l of the form routines function
correctly whether or not memory-lock is set.

A11 screens in BOARDS have a similar first line containing, among
other things, a one-byte unprotected field, called the Control Field.
Various values may be entered by the user into this field in order to
alter the normal flow of a program. Several of these values are process-
ed by the common routines and the application program is not aware that
this processing occurred. For instance, 'E' means exit, 'R’ means redis-
play the data in the unprotected fields. In several of these cases, once
the Control Field is read, there is no need to read the rest of the
screen. So when the ENTER key is depressed, the computer addresses the
cursor to the Control Field and triggers a field read. If a value has
been entered, it is processed and the rest of the screen is not read.

If a value is not found, the terminal is programatically strapped-for-
page, and a page read is triggered. This allows us to minimize terminal
1/0's which can become important since some of our screens contain several
thousand bytes of unprotected data.

D-p2.4

Another Control Field value that is automatically handled by the
common routines is 'P'. Whenever this value is entered, a hardcopy
printer listing of the screen is produced. If the terminal is equipped
with an HP2631/240 character printer, the terminal is instructed to
copy the contents of terminal memory to the printer. For terminals
without attached printers, the contents of the screen (unprotected,
protected, and variable-data, protected fields) are written line-by-
line into a printer spool file.

Many program functions must operate in inquiry mode on both HP2645A
and other, non-screen mode, terminals. We therefore developed common
routines to allow the same application program to operate on a variety
of different terminal types for display only functions. When a program
is run from a non-HP2645A terminal, the escape-sequences are stripped out
and the unprotected, protected, and variable-data fields are combined
on a line-by-line basis and printed, in character-mode, to the terminal.

Finally, I/0 error recovery is attempted in the common routines.
This is especially useful in dealing with the multiplexers, since
saturation conditions can arise that would result in lost data. When
an input error is detected, the read is re-initiated repetitively until
it is either successful or the maximum retry value is reached. If
none of the retries succeed, the screen is blanked and the form is re-
written to the terminal under the assumption that either an output
error occurred while writing the screen or the terminal user inadvert-
ently damaged or erased the screen.

VERSION NUMBER ROUTINES

The version number routines serve three purposes. First, they pro-
tect against concurrent update of a data base without locking the entire
data base throughout the transaction. Second, they allow detection of
incomplete transactions caused by system or program failures. Third,
they extend a data base lock across process boundries.

Within a data base, a logical data path is formed by data which
are logically grouped together but which may physically cross data set
boundries. An example of this is a purchase order contained in a header
record and line items which reside in a detail data set. The logical
path in this case would consist of the header record and all of the line
items .

If two.users were to update the same path concurrently, some changes
might be lost. Figure II shows how two users concurrently changing a
path might 'lose’ a change.

D-92.5

FIGURE II

User A

User A gets purchase
order XYZ in order to
update it

User A adds two bolts
to the purchase order
and updates the data
base.

User B

User B also gets pur-
chase order XYZ in
order to update it.

User B adds three naiis
to the purchase order
and updates the data
base. However, User B
is unaware that the pur-
chase order has changed
since it was originally
obtained.

At this point the purchase order does not reflect the

changes that User A applied.

That change was lost when

User B applied his change using the data base record
retrieved before User A's change was made.

D-92.6

To protect against concurrently updating the same path, one must
lock the data base when one begins the transaction and unlock it when the
transaction is completed. If there are many users trying to update
records in the same data base, this method is unacceptable; one user might
not finish a transaction in a timely manner and the data base will be
tied up for an extended period of time.

The version number routines use a data item (version number) for each
logical data path. When a transaction begins, the version number is
saved. When the user has completed all of his or her modifications and
is ready to update the data base, the data base is locked, the version
number is re-read and compared with the original version number. If the
version number has not changed, then the path has not been modified and
the program may continue with the user's modifications. At the end of the
transaction, the version number is incremented. I[f the version number
that was re-read has changed, the user must begin the transaction again
because the records within the path have changed since the transaction
began. The use of version numbers allows the data base to be locked only
when modifications are in progress while still protecting against concurrent
updates.

To detect if a transaction was only partially completed, an entry
is made in a table (called the Integrity Table) whenever a modification
begins and removed when the transaction completes. The Version Number
routines add the table entry when the version number is re-read and found
to be unchanged. The entry is deleted at the end of the transaction when
the version number is incremented. By examining the Integrity Table while
the system is quiesced, transactions which were only partially completed
can be identified.

Under IMAGE, a data base is locked by a process. If the process that
has a data base locked is aborted, the data base is unlocked. To extend
a path lock across process boundries (used for backing out of incomplete
transactions as described in the next section) the Version Number routines
examine the Integrity Table whenever a version number is read. If an
entry is found in the table, then the path is currently locked or a trans-
action was only partially completed. In either case, the path is inacces-
sible and modifications are not allowed.

DATA BASE ACCESS COMMON ROUTINES

From a programmer's point of view, the data base routines are functional
equivalents to their IMAGE counterparts. While performing as their IMAGE
counterparts, the access routines are also performing 'before' and 'after'

logging of all transactions as well as protecting against deadlocks when
the data bases are locked.

D-p2.7

Protection against deadlocks was accomplished by requiring that all
data bases be locked at the same time (i.e., one call). The Data Base
Access routine then locks the data bases in lexicographical order.

Two types of logging take place; 'before' and 'after'. ‘'Before' logging
consists of saving a copy of all records associated with the transaction
before any modifications are done. The 'before' log is essentially a
snapshot of the data base before the transaction took place. ‘'After'
logging consists of saving a copy of all records associated with the trans-
action after modifications are done. The 'after' log is essentially a
snapshot of the data base after the transaction takes place.

'BEFORE LOGGING'

The 'before' log is used to restore the data base to its original state
should the transaction process complete abnormally. 'Before' logging is
done to Extra Data Segments to improve performance.

Since IMAGE requires a call to the GET procedure before a recond can
be updated or deleted, all GETs are logged as they are performed. If the
retrieved record is later updated or deleted, we record that information
in the Extra Data segment. Likewise, all PUTs to the data base are also
recorded in the EDS. Because the order of modifications is important,
each individual data base modification is assigned a sequence number which
is saved along with its buffer. If the transaction completes successfully,
the 'before' log is purged. If the program does not complete successfully,
the log remains which allows the data base to be restored to its state
before the transaction began.

THE DRIVER PROGRAM AND TRANSACTION BACKOUT

The operating system, MPE, provides for multiple processes to communi-
cate via the Job Control Word (JCW) facility. The JCW is set to an error
value by MPE whenever a program terminates in an error state. A program
may also set the JCW to a particular value indicating an unsuccessful trans-
action. By examining the JCW, a father process can tell if a son process
completed successfully, was aborted by MPE, or terminated due to an error
condition. This facility is used by a program known as the Driver to
oversee the operation of all programs within BOARDS.

A1l programs within BOARDS are son processes of the Driver. It is
the Driver's function to prompt the user for the function (s)he wishes
to perform and then initiate the correct program to handle the user's
function. The Driver then sleeps, waiting for the program to complete.
If the program does not complete successfully, the Driver initiates a
program known as Automatic Backout whose function is to restore the data
base to its original state. Figure III shows the control and data flow in
the case that a program aborts.

D-92.8

FIGURE III

Driver

Extra
Data
Segments
Trans- Auto-
action ' matic
Program Backout
DB Access|
[Routines (:) (:>
Control Flow
Data
Base Data Flow
pe—
_/

" The driver initiates a transaction program on Request from user.

The program through the Data Base Access routines retrieves and updates
the data base. Logging takes place to extra data segments.

The program aborts. MPE or the program sets a JCW to an error value.

The Automatic Backout program is initiated to restore the data base
to its initial state.

Automatic Backout restores the data base.

Control is returned to the driver and it is ready to process next
users request.

D-p2.9

Automatic Backout retrieves the Extra Data segments which contain
the before record and applies the opposite operation as the aborted
program applied. Figure IV summarizes the required operations.

A1l transactions are done in the reverse order that they were done by
the aborted program. This is necessary to insure that updates are done
in the correct order and that IMAGE master/detail constraints are
satisfied.

'AFTER LOGGING'

'After' logging is used to protect against data base transactions
beging lost because of some error which makes the data base unusable.
In such a case, an old version of the data base must be restored. If
transactions were not logged, then all transactions that were entered
since the time of the backup must be re-entered by the user. By logging
the transactions as they occur to a tape, a program can be run to perform
the data bases transactions which are recorded on the tape. In this
manner, users need not re-enter data in order to recover from the loss
of a data base.

The Data Base Access routines call upon the Malkin and Pinton
transaction logging3 system to perform the 'after' logging.

CONCLUSION

Through the use of common routines, the features of MPE and other
HP-supplied system software have been expanded and utilized in COBOL
application programs, without requiring that the programmers become
familiar with MPE or SPL. These common routines serve as an Extended
Operating Environment for the application programs within BOARDS.

D-92.10

FIGURE 1V

DATA BASE
OPERATION PERFORMED

FIXUP OPERATION

COMMENTS

PUT
UPDATE
DELETE

DELETE
UPDATE
PUT

with 'before' record

D-p2.11

REFERENCES

1) DiGiammarino, P. and Schwartz, R., Decision Support System for the
Management of Containerboard Logistics, 1978.

2) Data Entry Library Reference Manual, Hewlett Packard, Santa Clara
California, 1977.

3) Malkin and Pinton Industrial Supplies, Transaction Logging System for
the HP3000 Computer System, Vancouver, British Colombia,
Canada, 1977.

D-92.12

	Papers / Presentations
	Installation Management
	An Extended Operating Environment for the Support of Application Programs

